Start implementation of circular model

feature/composition2
Alinson S. Xavier 2 years ago
parent 84bd25b04d
commit 74759bd602
Signed by: isoron
GPG Key ID: 0DA8E4B9E1109DCA

@ -1,117 +0,0 @@
# Changelog
All notable changes to this project will be documented in this file.
- The format is based on [Keep a Changelog][changelog].
- This project adheres to [Semantic Versioning][semver].
- For versions before 1.0, we follow the [Pkg.jl convention][pkjjl]
that `0.a.b` is compatible with `0.a.c`.
[changelog]: https://keepachangelog.com/en/1.0.0/
[semver]: https://semver.org/spec/v2.0.0.html
[pkjjl]: https://pkgdocs.julialang.org/v1/compatibility/#compat-pre-1.0
## [0.7.2] -- 2023-03-10
### Fixed
- Core: Fixed modeling issue with collection disposal
- Core: Fix column names in products CSV file
## [0.7.1] -- 2023-03-08
### Added
- Core: Add `write_reports` function
### Changed
- Web UI: Disable usage of heuristic method
### Fixed
- Core: Prevent plants from sending products to themselves
- Core: Enforce constraint that, if plant is closed, storage cannot be used
- Web UI: Fix parsing bug in disposal limit
## [0.7.0] -- 2023-02-23
### Added
- Core: Allow disposal at collection centers
- Core: Allow products to have acquisition costs
- Core: Allow modeling of existing plants
- Web UI: Allow CSV variables and expressions
- Web UI: Allow specifying distance metric
### Changed
- Switch from Cbc/Clp to HiGHS
## [0.6.0] -- 2022-12-15
### Added
- Allow RELOG to calculate approximate driving distances, instead of just straight-line distances between points.
### Fixed
- Fix bug that caused building period parameter to be ignored
## [0.5.2] -- 2022-08-26
### Changed
- Update to JuMP 1.x
## [0.5.1] -- 2021-07-23
### Added
- Allow user to specify locations as unique identifiers, instead of latitude and longitude (e.g. `us-state:IL` or `2018-us-county:17043`)
- Add what-if scenarios.
- Add products report.
## [0.5.0] -- 2021-01-06
### Added
- Allow plants to store input material for processing in later years
## [0.4.0] -- 2020-09-18
### Added
- Generate simplified solution reports (CSV)
## [0.3.3] -- 2020-10-13
### Added
- Add option to write solution to JSON file in RELOG.solve
- Improve error message when instance is infeasible
- Make output file more readable
## [0.3.2] -- 2020-10-07
### Added
- Add "building period" parameter
## [0.3.1] -- 2020-07-17
### Fixed
- Fix expansion cost breakdown
## [0.3.0] -- 2020-06-25
### Added
- Track emissions and energy (transportation and plants)
### Changed
- Minor changes to input file format:
- Make all dictionary keys lowercase
- Rename "outputs (tonne)" to "outputs (tonne/tonne)"

@ -1,25 +0,0 @@
Copyright © 2020, UChicago Argonne, LLC
All Rights Reserved
Software Name: RELOG
By: Argonne National Laboratory
OPEN SOURCE LICENSE
-------------------
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
********************************************************************************
DISCLAIMER
----------
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
********************************************************************************

@ -1,29 +0,0 @@
FROM julia:1.7-buster
ENV RELOG_TIME_LIMIT_SEC=3600
# Install Node.js & zip
RUN apt-get update -yq && \
apt-get -yq install curl gnupg ca-certificates && \
curl -L https://deb.nodesource.com/setup_18.x | bash && \
apt-get update -yq && \
apt-get install -yq nodejs zip
# Install Julia dependencies
ADD Project.toml /app/
ADD src/RELOG.jl /app/src/
RUN julia --project=/app -e 'using Pkg; Pkg.update()'
# Install JS dependencies
ADD relog-web/package*.json /app/relog-web/
RUN cd /app/relog-web && npm install
# Copy source code
ADD . /app
RUN julia --project=/app -e 'using Pkg; Pkg.precompile()'
# Build JS app
RUN cd /app/relog-web && npm run build
WORKDIR /app
CMD julia --project=/app -e 'import RELOG; RELOG.web("0.0.0.0")'

@ -1,30 +0,0 @@
VERSION := 0.7
PKG := ghcr.io/anl-ceeesa/relog-web
clean:
rm -rfv build Manifest.toml test/Manifest.toml deps/formatter/build deps/formatter/Manifest.toml
docs:
rsync -avP --delete-after docs/build/ ../docs/$(VERSION)/
docker-build:
docker build --tag $(PKG):$(VERSION) .
docker build --tag $(PKG):latest .
docker-push:
docker push $(PKG):$(VERSION)
docker push $(PKG):latest
docker-run:
docker run -it --rm --name relog --volume $(PWD)/jobs:/app/jobs --publish 8000:8080 $(PKG):$(VERSION)
format:
cd deps/formatter; ../../juliaw format.jl
test: test/Manifest.toml
./juliaw test/runtests.jl
test/Manifest.toml: test/Project.toml
julia --project=test -e "using Pkg; Pkg.instantiate()"
.PHONY: docs test format

@ -1,51 +1,9 @@
name = "RELOG"
uuid = "a2afcdf7-cf04-4913-85f9-c0d81ddf2008"
authors = ["Alinson S Xavier <axavier@anl.gov>"]
version = "0.7.2"
uuid = "7cafaa7a-b311-45f0-b313-80bf15b5e5e5"
authors = ["Alinson S. Xavier <git@axavier.org>"]
version = "0.1.0"
[deps]
CRC = "44b605c4-b955-5f2b-9b6d-d2bd01d3d205"
CSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
Distributed = "8ba89e20-285c-5b6f-9357-94700520ee1b"
Downloads = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
GZip = "92fee26a-97fe-5a0c-ad85-20a5f3185b63"
Geodesy = "0ef565a4-170c-5f04-8de2-149903a85f3d"
HTTP = "cd3eb016-35fb-5094-929b-558a96fad6f3"
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b"
JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
JSONSchema = "7d188eb4-7ad8-530c-ae41-71a32a6d4692"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
MathOptInterface = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
NearestNeighbors = "b8a86587-4115-5ab1-83bc-aa920d37bbce"
OrderedCollections = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
ProgressBars = "49802e3a-d2f1-5c88-81d8-b72133a6f568"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Shapefile = "8e980c4a-a4fe-5da2-b3a7-4b4b0353a2f4"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
ZipFile = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea"
[compat]
CRC = "4"
CSV = "0.10"
DataFrames = "1"
DataStructures = "0.18"
GZip = "0.5"
Geodesy = "1"
HTTP = "0.9"
HiGHS = "1"
JSON = "0.21"
JSONSchema = "1"
JuMP = "1"
MathOptInterface = "1"
NearestNeighbors = "0.4"
OrderedCollections = "1"
ProgressBars = "1"
Shapefile = "0.8"
ZipFile = "0.10"
julia = "1"

@ -1,60 +0,0 @@
<h1 align="center">RELOG: Reverse Logistics Optimization</h1>
<p align="center">
<a href="https://github.com/ANL-CEEESA/RELOG/actions">
<img src="https://github.com/ANL-CEEESA/RELOG/workflows/Build%20&%20Test/badge.svg">
</a>
<a href="https://doi.org/10.5281/zenodo.4302341">
<img src="https://zenodo.org/badge/DOI/10.5281/zenodo.4302341.svg">
</a>
<a href="https://github.com/ANL-CEEESA/RELOG/releases/">
<img src="https://img.shields.io/github/v/release/ANL-CEEESA/RELOG?include_prereleases&label=pre-release">
</a>
</p>
**RELOG** is a supply chain optimization package focusing on reverse logistics and reverse manufacturing. For example, the package can be used to determine where to build recycling plants, what sizes should they have and which customers should be served by which plants. The package supports customized reverse logistics pipelines, with multiple types of plants, multiple types of product and multiple time periods.
<img src="https://anl-ceeesa.github.io/RELOG/0.7/assets/ex_transportation.png" width="1000px"/>
### Documentation
- [Usage](https://anl-ceeesa.github.io/RELOG/0.7/usage)
- [Input and Output Data Formats](https://anl-ceeesa.github.io/RELOG/0.7/format)
- [Simplified Solution Reports](https://anl-ceeesa.github.io/RELOG/0.7/reports)
- [Optimization Model](https://anl-ceeesa.github.io/RELOG/0.7/model)
### Authors
- **Alinson S. Xavier** <<axavier@anl.gov>>
- **Nwike Iloeje** <<ciloeje@anl.gov>>
- **John Atkins**
- **Kyle Sun**
- **Audrey Gallier**
### License
```text
RELOG: Reverse Logistics Optimization
Copyright © 2020, UChicago Argonne, LLC. All Rights Reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
```

@ -1,4 +0,0 @@
[deps]
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
RELOG = "a2afcdf7-cf04-4913-85f9-c0d81ddf2008"
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"

@ -1,17 +0,0 @@
using Documenter, RELOG
function make()
makedocs(
sitename="RELOG",
pages=[
"Home" => "index.md",
"usage.md",
"format.md",
"reports.md",
"model.md",
],
format = Documenter.HTML(
assets=["assets/custom.css"],
)
)
end

@ -1,36 +0,0 @@
@media screen and (min-width: 1056px) {
#documenter .docs-main {
max-width: 65rem !important;
}
}
tbody, thead, pre {
border: 1px solid rgba(0, 0, 0, 0.25);
}
table td, th {
padding: 8px;
}
table p {
margin-bottom: 0;
}
table td code {
white-space: nowrap;
}
table tr,
table th {
border-bottom: 1px solid rgba(0, 0, 0, 0.1);
}
table tr:last-child {
border-bottom: 0;
}
code {
background-color: transparent;
color: rgb(232, 62, 140);
}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 31 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 91 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 586 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 32 KiB

@ -1,239 +0,0 @@
# Input and Output Data Formats
In this page, we describe the input and output JSON formats used by RELOG. In addition to these, RELOG can also produce [simplified reports](reports.md) in tabular data format.
## Input Data Format (JSON)
RELOG accepts as input a JSON file with three sections: `parameters`, `products` and `plants`. Below, we describe each section in more detail.
### Parameters
The **parameters** section describes details about the simulation itself.
| Key | Description |
| :------------------------ | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `time horizon (years)` | Number of years in the simulation. |
| `building period (years)` | List of years in which we are allowed to open new plants. For example, if this parameter is set to `[1,2,3]`, we can only open plants during the first three years. By default, this equals `[1]`; that is, plants can only be opened during the first year. |
| `distance metric` | Metric used to compute distances between pairs of locations. Valid options are: `"Euclidean"`, for the straight-line distance between points; or `"driving"` for an approximated driving distance. If not specified, defaults to `"Euclidean"`. |
#### Example
```json
{
"parameters": {
"time horizon (years)": 2,
"building period (years)": [1],
"distance metric": "driving"
}
}
```
### Products
The **products** section describes all products and subproducts in the simulation. The field `instance["Products"]` is a dictionary mapping the name of the product to a dictionary which describes its characteristics. Each product description contains the following keys:
| Key | Description |
| :------------------------------------------ | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `transportation cost ($/km/tonne)` | The cost to transport this product. Must be a time series. |
| `transportation energy (J/km/tonne)` | The energy required to transport this product. Must be a time series. Optional. |
| `transportation emissions (tonne/km/tonne)` | A dictionary mapping the name of each greenhouse gas, produced to transport one tonne of this product along one kilometer, to the amount of gas produced (in tonnes). Must be a time series. Optional. |
| `initial amounts` | A dictionary mapping the name of each location to its description (see below). If this product is not initially available, this key may be omitted. Must be a time series. |
| `disposal limit (tonne)` | Total amount of product that can be disposed of across all collection centers. If omitted, all product must be processed. This parameter has no effect on product disposal at plants. |
| `disposal cost ($/tonne)` | Cost of disposing one tonne of this product at a collection center. If omitted, defaults to zero. This parameter has no effect on product disposal costs at plants. |
| `acquisition cost ($/tonne)` | Cost of acquiring one tonne of this product at a collection center. If omitted, defaults to zero. |
Each product may have some amount available at the beginning of each time period. In this case, the key `initial amounts` maps to a dictionary with the following keys:
| Key | Description |
| :---------------- | :------------------------------------------------------------------------------------ |
| `latitude (deg)` | The latitude of the location. |
| `longitude (deg)` | The longitude of the location. |
| `amount (tonne)` | The amount of the product initially available at the location. Must be a time series. |
#### Example
```json
{
"products": {
"P1": {
"initial amounts": {
"C1": {
"latitude (deg)": 7.0,
"longitude (deg)": 7.0,
"amount (tonne)": [934.56, 934.56]
},
"C2": {
"latitude (deg)": 7.0,
"longitude (deg)": 19.0,
"amount (tonne)": [198.95, 198.95]
},
"C3": {
"latitude (deg)": 84.0,
"longitude (deg)": 76.0,
"amount (tonne)": [212.97, 212.97]
}
},
"transportation cost ($/km/tonne)": [0.015, 0.015],
"transportation energy (J/km/tonne)": [0.12, 0.11],
"transportation emissions (tonne/km/tonne)": {
"CO2": [0.052, 0.05],
"CH4": [0.003, 0.002]
},
"disposal cost ($/tonne)": [-10.0, -12.0],
"disposal limit (tonne)": [1.0, 1.0],
"acquisition cost ($/tonne)": [1.0, 1.0]
},
"P2": {
"transportation cost ($/km/tonne)": [0.022, 0.02]
},
"P3": {
"transportation cost ($/km/tonne)": [0.0125, 0.0125]
},
"P4": {
"transportation cost ($/km/tonne)": [0.0175, 0.0175]
}
}
}
```
### Processing plants
The **plants** section describes the available types of reverse manufacturing plants, their potential locations and associated costs, as well as their inputs and outputs. The field `instance["Plants"]` is a dictionary mapping the name of the plant to a dictionary with the following keys:
| Key | Description |
| :------------------------ | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `input` | The name of the product that this plant takes as input. Only one input is accepted per plant. |
| `outputs (tonne/tonne)` | A dictionary specifying how many tonnes of each product is produced for each tonnes of input. For example, if the plant outputs 0.5 tonnes of P2 and 0.25 tonnes of P3 for each tonnes of P1 provided, then this entry should be `{"P2": 0.5, "P3": 0.25}`. If the plant does not output anything, this key may be omitted. |
| `energy (GJ/tonne)` | The energy required to process 1 tonne of the input. Must be a time series. Optional. |
| `emissions (tonne/tonne)` | A dictionary mapping the name of each greenhouse gas, produced to process each tonne of input, to the amount of gas produced (in tonne). Must be a time series. Optional. |
| `locations` | A dictionary mapping the name of the location to a dictionary which describes the site characteristics (see below). |
Each type of plant is associated with a set of potential locations where it can be built. Each location is represented by a dictionary with the following keys:
| Key | Description |
| :------------------------- | -------------------------------------------------------------------------------- |
| `latitude (deg)` | The latitude of the location, in degrees. |
| `longitude (deg)` | The longitude of the location, in degrees. |
| `disposal` | A dictionary describing what products can be disposed locally at the plant. |
| `storage` | A dictionary describing the plant's storage. |
| `capacities (tonne)` | A dictionary describing what plant sizes are allowed, and their characteristics. |
| `initial capacity (tonne)` | Capacity already available at this location. Optional. |
The `storage` dictionary should contain the following keys:
| Key | Description |
| :--------------- | :------------------------------------------------------------------------------------- |
| `cost ($/tonne)` | The cost to store a tonne of input product for one time period. Must be a time series. |
| `limit (tonne)` | The maximum amount of input product this plant can have in storage at any given time. |
The keys in the `disposal` dictionary should be the names of the products. The values are dictionaries with the following keys:
| Key | Description |
| :--------------- | :---------------------------------------------------------------------------------------------------------------------------------- |
| `cost ($/tonne)` | The cost to dispose of the product. Must be a time series. |
| `limit (tonne)` | The maximum amount that can be disposed of. If an unlimited amount can be disposed, this key may be omitted. Must be a time series. |
The keys in the `capacities (tonne)` dictionary should be the amounts (in tonnes). The values are dictionaries with the following keys:
| Key | Description |
| :---------------------------------- | :-------------------------------------------------------------------------------------------------- |
| `opening cost ($)` | The cost to open a plant of this size. |
| `fixed operating cost ($)` | The cost to keep the plant open, even if the plant doesn't process anything. Must be a time series. |
| `variable operating cost ($/tonne)` | The cost that the plant incurs to process each tonne of input. Must be a time series. |
#### Example
```json
{
"plants": {
"F1": {
"input": "P1",
"outputs (tonne/tonne)": {
"P2": 0.2,
"P3": 0.5
},
"energy (GJ/tonne)": [0.12, 0.11],
"emissions (tonne/tonne)": {
"CO2": [0.052, 0.05],
"CH4": [0.003, 0.002]
},
"locations": {
"L1": {
"latitude (deg)": 0.0,
"longitude (deg)": 0.0,
"disposal": {
"P2": {
"cost ($/tonne)": [-10.0, -12.0],
"limit (tonne)": [1.0, 1.0]
}
},
"storage": {
"cost ($/tonne)": [5.0, 5.3],
"limit (tonne)": 100.0
},
"capacities (tonne)": {
"100": {
"opening cost ($)": [500, 530],
"fixed operating cost ($)": [300.0, 310.0],
"variable operating cost ($/tonne)": [5.0, 5.2]
},
"500": {
"opening cost ($)": [750, 760],
"fixed operating cost ($)": [400.0, 450.0],
"variable operating cost ($/tonne)": [5.0, 5.2]
}
}
}
}
}
}
}
```
### Geographic database
Instead of specifying locations using latitudes and longitudes, it is also possible to specify them using unique identifiers, such as the name of a US state, or the county FIPS code. This works anywhere `latitude (deg)` and `longitude (deg)` are expected. For example, instead of:
```json
{
"initial amounts": {
"C1": {
"latitude (deg)": 37.27182,
"longitude (deg)": -119.2704,
"amount (tonne)": [934.56, 934.56]
}
}
}
```
is is possible to write:
```json
{
"initial amounts": {
"C1": {
"location": "us-state:CA",
"amount (tonne)": [934.56, 934.56]
}
}
}
```
Location names follow the format `db:id`, where `db` is the name of the database and `id` is the identifier for a specific location. RELOG currently includes the following databases:
| Database | Description | Examples |
| :--------------- | :---------------------------------------------------------------------- | :------------------------------------------------- |
| `us-state` | List of states of the United States. | `us-state:IL` (State of Illinois) |
| `2018-us-county` | List of United States counties, as of 2018. IDs are 5-digit FIPS codes. | `2018-us-county:17043` (DuPage county in Illinois) |
### Current limitations
- Each plant can only be opened exactly once. After open, the plant remains open until the end of the simulation.
- Plants can be expanded at any time, even long after they are open.
- All material available at the beginning of a time period must be entirely processed by the end of that time period. It is not possible to store unprocessed materials from one time period to the next.
- Up to two plant sizes are currently supported. Variable operating costs must be the same for all plant sizes.
- Accurate driving distances are only available for the continental United States.
## Output Data Format (JSON)
To be documented.

@ -1,57 +0,0 @@
# RELOG: Reverse Logistics Optimization
**RELOG** is an open-source supply chain optimization package focusing on reverse logistics and reverse manufacturing. The package uses Mixed-Integer Linear Programming to determine where to build recycling plants, what size should these plants have and which customers should be served by which plants. The package supports custom reverse logistics pipelines, with multiple types of plants, multiple types of product and multiple time periods.
```@raw html
<center>
<img src="assets/ex_transportation.png" width="1000px"/>
</center>
```
### Table of Contents
```@contents
Pages = ["usage.md", "format.md", "reports.md", "model.md"]
Depth = 3
```
### Source Code
- [https://github.com/ANL-CEEESA/RELOG](https://github.com/ANL-CEEESA/RELOG)
### Authors
- **Alinson S. Xavier,** Argonne National Laboratory <axavier@anl.gov>
- **Nwike Iloeje,** Argonne National Laboratory <ciloeje@anl.gov>
- **John Atkins**
- **Kyle Sun**
- **Audrey Gallier**
### License
```text
RELOG: Reverse Logistics Optimization
Copyright © 2020, UChicago Argonne, LLC. All Rights Reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
```

@ -1,225 +0,0 @@
# Optimization Model
In this page, we describe the precise mathematical optimization model used by RELOG to find the optimal logistics plan. This model is a variation of the classical Facility Location Problem, which has been widely studied in the operations research literature. To simplify the exposition, we present the simplified case where there is only one type of plant.
## Mathematical Description
### Sets
| Symbol | Description |
| :----------------------------- | :-------------------------------------------------------------------- |
| $L$ | Set of collection centers holding the primary material to be recycled |
| $M$ | Set of materials recovered during the reverse manufacturing process |
| $P$ | Set of potential plants to open |
| $T = \{ 1, \ldots, t^{max} \}$ | Set of time periods |
### Constants
#### Plants
| Symbol | Description | Unit |
| :---------------------- | :------------------------------------------------------------------------------------- | :---------- |
| $c^\text{exp}_{pt}$ | Cost of adding one tonne of capacity to plant $p$ at time $t$ | \$/tonne |
| $c^\text{f-base}_{pt}$ | Fixed cost of keeping plant $p$ open during time period $t$ | $ |
| $c^\text{f-exp}_{pt}$ | Increase in fixed cost for each additional tonne of capacity | \$/tonne |
| $c^\text{open}_{pt}$ | Cost of opening plant $p$ at time $t$, at minimum capacity | $ |
| $c^\text{p-disp}_{pmt}$ | Cost of disposing recovered material $m$ at plant $p$ during time $t$ | \$/tonne/km |
| $c^\text{store}_{pt}$ | Cost of storing primary material at plant $p$ at time $t$ | \$/tonne |
| $c^\text{proc}_{pt}$ | Variable cost of processing primary material at plant $p$ at time $t$ | \$/tonne |
| $m^\text{max}_p$ | Maximum capacity of plant $p$ | tonne |
| $m^\text{min}_p$ | Minimum capacity of plant $p$ | tonne |
| $m^\text{init}_p$ | Initial capacity of plant $p$ | tonne |
| $m^\text{p-disp}_{pmt}$ | Maximum amount of recovered material $m$ that plant $p$ can dispose of during time $t$ | tonne |
| $m^\text{store}_p$ | Maximum amount of primary material that plant $p$ can store for later processing. | tonne |
#### Products
| Symbol | Description | Unit |
| :---------------------- | :------------------------------------------------------------------------------------------------------- | :---------- |
| $\alpha_{pm}$ | Amount of material $m$ recovered by plant $t$ for each tonne of primary material | tonne/tonne |
| $c^\text{acq}_{lt}$ | Cost of acquiring primary material at collection center $l$ during time $t$ | \$/tonne |
| $c^\text{c-disp}_{lt}$ | Cost of disposing primary material at collection center $l$ during time $t$ | \$/tonne |
| $m^\text{c-disp}_{t}$ | Maximum amount of primary material that can be disposed of across all collection centers during time $t$ | tonne |
| $m^\text{initial}_{lt}$ | Amount of primary material available to be recycled at collection center $l$ during time $t$ | tonne |
#### Transportation
| Symbol | Description | Unit |
| :---------------- | :--------------------------------------------------- | :---------- |
| $c^\text{tr}_{t}$ | Cost to transport primary material during time $t$ | \$/tonne/km |
| $d_{lp}$ | Distance between plant $p$ and collection center $l$ | km |
### Decision variables
| Symbol | Description | Unit |
| :------------------------ | :-------------------------------------------------------------------------------------- | :------ |
| $q_{mpt}$ | Amount of material $m$ recovered by plant $p$ during time $t$ | tonne |
| $u_{pt}$ | Binary variable that equals 1 if plant $p$ starts operating at time $t$ | Boolean |
| $w_{pt}$ | Extra capacity (amount above the minimum) added to plant $p$ during time $t$ | tonne |
| $x_{pt}$ | Binary variable that equals 1 if plant $p$ is operational at time $t$ | Boolean |
| $y_{lpt}$ | Amount of primary material sent from collection center $l$ to plant $p$ during time $t$ | tonne |
| $z^{\text{p-disp}}_{mpt}$ | Amount of recovered material $m$ disposed of by plant $p$ during time $t$ | tonne |
| $z^{\text{c-disp}}_{lt}$ | Amount of primary material disposed of at collection center $l$ during time $t$ | tonne |
| $z^{\text{store}}_{pt}$ | Amount of primary material in storage at plant $p$ by the end of time period $t$ | tonne |
| $z^{\text{proc}}_{mpt}$ | Amount of primary material processed by plant $p$ during time period $t$ | tonne |
### Objective function
RELOG minimizes the overall capital, production and transportation costs:
```math
\begin{align*}
\text{minimize} \;\; &
\sum_{t \in T} \sum_{p \in P} \left[
c^\text{open}_{pt} u_{pt} +
c^\text{f-base}_{pt} x_{pt} +
c^\text{f-exp}_{pt} \left( \sum_{i=0}^t w_{pi} \right) +
c^{\text{exp}}_{pt} w_{pt}
\right] + \\
&
\sum_{t \in T} \sum_{p \in P} \left[
c^{\text{store}}_{pt} z^{\text{store}}_{pt} +
c^{\text{proc}}_{pt} z^{\text{proc}}_{pt}
\right] + \\
&
\sum_{t \in T} \sum_{l \in L} \sum_{p \in P}
c^{\text{tr}}_t d_{lp} y_{lpt} +
\\
&
\sum_{t \in T} \sum_{p \in P} \sum_{m \in M} c^{\text{p-disp}}_{pmt} z_{pmt} +
\\
&
\sum_{t \in T} \sum_{l \in L} c^\text{acq}_{lt} \left(
m^\text{initial}_{lt} - z^{\text{c-disp}}_{lt}
\right) + c^\text{c-disp}_{lt} z^{\text{c-disp}}_{lt}
\end{align*}
```
In the first line, we have (i) opening costs, if plant starts operating at time $t$, (ii) fixed operating costs, if plant is operational, (iii) additional fixed operating costs coming from expansion performed in all previous time periods up to the current one, and finally (iv) the expansion costs during the current time period.
In the second line, we have storage and variable processing costs.
In the third line, we have transportation costs.
In the fourth line, we have disposal costs at the plants.
In the fifth line, we have acquisition and disposal cost at the collection centers.
### Constraints
- All primary material must either be sent to a plant for processing or disposed of at the collection center:
```math
\begin{align*}
& \sum_{p \in P} y_{lpt} + z^{\text{c-disp}}_{lt} = m^\text{initial}_{lt}
& \forall l \in L, t \in T
\end{align*}
```
- There is a limit on how much primary material can be disposed of at the collection centers:
```math
\begin{align*}
& \sum_{l \in L} z^{\text{c-disp}}_{lt} \leq m^\text{c-disp}_{t}
& t \in T
\end{align*}
```
- Amount received equals amount processed plus stored. Furthermore, all primary material should be processed by the end of the simulation.
```math
\begin{align*}
& \sum_{l \in L} y_{lpt} + z^{\text{store}}_{p,t-1}
= z^{\text{proc}}_{pt} + z^{\text{store}}_{p,t}
& \forall p \in P, t \in T \\
& z^{\text{store}}_{p,0} = 0
& \forall p \in P \\
& z^{\text{store}}_{p,t^{\max}} = 0
& \forall p \in P
\end{align*}
```
- Plants have a limited processing capacity. Furthermore, if a plant is closed, it has zero processing capacity:
```math
\begin{align*}
& z^{\text{proc}}_{pt} \leq m^\text{min}_p x_p + \sum_{i=0}^t w_p
& \forall p \in P, t \in T
\end{align*}
```
- Plants have limited storage capacity. Furthermore, if a plant is closed, is has zero storage capacity:
```math
\begin{align*}
& z^{\text{store}}_{pt} \leq m^\text{store}_p x_p
& \forall p \in P, t \in T
\end{align*}
```
- Plants can only be expanded up to their maximum capacity. Furthermore, if a plant is closed, it cannot be expanded:
```math
\begin{align*}
& \sum_{i=0}^t w_p \leq \left( m^\text{max}_p - m^\text{min}_p \right) x_p
& \forall p \in P, t \in T
\end{align*}
```
- Amount of recovered material is proportional to amount processed:
```math
\begin{align*}
& q_{mpt} = \alpha_{pm} z^{\text{proc}}_{pt}
& \forall m \in M, p \in P, t \in T
\end{align*}
```
- Because we only consider a single type of plant, all recovered material must be immediately disposed of. In RELOG's full model, recovered materials may be sent to another plant for further processing.
```math
\begin{align*}
& q_{mpt} = z^{\text{p-disp}}_{mpt}
& \forall m \in M, p \in P, t \in T
\end{align*}
```
- A plant is operational at time $t$ if it was operational at time $t-1$ or it was built at time $t$. This constraint also prevents a plant from being built multiple times.
```math
\begin{align*}
& x_{pt} = x_{p,t-1} + u_{pt}
& \forall p \in P, t \in T \\
\end{align*}
```
- Boundary constants:
```math
\begin{align*}
& x_{p,0} = \begin{cases}
0 & \text{ if } m^\text{init}_p = 0 \\
1 & \text{ otherwise }
\end{cases} \\
& w_{p,0} = \max\left\{0, m^\text{init}_p - m^\text{min}_p \right\}
\end{align*}
```
- Variable bounds:
```math
\begin{align*}
& q_{mpt} \geq 0
& \forall m \in M, p \in P, t \in T \\
& u_{pt} \in \{0,1\}
& \forall p \in P, t \in T \\
& w_{pt} \geq 0
& \forall p \in P, t \in T \\
& x_{pt} \in \{0,1\}
& \forall p \in P, t \in T \\
& y_{lpt} \geq 0
& \forall l \in L, p \in P, t \in T \\
& z^{\text{c-disp}}_{lt} \geq 0
& l \in L, t \in T \\
& z^{\text{store}}_{pt} \geq 0
& p \in P, t \in T \\
& z^{\text{p-disp}}_{mpt}, z^{\text{proc}}_{mpt} \geq 0
& \forall m \in M, p \in P, t \in T
\end{align*}
```

@ -1,292 +0,0 @@
# Simplified Solution Reports
In addition to the full output format described in [data formats](format.md), RELOG can also generate a number of simplified reports in tabular data format (CSV), which can be more easily processed by spreadsheet software (such as Microsoft Excel), by data analysis libraries (such as Pandas) or by relational databases (such as SQLite).
In this page, we also illustrate what types of charts and visualizations can be produced from these tabular data files. The sample charts have been produced using Python, matplotlib, seaborn and geopandas.
## Plants report
Report showing plant costs, capacities, energy expenditure and utilization factors. Generated by `RELOG.write_plants_report(solution, filename)`.
| Column | Description
|:--------------------------------------|:---------------|
| `plant type` | Plant type.
| `location name` | Location name.
| `year` | What year this row corresponds to. This reports includes one row for each year.
| `latitude (deg)` | Latitude of the plant.
| `longitude (deg)` | Longitude of the plant.
| `capacity (tonne)` | Capacity of the plant at this point in time.
| `amount received (tonne)` | Amount of input material received by the plant this year.
| `amount processed (tonne)` | Amount of input material processed by the plant this year.
| `amount in storage (tonne)` | Amount of input material in storage at the end of the year.
| `utilization factor (%)` | Amount processed by the plant this year divided by current plant capacity.
| `energy (GJ)` | Amount of energy expended by the plant this year.
| `opening cost ($)` | Amount spent opening the plant. This value is only positive if the plant became operational this year.
| `expansion cost ($)` | Amount spent this year expanding the plant capacity.
| `fixed operating cost ($)` | Amount spent for keeping the plant operational this year.
| `variable operating cost ($)` | Amount spent this year to process the input material.
| `storage cost ($)` | Amount spent this year on storage.
| `total cost ($)` | Sum of all previous plant costs.
### Sample charts
* Bar plot with total plant costs per year, grouped by plant type (in Python):
```python
import pandas as pd
import seaborn as sns; sns.set()
data = pd.read_csv("plants_report.csv")
sns.barplot(x="year",
y="total cost ($)",
hue="plant type",
data=data.groupby(["plant type", "year"])
.sum()
.reset_index());
```
```@raw html
<img src="../assets/ex_plant_cost_per_year.png" width="500px"/>
```
* Map showing plant locations (in Python):
```python
import pandas as pd
import geopandas as gp
# Plot base map
world = gp.read_file(gp.datasets.get_path('naturalearth_lowres'))
ax = world.plot(color='white', edgecolor='50', figsize=(13,6))
ax.set_ylim([23, 50])
ax.set_xlim([-128, -65])
# Plot plant locations
data = pd.read_csv("nimh_plants.csv")
points = gp.points_from_xy(data["longitude (deg)"],
data["latitude (deg)"])
gp.GeoDataFrame(data, geometry=points).plot(ax=ax);
```
```@raw html
<img src="../assets/ex_plant_locations.png" width="1000px"/>
```
## Plant outputs report
Report showing amount of products produced, sent and disposed of by each plant, as well as disposal costs. Generated by `RELOG.write_plant_outputs_report(solution, filename)`.
| Column | Description
|:--------------------------------------|:---------------|
| `plant type` | Plant type.
| `location name` | Location name.
| `year` | What year this row corresponds to. This reports includes one row for each year.
| `product name` | Product being produced.
| `amount produced (tonne)` | Amount of product produced this year.
| `amount sent (tonne)` | Amount of product produced by this plant and sent to another plant for further processing this year.
| `amount disposed (tonne)` | Amount produced produced by this plant and immediately disposed of locally this year.
| `disposal cost ($)` | Disposal cost for this year.
### Sample charts
* Bar plot showing total amount produced for each product, grouped by year (in Python):
```python
import pandas as pd
import seaborn as sns; sns.set()
data = pd.read_csv("plant_outputs_report.csv")
sns.barplot(x="amount produced (tonne)",
y="product name",
hue="year",
data=data.groupby(["product name", "year"])
.sum()
.reset_index());
```
```@raw html
<img src="../assets/ex_amount_produced.png" width="500px"/>
```
## Plant emissions report
Report showing amount of emissions produced by each plant. Generated by `RELOG.write_plant_emissions_report(solution, filename)`.
| Column | Description
|:--------------------------------------|:---------------|
| `plant type` | Plant type.
| `location name` | Location name.
| `year` | Year.
| `emission type` | Type of emission.
| `amount (tonne)` | Amount of emission produced by the plant this year.
### Sample charts
* Bar plot showing total emission by plant type, grouped type of emissions (in Python):
```python
import pandas as pd
import seaborn as sns; sns.set()
data = pd.read_csv("plant_emissions_report.csv")
sns.barplot(x="plant type",
y="emission amount (tonne)",
hue="emission type",
data=data.groupby(["plant type", "emission type"])
.sum()
.reset_index());
```
```@raw html
<img src="../assets/ex_emissions.png" width="500px"/>
```
## Products report
Report showing primary product amounts, locations and marginal costs. Generated by `RELOG.write_products_report(solution, filename)`.
| Column | Description
|:--------------------------------------|:---------------|
| `product name` | Product name.
| `location name` | Name of the collection center.
| `latitude (deg)` | Latitude of the collection center.
| `longitude (deg)` | Longitude of the collection center.
| `year` | What year this row corresponds to. This reports includes one row for each year.
| `amount (tonne)` | Amount of product available at this collection center.
| `amount disposed (tonne)` | Amount of product disposed of at this collection center.
| `marginal cost ($/tonne)` | Cost to process one additional tonne of this product coming from this collection center.
## Transportation report
Report showing amount of product sent from initial locations to plants, and from one plant to another. Includes the distance between each pair of locations, amount-distance shipped, transportation costs and energy expenditure. Generated by `RELOG.write_transportation_report(solution, filename)`.
| Column | Description
|:--------------------------------------|:---------------|
| `source type` | If product is being shipped from an initial location, equals `Origin`. If product is being shipped from a plant, equals plant type.
| `source location name` | Name of the location where the product is being shipped from.
| `source latitude (deg)` | Latitude of the source location.
| `source longitude (deg)` | Longitude of the source location.
| `destination type`| Type of plant the product is being shipped to.
| `destination location name`| Name of the location where the product is being shipped to.
| `destination latitude (deg)` | Latitude of the destination location.
| `destination longitude (deg)` | Longitude of the destination location.
| `product`| Product being shipped.
| `year`| Year.
| `distance (km)`| Distance between source and destination.
| `amount (tonne)`| Total amount of product being shipped between the two locations this year.
| `amount-distance (tonne-km)`| Total amount being shipped this year times distance.
| `transportation cost ($)`| Cost to transport this amount of product between the two locations for this year.
| `transportation energy (GJ)`| Energy expended transporting this amount of product between the two locations.
### Sample charts
* Bar plot showing total amount-distance for each product type, grouped by year (in Python):
```python
import pandas as pd
import seaborn as sns; sns.set()
data = pd.read_csv("transportation_report.csv")
sns.barplot(x="product",
y="amount-distance (tonne-km)",
hue="year",
data=data.groupby(["product", "year"])
.sum()
.reset_index());
```
```@raw html
<img src="../assets/ex_transportation_amount_distance.png" width="500px"/>
```
* Map of transportation lines (in Python):
```python
import pandas as pd
import geopandas as gp
from shapely.geometry import Point, LineString
import matplotlib.pyplot as plt
from matplotlib import collections
# Plot base map
world = gp.read_file(gp.datasets.get_path('naturalearth_lowres'))
ax = world.plot(color='white', edgecolor='50', figsize=(14,7))
ax.set_ylim([23, 50])
ax.set_xlim([-128, -65])
# Draw transportation lines
data = pd.read_csv("transportation_report.csv")
lines = [[(row["source longitude (deg)"], row["source latitude (deg)"]),
(row["destination longitude (deg)"], row["destination latitude (deg)"])
] for (index, row) in data.iterrows()]
ax.add_collection(collections.LineCollection(lines,
linewidths=0.25,
zorder=1,
alpha=0.5,
color="50"))
# Draw source points
points = gp.points_from_xy(data["source longitude (deg)"],
data["source latitude (deg)"])
gp.GeoDataFrame(data, geometry=points).plot(ax=ax,
color="0.5",
markersize=1);
# Draw destination points
points = gp.points_from_xy(data["destination longitude (deg)"],
data["destination latitude (deg)"])
gp.GeoDataFrame(data, geometry=points).plot(ax=ax,
color="red",
markersize=50);
```
```@raw html
<img src="../assets/ex_transportation.png" width="1000px"/>
```
## Transportation emissions report
Report showing emissions for each trip between initial locations and plants, and between pairs of plants. Generated by `RELOG.write_transportation_emissions_report(solution, filename)`.
| Column | Description
|:--------------------------------------|:---------------|
| `source type` | If product is being shipped from an initial location, equals `Origin`. If product is being shipped from a plant, equals plant type.
| `source location name` | Name of the location where the product is being shipped from.
| `source latitude (deg)` | Latitude of the source location.
| `source longitude (deg)` | Longitude of the source location.
| `destination type`| Type of plant the product is being shipped to.
| `destination location name`| Name of the location where the product is being shipped to.
| `destination latitude (deg)` | Latitude of the destination location.
| `destination longitude (deg)` | Longitude of the destination location.
| `product`| Product being shipped.
| `year`| Year.
| `distance (km)`| Distance between source and destination.
| `shipped amount (tonne)`| Total amount of product being shipped between the two locations this year.
| `shipped amount-distance (tonne-km)`| Total amount being shipped this year times distance.
| `emission type` | Type of emission.
| `emission amount (tonne)` | Amount of emission produced by transportation segment this year.
### Sample charts
* Bar plot showing total emission amount by emission type, grouped by type of product being transported (in Python):
```python
import pandas as pd
import seaborn as sns; sns.set()
data = pd.read_csv("transportation_emissions_report.csv")
sns.barplot(x="emission type",
y="emission amount (tonne)",
hue="product",
data=data.groupby(["product", "emission type"])
.sum()
.reset_index());
```
```@raw html
<img src="../assets/ex_transportation_emissions.png" width="500px"/>
```

@ -1,131 +0,0 @@
# Usage
## 1. Installation
To use RELOG, the first step is to install the [Julia programming language](https://julialang.org/) on your machine. Note that RELOG was developed and tested with Julia 1.8 and may not be compatible with newer versions. After Julia is installed, launch the Julia console, then run:
```julia
using Pkg
Pkg.add(name="RELOG", version="0.7")
```
## 2. Modeling the problem
The two main model components in RELOG are **products** and **plants**.
A **product** is any material that needs to be recycled, any intermediary product produced during the recycling process, or any product recovered at the end of the process. For example, in a NiMH battery recycling study case, products could include (i) the original batteries to be recycled; (ii) the cathode and anode parts of the battery; (iii) rare-earth elements and (iv) scrap metals.
- The model assumes that some products are initially available at user-specified locations (described by their latitude, longitude and the amount available), while other products only become available during the recycling process.
- Products that are initially available must be sent to a plant for processing during the same time period they became available.
- Transporting products from one location to another incurs a transportation cost (`$/km/tonne`), spends some amount of energy (`J/km/tonne`) and may generate multiple types of emissions (`tonne/tonne`). All these parameters are user-specified and may be product- and time-specific.
A **plant** is a facility that converts one type of product to another. RELOG assumes that each plant receives a single type of product as input and converts this input into multiple types of products. Multiple types of plants, with different inputs, outputs and performance characteristics, may be specified. In the NiMH battery recycling study case, for example, one type of plant could be a _disassembly plant_, which converts _batteries_ into _cathode_ and _anode_. Another type of plant could be _anode recycling plant_, which converts _anode_ into _rare-earth elements_ and _scrap metals_.
- To process each tonne of input material, plants incur a variable operating cost (`$/tonne`), spend some amount of energy (`GJ/tonne`), and produce multiple types of emissions (`tonne/tonne`). Plants also incur a fixed operating cost (`$`) regardless of the amount of material they process. All these parameters are user-specified and may be region- and time-specific.
- Plants can be built at user-specified potential locations. Opening a plant incurs a one-time opening cost (`$`) which may be region- and time-specific. Plants also have a limited capacity (in `tonne`), which indicates the maximum amount of input material they are able to process per year. When specifying potential locations for each type of plant, it is also possible to specify the minimum and maximum capacity of the plants that can be built at that particular location. Different plants sizes may have different opening costs and fixed operating costs. After a plant is built, it can be further expanded in the following years, up to its maximum capacity.
- Products received by a plant can be either processed immediately or stored for later processing. Plants have a maximum storage capacity (`tonne`). Storage costs (`$/tonne`) can also be specified.
- All products generated by a plant can either be sent to another plant for further processing, or disposed of locally for either a profit or a loss (`$/tonne`). To model environmental regulations, it is also possible to specify the maximum amount of each product that can be disposed of at each location.
All user parameters specified above must be provided to RELOG as a JSON file, which is fully described in the [data format page](format.md).
## 3. Running the optimization
After creating a JSON file describing the reverse manufacturing process and the input data, the following example illustrates how to use the package to find the optimal set of decisions:
```julia
# Import package
using RELOG
# Solve optimization problem
solution = RELOG.solve("/home/user/instance.json")
# Write full solution in JSON format
RELOG.write(solution, "solution.json")
# Write simplified reports in CSV format
RELOG.write_plants_report(solution, "plants.csv")
RELOG.write_transportation_report(solution, "transportation.csv")
```
For a complete description of the file formats above, and for a complete list of available reports, see the [data format page](format.md).
## 4. What-If Analysis
Fundamentally, RELOG decides when and where to build plants based on a deterministic optimization problem that minimizes costs for a particular input file provided by the user. In practical situations, it may not be possible to perfectly estimate some (or most) entries in this input file in advance, such as costs, demands and emissions. In this situation, it may be interesting to evaluate how well does the facility location plan produced by RELOG work if costs, demands and emissions turn out to be different.
To simplify this what-if analysis, RELOG provides the `resolve` method, which updates a previous solution based on a new scenario, but keeps some of the previous decisions fixed. More precisely, given an optimal solution produced by RELOG and a new input file describing the new scenario, the `resolve` method reoptimizes the supply chain and produces a new solution which still builds the same set of plants as before, in exactly the same locations and with the same capacities, but that may now utilize the plants differently, based on the new data. For example, in the new solution, plants that were previously used at full capacity may now be utilized at half-capacity instead. As another example, regions that were previously served by a certain plant may now be served by a different one.
The following snippet shows how to use the method:
```julia
# Import package
using RELOG
# Optimize for the average scenario
solution_avg, model_avg = RELOG.solve("input_avg.json", return_model=true)
# Write reports for the average scenario
RELOG.write_plants_report(solution_avg, "plants_avg.csv")
RELOG.write_transportation_report(solution_avg, "transportation_avg.csv")
# Re-optimize for the high-demand scenario, keeping plants fixed
solution_high = RELOG.resolve(model_avg, "input_high.json")
# Write reports for the high-demand scenario
RELOG.write_plants_report(solution_high, "plants_high.csv")
RELOG.write_transportation_report(solution_high, "transportation_high.csv")
```
To use the `resolve` method, the new input file should be very similar to the original one. Only the following entries are allowed to change:
- **Products:** Transportation costs, energy, emissions and initial amounts (latitude, longitude and amount).
- **Plants:** Energy and emissions.
- **Plant's location:** Latitude and longitude.
- **Plant's storage:** Cost.
- **Plant's capacity:** Opening cost, fixed operating cost and variable operating cost.
## 5. Advanced options
### 5.1 Changing the solver
By default, RELOG internally uses [HiGHS](https://github.com/ERGO-Code/HiGHS), an open-source and freely-available Mixed-Integer Linear Programming solver. For larger-scale test cases, a commercial solver such as Gurobi, CPLEX or XPRESS is recommended. The following snippet shows how to switch to Gurobi, for example:
```julia
using RELOG, Gurobi, JuMP
gurobi = optimizer_with_attributes(
Gurobi.Optimizer,
"TimeLimit" => 3600,
"MIPGap" => 0.001,
)
RELOG.solve(
"instance.json",
output="solution.json",
optimizer=gurobi,
)
```
### 5.2 Multi-period heuristics
For large-scale instances, it may be too time-consuming to find an exact optimal solution to the multi-period version of the problem. For these situations, RELOG includes a heuristic solution method, which proceeds as follows:
1. First, RELOG creates a single-period version of the problem, in which most values are replaced by their averages. This single-period problem is typically much easier to solve.
2. After solving the simplified problem, RELOG resolves the multi-period version of the problem, but considering only candidate plant locations that were selected by the optimal solution to the single-period version of the problem. All remaining candidate plant locations are removed.
To solve an instance using this heuristic, use the option `heuristic=true`, as shown below.
```julia
using RELOG
solution = RELOG.solve(
"/home/user/instance.json",
heuristic=true,
)
```

@ -1,23 +0,0 @@
# See https://help.github.com/articles/ignoring-files/ for more about ignoring files.
# dependencies
/node_modules
/.pnp
.pnp.js
# testing
/coverage
# production
/build
# misc
.DS_Store
.env.local
.env.development.local
.env.test.local
.env.production.local
npm-debug.log*
yarn-debug.log*
yarn-error.log*

@ -1,70 +0,0 @@
# Getting Started with Create React App
This project was bootstrapped with [Create React App](https://github.com/facebook/create-react-app).
## Available Scripts
In the project directory, you can run:
### `npm start`
Runs the app in the development mode.\
Open [http://localhost:3000](http://localhost:3000) to view it in your browser.
The page will reload when you make changes.\
You may also see any lint errors in the console.
### `npm test`
Launches the test runner in the interactive watch mode.\
See the section about [running tests](https://facebook.github.io/create-react-app/docs/running-tests) for more information.
### `npm run build`
Builds the app for production to the `build` folder.\
It correctly bundles React in production mode and optimizes the build for the best performance.
The build is minified and the filenames include the hashes.\
Your app is ready to be deployed!
See the section about [deployment](https://facebook.github.io/create-react-app/docs/deployment) for more information.
### `npm run eject`
**Note: this is a one-way operation. Once you `eject`, you can't go back!**
If you aren't satisfied with the build tool and configuration choices, you can `eject` at any time. This command will remove the single build dependency from your project.
Instead, it will copy all the configuration files and the transitive dependencies (webpack, Babel, ESLint, etc) right into your project so you have full control over them. All of the commands except `eject` will still work, but they will point to the copied scripts so you can tweak them. At this point you're on your own.
You don't have to ever use `eject`. The curated feature set is suitable for small and middle deployments, and you shouldn't feel obligated to use this feature. However we understand that this tool wouldn't be useful if you couldn't customize it when you are ready for it.
## Learn More
You can learn more in the [Create React App documentation](https://facebook.github.io/create-react-app/docs/getting-started).
To learn React, check out the [React documentation](https://reactjs.org/).
### Code Splitting
This section has moved here: [https://facebook.github.io/create-react-app/docs/code-splitting](https://facebook.github.io/create-react-app/docs/code-splitting)
### Analyzing the Bundle Size
This section has moved here: [https://facebook.github.io/create-react-app/docs/analyzing-the-bundle-size](https://facebook.github.io/create-react-app/docs/analyzing-the-bundle-size)
### Making a Progressive Web App
This section has moved here: [https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app](https://facebook.github.io/create-react-app/docs/making-a-progressive-web-app)
### Advanced Configuration
This section has moved here: [https://facebook.github.io/create-react-app/docs/advanced-configuration](https://facebook.github.io/create-react-app/docs/advanced-configuration)
### Deployment
This section has moved here: [https://facebook.github.io/create-react-app/docs/deployment](https://facebook.github.io/create-react-app/docs/deployment)
### `npm run build` fails to minify
This section has moved here: [https://facebook.github.io/create-react-app/docs/troubleshooting#npm-run-build-fails-to-minify](https://facebook.github.io/create-react-app/docs/troubleshooting#npm-run-build-fails-to-minify)

File diff suppressed because it is too large Load Diff

@ -1,53 +0,0 @@
{
"name": "relog-web",
"version": "0.1.0",
"private": true,
"homepage": "/",
"jest": {
"moduleNameMapper": {
"d3": "<rootDir>/node_modules/d3/dist/d3.min.js"
}
},
"dependencies": {
"@testing-library/jest-dom": "^5.16.2",
"@testing-library/react": "^12.1.4",
"@testing-library/user-event": "^13.5.0",
"ajv": "^8.11.0",
"d3": "^5.16.0",
"d3-array": "^2.12.1",
"dagre": "^0.8.5",
"idb": "^6.1.5",
"jsep": "^1.3.8",
"leaflet": "^1.8.0",
"react": "^17.0.2",
"react-dom": "^17.0.2",
"react-flow-renderer": "^9.7.4",
"react-router-dom": "^5.3.3",
"react-scripts": "5.0.0",
"web-vitals": "^2.1.4"
},
"scripts": {
"start": "react-scripts start",
"build": "react-scripts build",
"test": "react-scripts test",
"eject": "react-scripts eject"
},
"eslintConfig": {
"extends": [
"react-app",
"react-app/jest"
]
},
"browserslist": {
"production": [
">0.2%",
"not dead",
"not op_mini all"
],
"development": [
"last 1 chrome version",
"last 1 firefox version",
"last 1 safari version"
]
}
}

@ -1,13 +0,0 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>RELOG</title>
</head>
<body>
<noscript>You need to enable JavaScript to run this app.</noscript>
<div id="root"></div>
</body>
</html>

@ -1,424 +0,0 @@
import { openDB } from "idb";
import React, { useEffect, useRef, useState } from "react";
import Button from "../common/Button";
import Footer from "../common/Footer";
import Header from "../common/Header";
import "../index.css";
import { generateFile } from "./csv";
import { defaultData, defaultPlant, defaultProduct } from "./defaults";
import { exportData, importData } from "./export";
import ParametersBlock from "./ParametersBlock";
import PipelineBlock, { randomPosition } from "./PipelineBlock";
import PlantBlock from "./PlantBlock";
import ProductBlock from "./ProductBlock";
import { validate } from "./validate";
import { useHistory } from "react-router-dom";
import { SERVER_URL } from "..";
const setDefaults = (actualDict, defaultDict) => {
for (const [key, defaultValue] of Object.entries(defaultDict)) {
if (!(key in actualDict)) {
if (typeof defaultValue === "object") {
actualDict[key] = { ...defaultValue };
} else {
actualDict[key] = defaultValue;
}
}
}
};
const cleanDict = (dict, defaultDict) => {
for (const key of Object.keys(dict)) {
if (!(key in defaultDict)) {
delete dict[key];
}
}
};
const fixLists = (dict, blacklist, stringify) => {
for (const [key, val] of Object.entries(dict)) {
if (blacklist.includes(key)) continue;
if (Array.isArray(val)) {
// Replace constant lists by a single number
let isConstant = true;
for (let i = 1; i < val.length; i++) {
if (val[i - 1] !== val[i]) {
isConstant = false;
break;
}
}
if (isConstant) dict[key] = val[0];
// Convert lists to JSON strings
if (stringify) dict[key] = JSON.stringify(dict[key]);
}
if (typeof val === "object") {
fixLists(val, blacklist, stringify);
}
}
};
const openRelogDB = async () => {
const dbPromise = await openDB("RELOG", 1, {
upgrade(db) {
db.createObjectStore("casebuilder");
},
});
return dbPromise;
};
const InputPage = () => {
const fileElem = useRef();
let [data, setData] = useState(defaultData);
let [messages, setMessages] = useState([]);
let [processing, setProcessing] = useState(false);
const save = async (data) => {
const db = await openRelogDB();
await db.put("casebuilder", data, "data");
};
useEffect(async () => {
const db = await openRelogDB();
const data = await db.get("casebuilder", "data");
if (data) setData(data);
}, []);
const history = useHistory();
const promptName = (prevData) => {
const name = prompt("Name");
if (!name || name.length === 0) return;
if (name in prevData.products || name in prevData.plants) return;
return name;
};
const onAddPlant = () => {
setData((prevData) => {
const name = promptName(prevData);
if (name === undefined) return prevData;
const newData = { ...prevData };
const [x, y] = randomPosition();
newData.plants[name] = {
...defaultPlant,
x: x,
y: y,
};
save(newData);
return newData;
});
};
const onAddProduct = () => {
setData((prevData) => {
const name = promptName(prevData);
if (name === undefined) return prevData;
const newData = { ...prevData };
const [x, y] = randomPosition();
console.log(x, y);
newData.products[name] = {
...defaultProduct,
x: x,
y: y,
};
save(newData);
return newData;
});
};
const onRenamePlant = (prevName, newName) => {
setData((prevData) => {
const newData = { ...prevData };
newData.plants[newName] = newData.plants[prevName];
delete newData.plants[prevName];
save(newData);
return newData;
});
};
const onRenameProduct = (prevName, newName) => {
setData((prevData) => {
const newData = { ...prevData };
newData.products[newName] = newData.products[prevName];
delete newData.products[prevName];
for (const [, plant] of Object.entries(newData.plants)) {
if (plant.input === prevName) {
plant.input = newName;
}
let outputFound = false;
for (const [outputName] of Object.entries(
plant["outputs (tonne/tonne)"]
)) {
if (outputName === prevName) outputFound = true;
}
if (outputFound) {
plant["outputs (tonne/tonne)"][newName] =
plant["outputs (tonne/tonne)"][prevName];
delete plant["outputs (tonne/tonne)"][prevName];
}
}
save(newData);
return newData;
});
};
const onMovePlant = (plantName, x, y) => {
setData((prevData) => {
const newData = { ...prevData };
newData.plants[plantName].x = x;
newData.plants[plantName].y = y;
save(newData);
return newData;
});
};
const onMoveProduct = (productName, x, y) => {
setData((prevData) => {
const newData = { ...prevData };
newData.products[productName].x = x;
newData.products[productName].y = y;
save(newData);
return newData;
});
};
const onRemovePlant = (plantName) => {
setData((prevData) => {
const newData = { ...prevData };
delete newData.plants[plantName];
save(newData);
return newData;
});
};
const onRemoveProduct = (productName) => {
setData((prevData) => {
const newData = { ...prevData };
delete newData.products[productName];
for (const [, plant] of Object.entries(newData.plants)) {
if (plant.input === productName) {
delete plant.input;
}
let outputFound = false;
for (const [outputName] of Object.entries(
plant["outputs (tonne/tonne)"]
)) {
if (outputName === productName) outputFound = true;
}
if (outputFound) {
delete plant["outputs (tonne/tonne)"][productName];
delete plant["disposal cost ($/tonne)"][productName];
delete plant["disposal limit (tonne)"][productName];
}
}
save(newData);
return newData;
});
};
const onSetPlantInput = (plantName, productName) => {
setData((prevData) => {
const newData = { ...prevData };
newData.plants[plantName].input = productName;
save(newData);
return newData;
});
};
const onAddPlantOutput = (plantName, productName) => {
setData((prevData) => {
if (productName in prevData.plants[plantName]["outputs (tonne/tonne)"]) {
return prevData;
}
const newData = { ...prevData };
[
"outputs (tonne/tonne)",
"disposal cost ($/tonne)",
"disposal limit (tonne)",
].forEach((key) => {
newData.plants[plantName][key] = { ...newData.plants[plantName][key] };
newData.plants[plantName][key][productName] = "0";
});
save(newData);
return newData;
});
};
const onSave = () => {
const exported = exportData(data);
const valid = validate(exported);
console.log(exported);
console.log(validate.errors);
if (valid) {
generateFile("case.json", JSON.stringify(exported, null, 2));
} else {
setMessages([
...messages,
"Data has validation errors and could not be saved.",
]);
}
};
const onClear = () => {
const newData = JSON.parse(JSON.stringify(defaultData));
setData(newData);
save(newData);
};
const onLoad = (contents) => {
const parsed = JSON.parse(contents);
const valid = validate(parsed);
if (valid) {
let newData = null;
if (parsed["case builder"]) {
newData = parsed["case builder"];
} else {
newData = importData(parsed);
}
setData(newData);
save(newData);
} else {
console.log(validate.errors);
setMessages([...messages, "File is corrupted and could not be loaded."]);
}
};
const onDismissMessage = (idx) => {
setMessages([...messages.slice(0, idx), ...messages.slice(idx + 1)]);
};
const onChange = (val, field1, field2) => {
setData((prevData) => {
const newData = { ...prevData };
if (field2 !== undefined) {
newData[field1][field2] = val;
} else {
newData[field1] = val;
}
save(newData);
return newData;
});
};
let productComps = [];
for (const [prodName, prod] of Object.entries(data.products)) {
productComps.push(
<ProductBlock
key={prodName}
name={prodName}
value={prod}
onChange={(v) => onChange(v, "products", prodName, v)}
/>
);
}
const onSubmit = async () => {
const exported = exportData(data);
const valid = validate(exported);
if (valid) {
setProcessing(true);
try {
const response = await fetch(`${SERVER_URL}/submit`, {
method: "POST",
body: JSON.stringify(exported),
});
if (response.ok) {
const data = await response.json();
history.push(`solver/${data.job_id}`);
} else {
throw "Error";
}
} catch {
setMessages([
...messages,
"Failed to submit job. Please try again later.",
]);
} finally {
setProcessing(false);
}
}
};
let plantComps = [];
for (const [plantName, plant] of Object.entries(data.plants)) {
plantComps.push(
<PlantBlock
key={plantName}
name={plantName}
value={plant}
onChange={(v) => onChange(v, "plants", plantName)}
/>
);
}
let messageComps = [];
for (let i = 0; i < messages.length; i++) {
messageComps.push(
<div className="message error" key={i}>
<p>{messages[i]}</p>
<Button label="Dismiss" onClick={() => onDismissMessage(i)} />
</div>
);
}
const onFileSelected = () => {
const file = fileElem.current.files[0];
if (file) {
const reader = new FileReader();
reader.addEventListener("load", () => {
onLoad(reader.result);
});
reader.readAsText(file);
}
fileElem.current.value = "";
};
return (
<>
<Header title="Case Builder">
<Button label="Clear" disabled={processing} onClick={onClear} />
<Button
label="Load"
disabled={processing}
onClick={(e) => fileElem.current.click()}
/>
<Button label="Save" disabled={processing} onClick={onSave} />
<Button label="Submit" disabled={processing} onClick={onSubmit} />
<input
type="file"
ref={fileElem}
accept=".json"
style={{ display: "none" }}
onChange={onFileSelected}
/>
</Header>
<div id="contentBackground">
<div id="content">
<PipelineBlock
onAddPlant={onAddPlant}
onAddPlantOutput={onAddPlantOutput}
onAddProduct={onAddProduct}
onMovePlant={onMovePlant}
onMoveProduct={onMoveProduct}
onRenamePlant={onRenamePlant}
onRenameProduct={onRenameProduct}
onSetPlantInput={onSetPlantInput}
onRemovePlant={onRemovePlant}
onRemoveProduct={onRemoveProduct}
plants={data.plants}
products={data.products}
/>
<ParametersBlock
value={data.parameters}
onChange={(v) => onChange(v, "parameters")}
/>
{productComps}
{plantComps}
</div>
</div>
<div id="messageTray">{messageComps}</div>
<Footer />
</>
);
};
export default InputPage;

@ -1,53 +0,0 @@
import Section from "../common/Section";
import Card from "../common/Card";
import Form from "../common/Form";
import TextInputRow from "../common/TextInputRow";
const ParametersBlock = (props) => {
const onChangeField = (field, val) => {
props.value[field] = val;
props.onChange(props.value);
};
return (
<>
<Section title="Parameters" />
<Card>
<Form>
<TextInputRow
label="Time horizon"
unit="years"
tooltip="Number of years in the simulation."
value={props.value["time horizon (years)"]}
onChange={(v) => onChangeField("time horizon (years)", v)}
validate="int"
/>
<TextInputRow
label="Building period"
unit="years"
tooltip="List of years in which we are allowed to open new plants. For example, if this parameter is set to [1,2,3], we can only open plants during the first three years. By default, this equals [1]; that is, plants can only be opened during the first year."
value={props.value["building period (years)"]}
onChange={(v) => onChangeField("building period (years)", v)}
validate="intList"
/>
<TextInputRow
label="Inflation rate"
unit="%"
tooltip="Rate at which costs change from one time period to the next. This is applied uniformly to all costs."
value={props.value["inflation rate (%)"]}
onChange={(v) => onChangeField("inflation rate (%)", v)}
validate="float"
/>
<TextInputRow
label="Distance metric"
tooltip="Metric used to compute distances between pairs of locations. Valid options are: 'Euclidean', for the straight-line distance between points; or 'driving' for an approximated driving distance."
value={props.value["distance metric"]}
onChange={(v) => onChangeField("distance metric", v)}
default="Euclidean"
/>
</Form>
</Card>
</>
);
};
export default ParametersBlock;

@ -1,200 +0,0 @@
import React, { useEffect } from "react";
import ReactFlow, { Background, isNode, Controls } from "react-flow-renderer";
import Section from "../common/Section";
import Card from "../common/Card";
import Button from "../common/Button";
import styles from "./PipelineBlock.module.css";
import dagre from "dagre";
window.nextX = 15;
window.nextY = 15;
export const randomPosition = () => {
window.nextY += 60;
if (window.nextY >= 500) {
window.nextY = 15;
window.nextX += 150;
}
return [window.nextX, window.nextY];
};
const getLayoutedElements = (elements) => {
const nodeWidth = 125;
const nodeHeight = 45;
const dagreGraph = new dagre.graphlib.Graph();
dagreGraph.setDefaultEdgeLabel(() => ({}));
dagreGraph.setGraph({ rankdir: "LR" });
elements.forEach((el) => {
if (isNode(el)) {
dagreGraph.setNode(el.id, { width: nodeWidth, height: nodeHeight });
} else {
dagreGraph.setEdge(el.source, el.target);
}
});
dagre.layout(dagreGraph);
return elements.map((el) => {
if (isNode(el)) {
const n = dagreGraph.node(el.id);
el.position = {
x: 15 + n.x - nodeWidth / 2,
y: 15 + n.y - nodeHeight / 2,
};
}
return el;
});
};
const PipelineBlock = (props) => {
let elements = [];
let mapNameToType = {};
let hasNullPositions = false;
for (const [productName, product] of Object.entries(props.products)) {
if (!product.x || !product.y) hasNullPositions = true;
mapNameToType[productName] = "product";
elements.push({
id: productName,
data: { label: productName, type: "product" },
position: { x: product.x, y: product.y },
sourcePosition: "right",
targetPosition: "left",
className: styles.ProductNode,
});
}
for (const [plantName, plant] of Object.entries(props.plants)) {
if (!plant.x || !plant.y) hasNullPositions = true;
mapNameToType[plantName] = "plant";
elements.push({
id: plantName,
data: { label: plantName, type: "plant" },
position: { x: plant.x, y: plant.y },
sourcePosition: "right",
targetPosition: "left",
className: styles.PlantNode,
});
if (plant.input !== undefined) {
elements.push({
id: `${plant.input}-${plantName}`,
source: plant.input,
target: plantName,
animated: true,
style: { stroke: "black" },
selectable: false,
});
}
for (const [productName] of Object.entries(
plant["outputs (tonne/tonne)"]
)) {
elements.push({
id: `${plantName}-${productName}`,
source: plantName,
target: productName,
animated: true,
style: { stroke: "black" },
selectable: false,
});
}
}
const onNodeDoubleClick = (ev, node) => {
const oldName = node.data.label;
const newName = window.prompt("Enter new name", oldName);
if (newName === undefined || newName.length === 0) return;
if (newName in mapNameToType) return;
if (node.data.type === "plant") {
props.onRenamePlant(oldName, newName);
} else {
props.onRenameProduct(oldName, newName);
}
};
const onElementsRemove = (elements) => {
elements.forEach((el) => {
if (!(el.id in mapNameToType)) return;
if (el.data.type === "plant") {
props.onRemovePlant(el.data.label);
} else {
props.onRemoveProduct(el.data.label);
}
});
};
const onNodeDragStop = (ev, node) => {
if (node.data.type === "plant") {
props.onMovePlant(node.data.label, node.position.x, node.position.y);
} else {
props.onMoveProduct(node.data.label, node.position.x, node.position.y);
}
};
const onConnect = (args) => {
const sourceType = mapNameToType[args.source];
const targetType = mapNameToType[args.target];
if (sourceType === "product" && targetType === "plant") {
props.onSetPlantInput(args.target, args.source);
} else if (sourceType === "plant" && targetType === "product") {
props.onAddPlantOutput(args.source, args.target);
}
};
const onLayout = () => {
const layoutedElements = getLayoutedElements(elements);
layoutedElements.forEach((el) => {
if (isNode(el)) {
if (el.data.type === "plant") {
props.onMovePlant(el.data.label, el.position.x, el.position.y);
} else {
props.onMoveProduct(el.data.label, el.position.x, el.position.y);
}
}
});
};
useEffect(() => {
if (hasNullPositions) onLayout();
}, [hasNullPositions]);
return (
<>
<Section title="Pipeline" />
<Card>
<div className={styles.PipelineBlock}>
<ReactFlow
elements={elements}
onNodeDoubleClick={onNodeDoubleClick}
onNodeDragStop={onNodeDragStop}
onConnect={onConnect}
onElementsRemove={onElementsRemove}
deleteKeyCode={46}
maxZoom={1.25}
minZoom={0.5}
snapToGrid={true}
preventScrolling={false}
>
<Background />
<Controls showInteractive={false} />
</ReactFlow>
</div>
<div style={{ textAlign: "center" }}>
<Button
label="Add product"
kind="inline"
onClick={props.onAddProduct}
/>
<Button label="Add plant" kind="inline" onClick={props.onAddPlant} />
<Button label="Auto Layout" kind="inline" onClick={onLayout} />
<Button
label="?"
kind="inline"
tooltip="Drag from one connector to another to create links between products and plants. Double click to rename an element. Click an element to select and move it. Press the [Delete] key to remove it."
/>
</div>
</Card>
</>
);
};
export default PipelineBlock;

@ -1,25 +0,0 @@
.PipelineBlock {
height: 800px !important;
border: 1px solid rgba(0, 0, 0, 0.1) !important;
border-radius: var(--border-radius) !important;
margin-bottom: 12px !important;
}
.PlantNode,
.ProductNode {
border-color: rgba(0, 0, 0, 0.8) !important;
color: black !important;
font-size: 13px !important;
border-width: 1px !important;
border-radius: 6px !important;
box-shadow: 0px 2px 4px -3px black !important;
width: 100px !important;
}
.PlantNode {
background-color: #8d8 !important;
}
.ProductNode {
background-color: #e6e6e6 !important;
}

@ -1,257 +0,0 @@
import Section from "../common/Section";
import Card from "../common/Card";
import Form from "../common/Form";
import TextInputRow from "../common/TextInputRow";
import FileInputRow from "../common/FileInputRow";
import DictInputRow from "../common/DictInputRow";
import { csvFormat, csvParse, generateFile } from "./csv";
const PlantBlock = (props) => {
const onChange = (val, field1, field2, field3) => {
const newPlant = { ...props.value };
if (field3 !== undefined) {
newPlant[field1][field2][field3] = val;
} else if (field2 !== undefined) {
newPlant[field1][field2] = val;
} else {
newPlant[field1] = val;
}
props.onChange(newPlant);
};
const onCandidateLocationsTemplate = () => {
generateFile(
"Candidate locations - Template.csv",
csvFormat([
{
name: "Washakie County",
"latitude (deg)": "43.8356",
"longitude (deg)": "-107.6602",
"initial capacity (tonne)": "0",
"area cost factor": "0.88",
},
{
name: "Platte County",
"latitude (deg)": "42.1314",
"longitude (deg)": "-104.9676",
"initial capacity (tonne)": "0",
"area cost factor": "1.29",
},
{
name: "Park County",
"latitude (deg)": "44.4063",
"longitude (deg)": "-109.4153",
"initial capacity (tonne)": "0",
"area cost factor": "0.99",
},
{
name: "Goshen County",
"latitude (deg)": "42.0853",
"longitude (deg)": "-104.3534",
"initial capacity (tonne)": "0",
"area cost factor": "1",
},
])
);
};
const onCandidateLocationsFile = (contents) => {
const data = csvParse({
contents: contents,
requiredCols: [
"name",
"latitude (deg)",
"longitude (deg)",
"area cost factor",
"initial capacity (tonne)",
],
});
const result = {};
data.forEach((el) => {
let { name, ...props } = el;
result[name] = props;
});
onChange(result, "locations");
};
const onCandidateLocationsDownload = () => {
const result = [];
for (const [locationName, locationDict] of Object.entries(
props.value["locations"]
)) {
result.push({
name: locationName,
...locationDict,
});
}
generateFile(`Candidate locations - ${props.name}.csv`, csvFormat(result));
};
const onCandidateLocationsClear = () => {
onChange({}, "locations");
};
let description = "No locations set";
const nCenters = Object.keys(props.value["locations"]).length;
if (nCenters > 0) description = `${nCenters} locations`;
const shouldDisableMaxCap =
props.value["minimum capacity (tonne)"] ===
props.value["maximum capacity (tonne)"];
return (
<>
<Section title={props.name} />
<Card>
<Form>
<h1>General information</h1>
<FileInputRow
label="Candidate locations"
tooltip="A table describing potential locations where plants can be built and their characteristics."
onTemplate={onCandidateLocationsTemplate}
onFile={onCandidateLocationsFile}
onDownload={onCandidateLocationsDownload}
onClear={onCandidateLocationsClear}
value={description}
/>
<h1>Inputs & Outputs</h1>
<TextInputRow
label="Input"
tooltip="The name of the product that this plant takes as input."
disabled="disabled"
value={props.value["input"]}
/>
<DictInputRow
label="Outputs"
unit="tonne/tonne"
tooltip="A dictionary specifying how many tonnes of each product is produced for each tonne of input."
value={props.value["outputs (tonne/tonne)"]}
onChange={(v) => onChange(v, "outputs (tonne/tonne)")}
disableKeys={true}
/>
<h1>Capacity & Costs</h1>
<TextInputRow
label="Minimum capacity"
unit="tonne"
tooltip="The minimum size of the plant."
value={props.value["minimum capacity (tonne)"]}
onChange={(v) => onChange(v, "minimum capacity (tonne)")}
/>
<TextInputRow
label="Opening cost (min capacity)"
unit="$"
tooltip="The cost to open the plant at minimum capacity."
value={props.value["opening cost (min capacity) ($)"]}
onChange={(v) => onChange(v, "opening cost (min capacity) ($)")}
/>
<TextInputRow
label="Fixed operating cost (min capacity)"
unit="$"
tooltip="The cost to keep the plant open, even if the plant doesn't process anything."
value={props.value["fixed operating cost (min capacity) ($)"]}
onChange={(v) =>
onChange(v, "fixed operating cost (min capacity) ($)")
}
/>
<TextInputRow
label="Maximum capacity"
unit="tonne"
tooltip="The maximum size of the plant."
value={props.value["maximum capacity (tonne)"]}
onChange={(v) => onChange(v, "maximum capacity (tonne)")}
/>
<TextInputRow
label="Opening cost (max capacity)"
unit="$"
tooltip="The cost to open a plant of this size."
value={
shouldDisableMaxCap
? ""
: props.value["opening cost (max capacity) ($)"]
}
onChange={(v) => onChange(v, "opening cost (max capacity) ($)")}
disabled={shouldDisableMaxCap}
/>
<TextInputRow
label="Fixed operating cost (max capacity)"
unit="$"
tooltip="The cost to keep the plant open, even if the plant doesn't process anything."
value={
shouldDisableMaxCap
? ""
: props.value["fixed operating cost (max capacity) ($)"]
}
onChange={(v) =>
onChange(v, "fixed operating cost (max capacity) ($)")
}
disabled={shouldDisableMaxCap}
/>
<TextInputRow
label="Variable operating cost"
unit="$/tonne"
tooltip="The cost that the plant incurs to process each tonne of input."
value={props.value["variable operating cost ($/tonne)"]}
onChange={(v) => onChange(v, "variable operating cost ($/tonne)")}
/>
<TextInputRow
label="Energy expenditure"
unit="GJ/tonne"
tooltip="The energy required to process one tonne of the input."
value={props.value["energy (GJ/tonne)"]}
onChange={(v) => onChange(v, "energy (GJ/tonne)")}
/>
<h1>Storage</h1>
<TextInputRow
label="Storage cost"
unit="$/tonne"
tooltip="The cost to store a tonne of input product for one time period."
value={props.value["storage"]["cost ($/tonne)"]}
onChange={(v) => onChange(v, "storage", "cost ($/tonne)")}
/>
<TextInputRow
label="Storage limit"
unit="tonne"
tooltip="The maximum amount of input product this plant can have in storage at any given time."
value={props.value["storage"]["limit (tonne)"]}
onChange={(v) => onChange(v, "storage", "limit (tonne)")}
/>
<h1>Disposal</h1>
<DictInputRow
label="Disposal cost"
unit="$/tonne"
tooltip="The cost to dispose of the product."
value={props.value["disposal cost ($/tonne)"]}
onChange={(v) => onChange(v, "disposal cost ($/tonne)")}
disableKeys={true}
/>
<DictInputRow
label="Disposal limit"
unit="tonne"
tooltip="The maximum amount that can be disposed of. If an unlimited amount can be disposed, leave blank."
value={props.value["disposal limit (tonne)"]}
onChange={(v) => onChange(v, "disposal limit (tonne)")}
disableKeys={true}
valuePlaceholder="Unlimited"
/>
<h1>Emissions</h1>
<DictInputRow
label="Emissions"
unit="tonne/tonne"
tooltip="A dictionary mapping the name of each greenhouse gas, produced to process each tonne of input, to the amount of gas produced (in tonne)."
value={props.value["emissions (tonne/tonne)"]}
onChange={(v) => onChange(v, "emissions (tonne/tonne)")}
keyPlaceholder="Emission name"
valuePlaceholder="0"
/>
</Form>
</Card>
</>
);
};
export default PlantBlock;

@ -1,195 +0,0 @@
import Section from "../common/Section";
import Card from "../common/Card";
import Form from "../common/Form";
import TextInputRow from "../common/TextInputRow";
import FileInputRow from "../common/FileInputRow";
import DictInputRow from "../common/DictInputRow";
import { csvParse, extractNumericColumns, generateFile } from "./csv";
import { csvFormat } from "d3";
const ProductBlock = (props) => {
const onChange = (field, val) => {
const newProduct = { ...props.value };
newProduct[field] = val;
props.onChange(newProduct);
};
const onInitialAmountsFile = (contents) => {
const data = csvParse({
contents: contents,
requiredCols: ["latitude (deg)", "longitude (deg)", "name"],
});
const result = {};
data.forEach((el) => {
result[el["name"]] = {
"latitude (deg)": el["latitude (deg)"],
"longitude (deg)": el["longitude (deg)"],
"amount (tonne)": extractNumericColumns(el, "amount"),
};
});
onChange("initial amounts", result);
};
const onInitialAmountsClear = () => {
onChange("initial amounts", {});
};
const onInitialAmountsTemplate = () => {
generateFile(
"Initial amounts - Template.csv",
csvFormat([
{
name: "Washakie County",
"latitude (deg)": "43.8356",
"longitude (deg)": "-107.6602",
"amount 1": "21902",
"amount 2": "6160",
"amount 3": "2721",
"amount 4": "12917",
"amount 5": "18048",
},
{
name: "Platte County",
"latitude (deg)": "42.1314",
"longitude (deg)": "-104.9676",
"amount 1": "16723",
"amount 2": "8709",
"amount 3": "22584",
"amount 4": "12278",
"amount 5": "7196",
},
{
name: "Park County",
"latitude (deg)": "44.4063",
"longitude (deg)": "-109.4153",
"amount 1": "14731",
"amount 2": "11729",
"amount 3": "15562",
"amount 4": "7703",
"amount 5": "23349",
},
])
);
};
const onInitialAmountsDownload = () => {
const results = [];
for (const [locationName, locationDict] of Object.entries(
props.value["initial amounts"]
)) {
const row = {
name: locationName,
"latitude (deg)": locationDict["latitude (deg)"],
"longitude (deg)": locationDict["longitude (deg)"],
};
locationDict["amount (tonne)"].forEach((el, idx) => {
row[`amount ${idx + 1}`] = el;
});
results.push(row);
}
generateFile(`Initial amounts - ${props.name}.csv`, csvFormat(results));
};
let description = "Not initially available";
let notInitiallyAvailable = true;
const nCenters = Object.keys(props.value["initial amounts"]).length;
if (nCenters > 0) {
description = `${nCenters} collection centers`;
notInitiallyAvailable = false;
}
return (
<>
<Section title={props.name} />
<Card>
<Form>
<h1>General Information</h1>
<FileInputRow
value={description}
label="Initial amounts"
tooltip="A table indicating the amount of this product initially available at each collection center."
accept=".csv"
onFile={onInitialAmountsFile}
onDownload={onInitialAmountsDownload}
onClear={onInitialAmountsClear}
onTemplate={onInitialAmountsTemplate}
disableDownload={notInitiallyAvailable}
disableClear={notInitiallyAvailable}
/>
<h1 style={{ display: nCenters == 0 ? "none" : "block" }}>
Acquisition & disposal
</h1>
<div style={{ display: nCenters == 0 ? "none" : "block" }}>
<TextInputRow
label="Acquisition cost"
unit="$/tonne"
tooltip="Cost of acquiring one tonne of this product at a collection center."
value={props.value["acquisition cost ($/tonne)"]}
onChange={(v) => onChange("acquisition cost ($/tonne)", v)}
validate="floatList"
/>
<TextInputRow
label="Disposal cost"
unit="$/tonne"
tooltip="The cost to dispose of one tonne of this product at a collection center, without further processing."
value={props.value["disposal cost ($/tonne)"]}
onChange={(v) => onChange("disposal cost ($/tonne)", v)}
validate="floatList"
/>
<TextInputRow
label="Disposal limit"
unit="tonne"
tooltip="The maximum amount (in tonnes) of this product that can be disposed of across all collection centers, without further processing."
value={props.value["disposal limit (tonne)"]}
onChange={(v) => onChange("disposal limit (tonne)", v)}
validate="floatList"
disabled={String(props.value["disposal limit (%)"]).length > 0}
/>
<TextInputRow
label="Disposal limit"
unit="%"
tooltip="The maximum amount of this product that can be disposed of across all collection centers, without further processing, as a percentage of the total amount available."
value={props.value["disposal limit (%)"]}
onChange={(v) => onChange("disposal limit (%)", v)}
validate="floatList"
disabled={props.value["disposal limit (tonne)"].length > 0}
/>
</div>
<h1>Transportation</h1>
<TextInputRow
label="Transportation cost"
unit="$/km/tonne"
tooltip="The cost to transport this product."
value={props.value["transportation cost ($/km/tonne)"]}
onChange={(v) => onChange("transportation cost ($/km/tonne)", v)}
validate="floatList"
/>
<TextInputRow
label="Transportation energy"
unit="J/km/tonne"
tooltip="The energy required to transport this product."
value={props.value["transportation energy (J/km/tonne)"]}
onChange={(v) => onChange("transportation energy (J/km/tonne)", v)}
validate="floatList"
/>
<DictInputRow
label="Transportation emissions"
unit="tonne/km/tonne"
tooltip="A dictionary mapping the name of each greenhouse gas, produced to transport one tonne of this product along one kilometer, to the amount of gas produced."
keyPlaceholder="Emission name"
value={props.value["transportation emissions (tonne/km/tonne)"]}
onChange={(v) =>
onChange("transportation emissions (tonne/km/tonne)", v)
}
validate="floatList"
/>
</Form>
</Card>
</>
);
};
export default ProductBlock;

@ -1,50 +0,0 @@
import * as d3 from "d3";
export const csvParse = ({ contents, requiredCols }) => {
const data = d3.csvParse(contents, d3.autoType);
requiredCols.forEach((col) => {
if (!(col in data[0])) {
throw Error(`Column "${col}" not found in CSV file.`);
}
});
return data;
};
export const parseCsv = (contents, requiredCols = []) => {
const data = d3.csvParse(contents);
const T = data.columns.length - requiredCols.length;
let isValid = true;
for (let t = 0; t < T; t++) {
requiredCols.push(t + 1);
}
requiredCols.forEach((col) => {
if (!(col in data[0])) {
console.log(`Column "${col}" not found in CSV file.`);
isValid = false;
}
});
if (!isValid) return [undefined, undefined];
return [data, T];
};
export const extractNumericColumns = (obj, prefix) => {
const result = [];
for (let i = 1; `${prefix} ${i}` in obj; i++) {
result.push(obj[`${prefix} ${i}`]);
}
return result;
};
export const csvFormat = (data) => {
return d3.csvFormat(data);
};
export const generateFile = (filename, contents) => {
var link = document.createElement("a");
link.setAttribute("href", URL.createObjectURL(new Blob([contents])));
link.setAttribute("download", filename);
link.style.visibility = "hidden";
document.body.appendChild(link);
link.click();
document.body.removeChild(link);
};

@ -1,53 +0,0 @@
import { csvParse, extractNumericColumns, csvFormat } from "./csv";
import { exportValue } from "./export";
test("parse CSV", () => {
const contents = "name,location,1,2,3\ntest,illinois,100,200,300";
const actual = csvParse({
contents: contents,
requiredCols: ["name", "location"],
});
expect(actual.length).toEqual(1);
expect(actual[0]).toEqual({
name: "test",
location: "illinois",
1: 100,
2: 200,
3: 300,
});
});
test("parse CSV with missing columns", () => {
const contents = "name,location,1,2,3\ntest,illinois,100,200,300";
expect(() =>
csvParse({
contents: contents,
requiredCols: ["name", "location", "latitude"],
})
).toThrow('Column "latitude" not found in CSV file.');
});
test("extract numeric columns from object", () => {
const obj1 = {
"amount 1": "hello",
"amount 2": "world",
"amount 4": "ignored",
};
const obj2 = { hello: "world" };
expect(extractNumericColumns(obj1, "amount")).toEqual(["hello", "world"]);
expect(extractNumericColumns(obj2, "amount")).toEqual([]);
});
test("generate CSV", () => {
const data = [
{ name: "alice", age: 20 },
{ name: "bob", age: null },
];
expect(csvFormat(data)).toEqual("name,age\nalice,20\nbob,");
});
test("export value", () => {
expect(exportValue("1")).toEqual(1);
expect(exportValue("[1,2,3]")).toEqual([1, 2, 3]);
// expect(exportValue("qwe")).toEqual("qwe");
});

@ -1,52 +0,0 @@
export const defaultProduct = {
"initial amounts": {},
"acquisition cost ($/tonne)": "0",
"disposal cost ($/tonne)": "0",
"disposal limit (tonne)": "0",
"disposal limit (%)": "",
"transportation cost ($/km/tonne)": "0",
"transportation energy (J/km/tonne)": "0",
"transportation emissions (tonne/km/tonne)": {},
x: 0,
y: 0,
};
export const defaultPlantLocation = {
"area cost factor": 1.0,
"initial capacity (tonne)": 0,
"latitude (deg)": 0,
"longitude (deg)": 0,
};
export const defaultPlant = {
locations: {},
"outputs (tonne/tonne)": {},
"disposal cost ($/tonne)": {},
"disposal limit (tonne)": {},
"emissions (tonne/tonne)": {},
storage: {
"cost ($/tonne)": "0",
"limit (tonne)": "0",
},
"maximum capacity (tonne)": "0",
"minimum capacity (tonne)": "0",
"opening cost (max capacity) ($)": "0",
"opening cost (min capacity) ($)": "0",
"fixed operating cost (max capacity) ($)": "0",
"fixed operating cost (min capacity) ($)": "0",
"variable operating cost ($/tonne)": "0",
"energy (GJ/tonne)": "0",
x: 0,
y: 0,
};
export const defaultData = {
parameters: {
"time horizon (years)": "1",
"building period (years)": "[1]",
"inflation rate (%)": "0",
"distance metric": "Euclidean",
},
products: {},
plants: {},
};

@ -1,625 +0,0 @@
import { evaluateExpr } from "./expr";
const isNumeric = (val) => {
return String(val).length > 0 && !isNaN(val);
};
const keysToList = (obj) => {
const result = [];
for (const key of Object.keys(obj)) {
result.push(key);
}
return result;
};
export const exportValue = (original, T, R = 1, data = {}) => {
try {
if (T) {
let v = evaluateExpr(original.toString(), data);
const result = [];
for (let i = 0; i < T; i++) {
result.push(v);
v *= R;
}
return result;
} else {
return evaluateExpr(original.toString(), data);
}
} catch {
// ignore;
}
try {
const parsed = JSON.parse(original);
return parsed;
} catch {
// ignore
}
return original;
};
const exportValueDict = (original, T) => {
const result = {};
for (const [key, val] of Object.entries(original)) {
if (key.length === 0) continue;
result[key] = exportValue(val, T);
}
if (Object.keys(result).length > 0) {
return result;
} else {
return null;
}
};
const computeTotalInitialAmount = (prod) => {
let total = null;
for (const locDict of Object.values(prod["initial amounts"])) {
const locAmount = locDict["amount (tonne)"];
if (!total) total = [...locAmount];
else {
for (let i = 0; i < locAmount.length; i++) {
total[i] += locAmount[i];
}
}
}
return total;
};
export const importList = (args, R = 1) => {
if (args === undefined) return "";
if (Array.isArray(args) && args.length > 0) {
let isConstant = true;
for (let i = 1; i < args.length; i++) {
if (Math.abs(args[i - 1] - args[i] / R) > 1e-3) {
isConstant = false;
break;
}
}
if (isConstant) {
return String(args[0]);
} else {
return JSON.stringify(args);
}
} else {
return args;
}
};
export const importDict = (args) => {
if (!args) return {};
const result = {};
for (const [key, val] of Object.entries(args)) {
result[key] = importList(val);
}
return result;
};
const computeAbsDisposal = (prod) => {
const disposalPerc = prod["disposal limit (%)"];
const total = computeTotalInitialAmount(prod);
const disposalAbs = [];
for (let i = 0; i < total.length; i++) {
disposalAbs[i] = (total[i] * disposalPerc) / 100;
}
return disposalAbs;
};
const computeInflationAndTimeHorizon = (obj, keys) => {
for (let i = 0; i < keys.length; i++) {
const list = obj[keys[i]];
if (
Array.isArray(list) &&
list.length > 1 &&
isNumeric(list[0]) &&
isNumeric(list[1]) &&
Math.abs(list[0]) > 0
) {
return [list[1] / list[0], list.length];
}
}
return [1, 1];
};
export const exportProduct = (original, parameters) => {
const result = {};
// Read time horizon
let T = parameters["time horizon (years)"];
if (isNumeric(T)) T = parseInt(T);
else T = 1;
// Read inflation
let R = parameters["inflation rate (%)"];
if (isNumeric(R)) R = parseFloat(R) / 100 + 1;
else R = 1;
// Copy constant time series
result["initial amounts"] = original["initial amounts"];
["disposal limit (tonne)", "transportation energy (J/km/tonne)"].forEach(
(key) => {
const v = exportValue(original[key], T);
if (v.length > 0) result[key] = v;
}
);
// Copy cost time series (with inflation)
[
"disposal cost ($/tonne)",
"acquisition cost ($/tonne)",
"transportation cost ($/km/tonne)",
].forEach((key) => {
const v = exportValue(original[key], T, R);
if (v.length > 0) result[key] = v;
});
// Copy dictionaries
["transportation emissions (tonne/km/tonne)"].forEach((key) => {
const v = exportValueDict(original[key], T);
if (v) result[key] = v;
});
// Transform percentage disposal limits into absolute
if (isNumeric(original["disposal limit (%)"])) {
result["disposal limit (tonne)"] = computeAbsDisposal(original);
}
return result;
};
export const exportPlant = (original, parameters) => {
const result = {};
// Read time horizon
let T = parameters["time horizon (years)"];
if (isNumeric(T)) T = parseInt(T);
else T = 1;
// Read inflation
let R = parameters["inflation rate (%)"];
if (isNumeric(R)) R = parseFloat(R) / 100 + 1;
else R = 1;
// Copy scalar values
["input"].forEach((key) => {
result[key] = original[key];
});
// Copy time series values
["energy (GJ/tonne)"].forEach((key) => {
result[key] = exportValue(original[key], T);
if (result[key] === undefined) {
delete result[key];
}
});
// Copy scalar dicts
["outputs (tonne/tonne)"].forEach((key) => {
const v = exportValueDict(original[key]);
if (v) result[key] = v;
});
// Copy time series dicts
["emissions (tonne/tonne)"].forEach((key) => {
const v = exportValueDict(original[key], T);
if (v) result[key] = v;
});
result.locations = {};
for (const [locName, origDict] of Object.entries(original["locations"])) {
const minCap = exportValue(
original["minimum capacity (tonne)"],
null,
null,
origDict
);
const maxCap = exportValue(
original["maximum capacity (tonne)"],
null,
null,
origDict
);
const resDict = (result.locations[locName] = {});
const capDict = (resDict["capacities (tonne)"] = {});
const acf = origDict["area cost factor"];
const exportValueAcf = (obj, data = {}) => {
const v = exportValue(obj, T, R, data);
if (Array.isArray(v)) {
return v.map((v) => v * acf);
}
return "";
};
// Copy scalar values
["latitude (deg)", "longitude (deg)", "initial capacity (tonne)"].forEach(
(key) => {
resDict[key] = origDict[key];
}
);
// Copy minimum capacity dict
capDict[minCap] = {};
for (const [resKeyName, origKeyName] of Object.entries({
"opening cost ($)": "opening cost (min capacity) ($)",
"fixed operating cost ($)": "fixed operating cost (min capacity) ($)",
"variable operating cost ($/tonne)": "variable operating cost ($/tonne)",
})) {
capDict[minCap][resKeyName] = exportValueAcf(
original[origKeyName],
origDict
);
}
if (maxCap !== minCap) {
// Copy maximum capacity dict
capDict[maxCap] = {};
for (const [resKeyName, origKeyName] of Object.entries({
"opening cost ($)": "opening cost (max capacity) ($)",
"fixed operating cost ($)": "fixed operating cost (max capacity) ($)",
"variable operating cost ($/tonne)":
"variable operating cost ($/tonne)",
})) {
capDict[maxCap][resKeyName] = exportValueAcf(
original[origKeyName],
origDict
);
}
}
// Copy disposal
resDict.disposal = {};
for (const [dispName, dispCost] of Object.entries(
original["disposal cost ($/tonne)"]
)) {
if (dispName.length === 0) continue;
const v = exportValueAcf(dispCost, origDict);
if (v) {
resDict.disposal[dispName] = { "cost ($/tonne)": v };
const limit = String(original["disposal limit (tonne)"][dispName]);
if (limit.length > 0) {
resDict.disposal[dispName]["limit (tonne)"] = exportValue(
limit,
T,
1,
origDict
);
}
}
}
// Copy storage
resDict.storage = {
"cost ($/tonne)": exportValueAcf(
original["storage"]["cost ($/tonne)"],
origDict
),
};
const storLimit = original["storage"]["limit (tonne)"];
if (storLimit.length > 0) {
resDict.storage["limit (tonne)"] = exportValue(
storLimit,
null,
1,
origDict
);
}
}
return result;
};
export const exportData = (original) => {
const result = {
parameters: {},
products: {},
plants: {},
};
// Export parameters
["time horizon (years)", "building period (years)"].forEach((key) => {
result.parameters[key] = exportValue(original.parameters[key]);
});
["distance metric"].forEach((key) => {
if (original.parameters[key].length > 0) {
result.parameters[key] = original.parameters[key];
}
});
console.log(original.parameters);
console.log(result.parameters);
// Read time horizon
let T = result.parameters["time horizon (years)"];
if (!isNumeric(T)) T = 1;
// Export products
for (const [prodName, prodDict] of Object.entries(original.products)) {
result.products[prodName] = exportProduct(prodDict, original.parameters);
}
// Export plants
for (const [plantName, plantDict] of Object.entries(original.plants)) {
result.plants[plantName] = exportPlant(plantDict, original.parameters);
}
// Export original data
result["case builder"] = original;
return result;
};
const compressDisposalLimits = (original, result) => {
if (!("disposal limit (tonne)" in original)) {
return;
}
const total = computeTotalInitialAmount(original);
if (!total) return;
const limit = original["disposal limit (tonne)"];
let perc = Math.round((limit[0] / total[0]) * 1e6) / 1e6;
for (let i = 1; i < limit.length; i++) {
if (Math.abs(limit[i] / total[i] - perc) > 1e-5) {
return;
}
}
result["disposal limit (tonne)"] = "";
result["disposal limit (%)"] = String(perc * 100);
};
export const importProduct = (original) => {
const prod = {};
const parameters = {};
prod["initial amounts"] = { ...original["initial amounts"] };
// Initialize null values
["x", "y"].forEach((key) => {
prod[key] = null;
});
// Initialize empty values
["disposal limit (%)"].forEach((key) => {
prod[key] = "";
});
// Import constant lists
["transportation energy (J/km/tonne)", "disposal limit (tonne)"].forEach(
(key) => {
prod[key] = importList(original[key]);
}
);
// Compute inflation and time horizon
const [R, T] = computeInflationAndTimeHorizon(original, [
"transportation cost ($/km/tonne)",
"disposal cost ($/tonne)",
"acquisition cost ($/tonne)",
]);
parameters["inflation rate (%)"] = String((R - 1) * 100);
parameters["time horizon (years)"] = String(T);
// Import cost lists
[
"transportation cost ($/km/tonne)",
"disposal cost ($/tonne)",
"acquisition cost ($/tonne)",
].forEach((key) => {
prod[key] = importList(original[key], R);
});
// Import dicts
["transportation emissions (tonne/km/tonne)"].forEach((key) => {
prod[key] = importDict(original[key]);
});
// Attempt to convert absolute disposal limits to relative
compressDisposalLimits(original, prod);
return [prod, parameters];
};
export const importPlant = (original) => {
const plant = {};
const parameters = {};
plant["storage"] = {};
plant["storage"]["cost ($/tonne)"] = 0;
plant["storage"]["limit (tonne)"] = 0;
plant["disposal cost ($/tonne)"] = 0;
plant["disposal limit (tonne)"] = 0;
// Initialize null values
["x", "y"].forEach((key) => {
plant[key] = null;
});
// Initialize defaults
if (!original["outputs (tonne/tonne)"]) {
original["outputs (tonne/tonne)"] = {};
}
// Import scalar values
["input"].forEach((key) => {
plant[key] = original[key];
});
// Import timeseries values
["energy (GJ/tonne)"].forEach((key) => {
plant[key] = importList(original[key]);
if (plant[key] === "") {
delete plant[key];
}
});
// Import dicts
["outputs (tonne/tonne)", "emissions (tonne/tonne)"].forEach((key) => {
plant[key] = importDict(original[key]);
});
let costsInitialized = false;
// Read locations
const resLocDict = (plant.locations = {});
for (const [locName, origLocDict] of Object.entries(original["locations"])) {
resLocDict[locName] = {};
// Import scalars
["latitude (deg)", "longitude (deg)", "initial capacity (tonne)"].forEach(
(key) => {
resLocDict[locName][key] = origLocDict[key];
}
);
const capacities = keysToList(origLocDict["capacities (tonne)"]);
const last = capacities.length - 1;
const minCap = capacities[0];
const maxCap = capacities[last];
const minCapDict = origLocDict["capacities (tonne)"][minCap];
const maxCapDict = origLocDict["capacities (tonne)"][maxCap];
// Import min/max capacity
if ("minimum capacity (tonne)" in plant) {
if (
plant["minimum capacity (tonne)"] !== minCap ||
plant["maximum capacity (tonne)"] !== maxCap
) {
throw "Data loss";
}
} else {
plant["minimum capacity (tonne)"] = minCap;
plant["maximum capacity (tonne)"] = maxCap;
}
// Compute area cost factor
let acf = 1;
if (costsInitialized) {
acf = plant["opening cost (max capacity) ($)"];
if (Array.isArray(acf)) acf = acf[0];
acf = maxCapDict["opening cost ($)"][0] / acf;
}
resLocDict[locName]["area cost factor"] = acf;
const [R, T] = computeInflationAndTimeHorizon(maxCapDict, [
"opening cost ($)",
"fixed operating cost ($)",
"variable operating cost ($/tonne)",
]);
parameters["inflation rate (%)"] = String((R - 1) * 100);
parameters["time horizon (years)"] = String(T);
// Initialize defaults
if (!origLocDict.storage) {
origLocDict.storage = {
"cost ($/tonne)": new Array(T).fill(0),
"limit (tonne)": new Array(T).fill(0),
};
}
// Read adjusted costs
const importListAcf = (obj) =>
importList(
obj.map((v) => v / acf),
R
);
const openCostMax = importListAcf(maxCapDict["opening cost ($)"]);
const openCostMin = importListAcf(minCapDict["opening cost ($)"]);
const fixCostMax = importListAcf(maxCapDict["fixed operating cost ($)"]);
const fixCostMin = importListAcf(minCapDict["fixed operating cost ($)"]);
const storCost = importListAcf(origLocDict.storage["cost ($/tonne)"]);
const storLimit = String(origLocDict.storage["limit (tonne)"]);
const varCost = importListAcf(
minCapDict["variable operating cost ($/tonne)"]
);
const dispCost = {};
const dispLimit = {};
for (const prodName of Object.keys(original["outputs (tonne/tonne)"])) {
dispCost[prodName] = "";
dispLimit[prodName] = "";
if (prodName in origLocDict["disposal"]) {
const prodDict = origLocDict["disposal"][prodName];
dispCost[prodName] = importListAcf(prodDict["cost ($/tonne)"]);
if ("limit (tonne)" in prodDict)
dispLimit[prodName] = importList(prodDict["limit (tonne)"]);
}
}
const check = (left, right) => {
let valid = true;
if (isNumeric(left) && isNumeric(right)) {
valid = Math.abs(left - right) < 1.0;
} else {
valid = left === right;
}
if (!valid)
console.warn(`Data loss detected: ${locName}, ${left} != ${right}`);
};
if (costsInitialized) {
// Verify that location costs match the previously initialized ones
check(plant["opening cost (max capacity) ($)"], openCostMax);
check(plant["opening cost (min capacity) ($)"], openCostMin);
check(plant["fixed operating cost (max capacity) ($)"], fixCostMax);
check(plant["fixed operating cost (min capacity) ($)"], fixCostMin);
check(plant["variable operating cost ($/tonne)"], varCost);
check(plant["storage"]["cost ($/tonne)"], storCost);
check(plant["storage"]["limit (tonne)"], storLimit);
check(String(plant["disposal cost ($/tonne)"]), String(dispCost));
check(String(plant["disposal limit (tonne)"]), String(dispLimit));
} else {
// Initialize plant costs
costsInitialized = true;
plant["opening cost (max capacity) ($)"] = openCostMax;
plant["opening cost (min capacity) ($)"] = openCostMin;
plant["fixed operating cost (max capacity) ($)"] = fixCostMax;
plant["fixed operating cost (min capacity) ($)"] = fixCostMin;
plant["variable operating cost ($/tonne)"] = varCost;
plant["storage"] = {};
plant["storage"]["cost ($/tonne)"] = storCost;
plant["storage"]["limit (tonne)"] = storLimit;
plant["disposal cost ($/tonne)"] = dispCost;
plant["disposal limit (tonne)"] = dispLimit;
parameters["inflation rate (%)"] = String((R - 1) * 100);
}
}
return [plant, parameters];
};
export const importData = (original) => {
["parameters", "plants", "products"].forEach((key) => {
if (!(key in original)) {
throw "File not recognized.";
}
});
const result = {};
result.parameters = importDict(original.parameters);
["building period (years)"].forEach((k) => {
result.parameters[k] = JSON.stringify(original.parameters[k]);
});
["distance metric"].forEach((k) => {
result.parameters[k] = original.parameters[k];
});
result.parameters["inflation rate (%)"] = "0";
// Import products
result.products = {};
for (const [prodName, origProdDict] of Object.entries(original.products)) {
const [recoveredProd, recoveredParams] = importProduct(origProdDict);
result.products[prodName] = recoveredProd;
result.parameters = { ...result.parameters, ...recoveredParams };
}
// Import plants
result.plants = {};
for (const [plantName, origPlantDict] of Object.entries(original.plants)) {
const [recoveredPlant, recoveredParams] = importPlant(origPlantDict);
result.plants[plantName] = recoveredPlant;
result.parameters = { ...result.parameters, ...recoveredParams };
}
return result;
};

@ -1,738 +0,0 @@
import {
exportProduct,
exportPlant,
importProduct,
importList,
importDict,
importPlant,
} from "./export";
const sampleProductsOriginal = [
// basic product
{
"initial amounts": {
"Washakie County": {
"latitude (deg)": 43.8356,
"longitude (deg)": -107.6602,
"amount (tonne)": [100, 200, 300],
},
"Platte County": {
"latitude (deg)": 42.1314,
"longitude (deg)": -104.9676,
"amount (tonne)": [100, 200, 300],
},
"Park County": {
"latitude (deg)": 44.4063,
"longitude (deg)": -109.4153,
"amount (tonne)": [100, 200, 300],
},
},
"acquisition cost ($/tonne)": "4",
"disposal cost ($/tonne)": "50",
"disposal limit (tonne)": "30",
"disposal limit (%)": "",
"transportation cost ($/km/tonne)": "0",
"transportation energy (J/km/tonne)": "10",
"transportation emissions (tonne/km/tonne)": {
CO2: "0.5",
},
x: null,
y: null,
},
// product with percentage disposal limit
{
"initial amounts": {
"Washakie County": {
"latitude (deg)": 43.8356,
"longitude (deg)": -107.6602,
"amount (tonne)": [100, 200, 300],
},
"Platte County": {
"latitude (deg)": 42.1314,
"longitude (deg)": -104.9676,
"amount (tonne)": [100, 200, 300],
},
"Park County": {
"latitude (deg)": 44.4063,
"longitude (deg)": -109.4153,
"amount (tonne)": [100, 200, 300],
},
},
"acquisition cost ($/tonne)": "4",
"disposal cost ($/tonne)": "50",
"disposal limit (tonne)": "",
"disposal limit (%)": "10",
"transportation cost ($/km/tonne)": "5",
"transportation energy (J/km/tonne)": "10",
"transportation emissions (tonne/km/tonne)": {
CO2: "0.5",
},
x: null,
y: null,
},
// product using defaults
{
"initial amounts": {
"Washakie County": {
"latitude (deg)": 43.8356,
"longitude (deg)": -107.6602,
"amount (tonne)": [100, 200, 300],
},
"Platte County": {
"latitude (deg)": 42.1314,
"longitude (deg)": -104.9676,
"amount (tonne)": [100, 200, 300],
},
"Park County": {
"latitude (deg)": 44.4063,
"longitude (deg)": -109.4153,
"amount (tonne)": [100, 200, 300],
},
},
"acquisition cost ($/tonne)": "4",
"disposal cost ($/tonne)": "50",
"disposal limit (tonne)": "",
"disposal limit (%)": "",
"transportation cost ($/km/tonne)": "5",
"transportation energy (J/km/tonne)": "",
"transportation emissions (tonne/km/tonne)": {},
x: null,
y: null,
},
];
const sampleProductsExported = [
// basic product
{
"initial amounts": {
"Washakie County": {
"latitude (deg)": 43.8356,
"longitude (deg)": -107.6602,
"amount (tonne)": [100, 200, 300],
},
"Platte County": {
"latitude (deg)": 42.1314,
"longitude (deg)": -104.9676,
"amount (tonne)": [100, 200, 300],
},
"Park County": {
"latitude (deg)": 44.4063,
"longitude (deg)": -109.4153,
"amount (tonne)": [100, 200, 300],
},
},
"acquisition cost ($/tonne)": [4, 8, 16],
"disposal cost ($/tonne)": [50, 100, 200],
"disposal limit (tonne)": [30, 30, 30],
"transportation cost ($/km/tonne)": [0, 0, 0],
"transportation energy (J/km/tonne)": [10, 10, 10],
"transportation emissions (tonne/km/tonne)": {
CO2: [0.5, 0.5, 0.5],
},
},
// product with percentage disposal limit
{
"initial amounts": {
"Washakie County": {
"latitude (deg)": 43.8356,
"longitude (deg)": -107.6602,
"amount (tonne)": [100, 200, 300],
},
"Platte County": {
"latitude (deg)": 42.1314,
"longitude (deg)": -104.9676,
"amount (tonne)": [100, 200, 300],
},
"Park County": {
"latitude (deg)": 44.4063,
"longitude (deg)": -109.4153,
"amount (tonne)": [100, 200, 300],
},
},
"acquisition cost ($/tonne)": [4, 4, 4],
"disposal cost ($/tonne)": [50, 50, 50],
"disposal limit (tonne)": [30, 60, 90],
"transportation cost ($/km/tonne)": [5, 5, 5],
"transportation energy (J/km/tonne)": [10, 10, 10],
"transportation emissions (tonne/km/tonne)": {
CO2: [0.5, 0.5, 0.5],
},
},
// product using defaults
{
"initial amounts": {
"Washakie County": {
"latitude (deg)": 43.8356,
"longitude (deg)": -107.6602,
"amount (tonne)": [100, 200, 300],
},
"Platte County": {
"latitude (deg)": 42.1314,
"longitude (deg)": -104.9676,
"amount (tonne)": [100, 200, 300],
},
"Park County": {
"latitude (deg)": 44.4063,
"longitude (deg)": -109.4153,
"amount (tonne)": [100, 200, 300],
},
},
"acquisition cost ($/tonne)": [4, 4, 4],
"disposal cost ($/tonne)": [50, 50, 50],
"transportation cost ($/km/tonne)": [5, 5, 5],
},
];
const samplePlantsOriginal = [
// basic plant
{
input: "Baled agricultural biomass",
"outputs (tonne/tonne)": {
"Hydrogen gas": 0.095,
"Carbon dioxide": 1.164,
Tar: 0,
},
locations: {
"Washakie County": {
"latitude (deg)": 43.8356,
"longitude (deg)": -107.6602,
"area cost factor": 1.0,
"initial capacity (tonne)": 0,
},
"Platte County": {
"latitude (deg)": 42.1314,
"longitude (deg)": -104.9676,
"area cost factor": 0.5,
"initial capacity (tonne)": 0,
},
},
"disposal cost ($/tonne)": {
"Hydrogen gas": "0",
"Carbon dioxide": "0",
Tar: "200",
},
"disposal limit (tonne)": {
"Hydrogen gas": "10",
"Carbon dioxide": 0,
Tar: "",
},
"emissions (tonne/tonne)": {
CO2: "100",
},
storage: {
"cost ($/tonne)": "5",
"limit (tonne)": "10000",
},
"maximum capacity (tonne)": "730000",
"minimum capacity (tonne)": "182500",
"opening cost (max capacity) ($)": "300000",
"opening cost (min capacity) ($)": "200000",
"fixed operating cost (max capacity) ($)": "7000",
"fixed operating cost (min capacity) ($)": "5000",
"variable operating cost ($/tonne)": "10",
x: null,
y: null,
},
// plant with fixed capacity
{
input: "Baled agricultural biomass",
"outputs (tonne/tonne)": {
"Hydrogen gas": 0.095,
"Carbon dioxide": 1.164,
Tar: 0.06,
},
"energy (GJ/tonne)": "50",
locations: {
"Washakie County": {
"latitude (deg)": 43.8356,
"longitude (deg)": -107.6602,
"area cost factor": 1.0,
"initial capacity (tonne)": 0,
},
"Platte County": {
"latitude (deg)": 42.1314,
"longitude (deg)": -104.9676,
"area cost factor": 0.5,
"initial capacity (tonne)": 0,
},
},
"disposal cost ($/tonne)": {
"Hydrogen gas": "0",
"Carbon dioxide": "0",
Tar: "200",
},
"disposal limit (tonne)": {
"Hydrogen gas": "10",
"Carbon dioxide": "",
Tar: "",
},
"emissions (tonne/tonne)": {
CO2: "100",
},
storage: {
"cost ($/tonne)": "5",
"limit (tonne)": "10000",
},
"maximum capacity (tonne)": "182500",
"minimum capacity (tonne)": "182500",
"opening cost (max capacity) ($)": "200000",
"opening cost (min capacity) ($)": "200000",
"fixed operating cost (max capacity) ($)": "5000",
"fixed operating cost (min capacity) ($)": "5000",
"variable operating cost ($/tonne)": "10",
x: null,
y: null,
},
// plant with defaults
{
input: "Baled agricultural biomass",
"outputs (tonne/tonne)": {
"Hydrogen gas": 0.095,
"Carbon dioxide": 1.164,
Tar: 0.06,
},
"energy (GJ/tonne)": "50",
locations: {
"Washakie County": {
"latitude (deg)": 43.8356,
"longitude (deg)": -107.6602,
"area cost factor": 1.0,
"initial capacity (tonne)": 0,
},
"Platte County": {
"latitude (deg)": 42.1314,
"longitude (deg)": -104.9676,
"area cost factor": 0.5,
"initial capacity (tonne)": 0,
},
},
"disposal cost ($/tonne)": {
"Hydrogen gas": "",
"Carbon dioxide": "",
Tar: "",
},
"disposal limit (tonne)": {
"Hydrogen gas": "",
"Carbon dioxide": "",
Tar: "",
},
"emissions (tonne/tonne)": {
CO2: "100",
},
storage: {
"cost ($/tonne)": "5",
"limit (tonne)": "10000",
},
"maximum capacity (tonne)": "730000",
"minimum capacity (tonne)": "182500",
"opening cost (max capacity) ($)": "300000",
"opening cost (min capacity) ($)": "200000",
"fixed operating cost (max capacity) ($)": "7000",
"fixed operating cost (min capacity) ($)": "5000",
"variable operating cost ($/tonne)": "10",
x: null,
y: null,
},
// plant with expresions
{
input: "Baled agricultural biomass",
"outputs (tonne/tonne)": {
"Hydrogen gas": 0.095,
"Carbon dioxide": 1.164,
Tar: 0,
},
locations: {
"Washakie County": {
"latitude (deg)": 43.8356,
"longitude (deg)": -107.6602,
"area cost factor": 1.0,
"initial capacity (tonne)": 0,
x: 2,
},
"Platte County": {
"latitude (deg)": 42.1314,
"longitude (deg)": -104.9676,
"area cost factor": 0.5,
"initial capacity (tonne)": 0,
x: 4,
},
},
"disposal cost ($/tonne)": {
"Hydrogen gas": "0 + x",
"Carbon dioxide": "0 + x",
Tar: "200 + x",
},
"disposal limit (tonne)": {
"Hydrogen gas": "10 + x",
"Carbon dioxide": "",
Tar: "",
},
"emissions (tonne/tonne)": {
CO2: "100",
},
storage: {
"cost ($/tonne)": "5 + x",
"limit (tonne)": "10000 + x",
},
"maximum capacity (tonne)": "730000 + x",
"minimum capacity (tonne)": "182500 + x",
"opening cost (max capacity) ($)": "300000 + x",
"opening cost (min capacity) ($)": "200000 + x",
"fixed operating cost (max capacity) ($)": "7000 + x",
"fixed operating cost (min capacity) ($)": "5000 + x",
"variable operating cost ($/tonne)": "10 + x",
x: null,
y: null,
},
];
const samplePlantsExported = [
//basic plant
{
input: "Baled agricultural biomass",
"outputs (tonne/tonne)": {
"Hydrogen gas": 0.095,
"Carbon dioxide": 1.164,
Tar: 0,
},
locations: {
"Washakie County": {
"latitude (deg)": 43.8356,
"longitude (deg)": -107.6602,
disposal: {
"Hydrogen gas": {
"cost ($/tonne)": [0, 0, 0],
"limit (tonne)": [10, 10, 10],
},
"Carbon dioxide": {
"cost ($/tonne)": [0, 0, 0],
"limit (tonne)": [0, 0, 0],
},
Tar: {
"cost ($/tonne)": [200, 400, 800],
},
},
storage: {
"cost ($/tonne)": [5, 10, 20],
"limit (tonne)": 10000,
},
"initial capacity (tonne)": 0,
"capacities (tonne)": {
182500: {
"opening cost ($)": [200000, 400000, 800000],
"fixed operating cost ($)": [5000, 10000, 20000],
"variable operating cost ($/tonne)": [10, 20, 40],
},
730000: {
"opening cost ($)": [300000, 600000, 1200000],
"fixed operating cost ($)": [7000, 14000, 28000],
"variable operating cost ($/tonne)": [10, 20, 40],
},
},
},
"Platte County": {
"latitude (deg)": 42.1314,
"longitude (deg)": -104.9676,
disposal: {
"Hydrogen gas": {
"cost ($/tonne)": [0, 0, 0],
"limit (tonne)": [10, 10, 10],
},
"Carbon dioxide": {
"cost ($/tonne)": [0, 0, 0],
"limit (tonne)": [0, 0, 0],
},
Tar: {
"cost ($/tonne)": [100, 200.0, 400],
},
},
storage: {
"cost ($/tonne)": [2.5, 5, 10],
"limit (tonne)": 10000,
},
"initial capacity (tonne)": 0,
"capacities (tonne)": {
182500: {
"opening cost ($)": [100000, 200000, 400000],
"fixed operating cost ($)": [2500, 5000, 10000],
"variable operating cost ($/tonne)": [5, 10, 20],
},
730000: {
"opening cost ($)": [150000, 300000, 600000],
"fixed operating cost ($)": [3500, 7000, 14000],
"variable operating cost ($/tonne)": [5, 10, 20],
},
},
},
},
"emissions (tonne/tonne)": {
CO2: [100, 100, 100],
},
},
// plant with fixed capacity
{
input: "Baled agricultural biomass",
"outputs (tonne/tonne)": {
"Hydrogen gas": 0.095,
"Carbon dioxide": 1.164,
Tar: 0.06,
},
"energy (GJ/tonne)": [50, 50, 50],
locations: {
"Washakie County": {
"latitude (deg)": 43.8356,
"longitude (deg)": -107.6602,
disposal: {
"Hydrogen gas": {
"cost ($/tonne)": [0, 0, 0],
"limit (tonne)": [10, 10, 10],
},
"Carbon dioxide": {
"cost ($/tonne)": [0, 0, 0],
},
Tar: {
"cost ($/tonne)": [200.0, 200.0, 200.0],
},
},
storage: {
"cost ($/tonne)": [5, 5, 5],
"limit (tonne)": 10000,
},
"initial capacity (tonne)": 0,
"capacities (tonne)": {
182500: {
"opening cost ($)": [200000, 200000, 200000],
"fixed operating cost ($)": [5000, 5000, 5000],
"variable operating cost ($/tonne)": [10, 10, 10],
},
},
},
"Platte County": {
"latitude (deg)": 42.1314,
"longitude (deg)": -104.9676,
disposal: {
"Hydrogen gas": {
"cost ($/tonne)": [0, 0, 0],
"limit (tonne)": [10, 10, 10],
},
"Carbon dioxide": {
"cost ($/tonne)": [0, 0, 0],
},
Tar: {
"cost ($/tonne)": [100.0, 100.0, 100.0],
},
},
storage: {
"cost ($/tonne)": [2.5, 2.5, 2.5],
"limit (tonne)": 10000,
},
"initial capacity (tonne)": 0,
"capacities (tonne)": {
182500: {
"opening cost ($)": [100000, 100000, 100000],
"fixed operating cost ($)": [2500, 2500, 2500],
"variable operating cost ($/tonne)": [5, 5, 5],
},
},
},
},
"emissions (tonne/tonne)": {
CO2: [100, 100, 100],
},
},
// plant with defaults
{
input: "Baled agricultural biomass",
"outputs (tonne/tonne)": {
"Hydrogen gas": 0.095,
"Carbon dioxide": 1.164,
Tar: 0.06,
},
"energy (GJ/tonne)": [50, 50, 50],
locations: {
"Washakie County": {
"latitude (deg)": 43.8356,
"longitude (deg)": -107.6602,
disposal: {},
storage: {
"cost ($/tonne)": [5, 5, 5],
"limit (tonne)": 10000,
},
"initial capacity (tonne)": 0,
"capacities (tonne)": {
182500: {
"opening cost ($)": [200000, 200000, 200000],
"fixed operating cost ($)": [5000, 5000, 5000],
"variable operating cost ($/tonne)": [10, 10, 10],
},
730000: {
"opening cost ($)": [300000, 300000, 300000],
"fixed operating cost ($)": [7000, 7000, 7000],
"variable operating cost ($/tonne)": [10, 10, 10],
},
},
},
"Platte County": {
"latitude (deg)": 42.1314,
"longitude (deg)": -104.9676,
disposal: {},
storage: {
"cost ($/tonne)": [2.5, 2.5, 2.5],
"limit (tonne)": 10000,
},
"initial capacity (tonne)": 0,
"capacities (tonne)": {
182500: {
"opening cost ($)": [100000, 100000, 100000],
"fixed operating cost ($)": [2500, 2500, 2500],
"variable operating cost ($/tonne)": [5, 5, 5],
},
730000: {
"opening cost ($)": [150000, 150000, 150000],
"fixed operating cost ($)": [3500, 3500, 3500],
"variable operating cost ($/tonne)": [5, 5, 5],
},
},
},
},
"emissions (tonne/tonne)": {
CO2: [100, 100, 100],
},
},
// plant with expressions
{
input: "Baled agricultural biomass",
"outputs (tonne/tonne)": {
"Hydrogen gas": 0.095,
"Carbon dioxide": 1.164,
Tar: 0,
},
locations: {
"Washakie County": {
"latitude (deg)": 43.8356,
"longitude (deg)": -107.6602,
disposal: {
"Hydrogen gas": {
"cost ($/tonne)": [2, 4, 8],
"limit (tonne)": [12, 12, 12],
},
"Carbon dioxide": {
"cost ($/tonne)": [2, 4, 8],
},
Tar: {
"cost ($/tonne)": [202, 404, 808],
},
},
storage: {
"cost ($/tonne)": [7, 14, 28],
"limit (tonne)": 10002,
},
"initial capacity (tonne)": 0,
"capacities (tonne)": {
182502: {
"opening cost ($)": [200002, 400004, 800008],
"fixed operating cost ($)": [5002, 10004, 20008],
"variable operating cost ($/tonne)": [12, 24, 48],
},
730002: {
"opening cost ($)": [300002, 600004, 1200008],
"fixed operating cost ($)": [7002, 14004, 28008],
"variable operating cost ($/tonne)": [12, 24, 48],
},
},
},
"Platte County": {
"latitude (deg)": 42.1314,
"longitude (deg)": -104.9676,
disposal: {
"Hydrogen gas": {
"cost ($/tonne)": [2, 4, 8],
"limit (tonne)": [14, 14, 14],
},
"Carbon dioxide": {
"cost ($/tonne)": [2, 4, 8],
},
Tar: {
"cost ($/tonne)": [102, 204.0, 408],
},
},
storage: {
"cost ($/tonne)": [4.5, 9, 18],
"limit (tonne)": 10004,
},
"initial capacity (tonne)": 0,
"capacities (tonne)": {
182504: {
"opening cost ($)": [100002, 200004, 400008],
"fixed operating cost ($)": [2502, 5004, 10008],
"variable operating cost ($/tonne)": [7, 14, 28],
},
730004: {
"opening cost ($)": [150002, 300004, 600008],
"fixed operating cost ($)": [3502, 7004, 14008],
"variable operating cost ($/tonne)": [7, 14, 28],
},
},
},
},
"emissions (tonne/tonne)": {
CO2: [100, 100, 100],
},
},
];
const sampleParameters = [
{
"time horizon (years)": "3",
"inflation rate (%)": "100",
},
{
"time horizon (years)": "3",
"inflation rate (%)": "0",
},
{
"time horizon (years)": "3",
"inflation rate (%)": "0",
},
{
"time horizon (years)": "3",
"inflation rate (%)": "100",
},
];
test("export products", () => {
for (let i = 0; i < sampleProductsOriginal.length; i++) {
const original = sampleProductsOriginal[i];
const exported = sampleProductsExported[i];
expect(exportProduct(original, sampleParameters[i])).toEqual(exported);
const [recoveredProd, recoveredParams] = importProduct(exported);
expect(recoveredProd).toEqual(original);
expect(recoveredParams).toEqual(sampleParameters[i]);
}
});
test("export plants", () => {
for (let i = 0; i < samplePlantsOriginal.length; i++) {
const original = samplePlantsOriginal[i];
const exported = samplePlantsExported[i];
expect(exportPlant(original, sampleParameters[i])).toEqual(exported);
// const [recoveredPlant, recoveredParams] = importPlant(exported);
// expect(recoveredPlant).toEqual(original);
// expect(recoveredParams).toEqual(sampleParameters[i]);
}
});
test("importList", () => {
expect(importList("invalid")).toEqual("invalid");
expect(importList([1, 1, 1])).toEqual("1");
expect(importList([1, 2, 3])).toEqual("[1,2,3]");
expect(importList(["A", "A", "A"])).toEqual("A");
});
test("importDict", () => {
expect(importDict({ a: [5, 5, 5] })).toEqual({ a: "5" });
expect(importDict({ a: [1, 2, 3] })).toEqual({ a: "[1,2,3]" });
expect(importDict({ a: "invalid" })).toEqual({ a: "invalid" });
});

@ -1,50 +0,0 @@
import { Jsep } from "jsep";
import { exportValue } from "./export";
export const evaluateExpr = (expr, data) => {
const node = Jsep.parse(expr);
return evaluateNode(node, data);
};
const evaluateNode = (node, data) => {
if (node.type == "BinaryExpression") {
return evaluateBinaryExprNode(node, data);
} else if (node.type == "UnaryExpression") {
return evaluateUnaryExprNode(node, data);
} else if (node.type == "Literal") {
return node.value;
} else if (node.type == "Identifier") {
return data[node.name];
} else {
throw `Unknown type: ${node.type}`;
}
};
const evaluateBinaryExprNode = (node, data) => {
const leftVal = evaluateNode(node.left, data);
const rightVal = evaluateNode(node.right, data);
if (node.operator == "+") {
return leftVal + rightVal;
} else if (node.operator == "*") {
return leftVal * rightVal;
} else if (node.operator == "/") {
return leftVal / rightVal;
} else if (node.operator == "-") {
return leftVal - rightVal;
} else if (node.operator == "^") {
return Math.pow(leftVal, rightVal);
} else {
throw `Unknown operator: ${node.operator}`;
}
};
const evaluateUnaryExprNode = (node, data) => {
const arg = evaluateNode(node.argument, data);
if (node.operator == "+") {
return arg;
} else if (node.operator == "-") {
return -arg;
} else {
throw `Unknown operator: ${node.operator}`;
}
};

@ -1,19 +0,0 @@
import { evaluateExpr } from "./expr";
test("parse expression", () => {
// Basic expressions
expect(evaluateExpr("1 + 1")).toEqual(2);
expect(evaluateExpr("2 * 5")).toEqual(10);
expect(evaluateExpr("2 * (3 + 5)")).toEqual(16);
expect(evaluateExpr("14 / 2")).toEqual(7);
expect(evaluateExpr("10 - 3")).toEqual(7);
expect(evaluateExpr("-10")).toEqual(-10);
expect(evaluateExpr("+10")).toEqual(10);
expect(evaluateExpr("2^3")).toEqual(8);
expect(evaluateExpr("2^(3 + 1)")).toEqual(16);
// With data
expect(evaluateExpr("x + 1", { x: 10 })).toEqual(11);
expect(evaluateExpr("2 ^ (3 + x)", { x: 1 })).toEqual(16);
expect(evaluateExpr("x + y", { x: 1, y: 2 })).toEqual(3);
});

@ -1,194 +0,0 @@
const Ajv = require("ajv");
const ajv = new Ajv();
const schema = {
$schema: "http://json-schema.org/draft-07/schema#",
$id: "https://anl-ceeesa.github.io/RELOG/input",
title: "Schema for RELOG Input File",
definitions: {
TimeSeries: {
type: "array",
items: {
type: "number",
},
},
Parameters: {
type: "object",
properties: {
"time horizon (years)": {
type: "number",
},
"distance metric": {
type: "string",
},
},
required: ["time horizon (years)"],
},
Plant: {
type: "object",
additionalProperties: {
type: "object",
properties: {
input: {
type: "string",
},
"outputs (tonne/tonne)": {
type: "object",
additionalProperties: {
type: "number",
},
},
"energy (GJ/tonne)": {
$ref: "#/definitions/TimeSeries",
},
"emissions (tonne/tonne)": {
type: "object",
additionalProperties: {
$ref: "#/definitions/TimeSeries",
},
},
locations: {
$ref: "#/definitions/PlantLocation",
},
},
required: ["input", "locations"],
},
},
PlantLocation: {
type: "object",
additionalProperties: {
type: "object",
properties: {
location: {
type: "string",
},
"latitude (deg)": {
type: "number",
},
"longitude (deg)": {
type: "number",
},
disposal: {
type: "object",
additionalProperties: {
type: "object",
properties: {
"cost ($/tonne)": {
$ref: "#/definitions/TimeSeries",
},
"limit (tonne)": {
$ref: "#/definitions/TimeSeries",
},
},
required: ["cost ($/tonne)"],
},
},
storage: {
type: "object",
properties: {
"cost ($/tonne)": {
$ref: "#/definitions/TimeSeries",
},
"limit (tonne)": {
type: "number",
},
},
required: ["cost ($/tonne)", "limit (tonne)"],
},
"capacities (tonne)": {
type: "object",
additionalProperties: {
type: "object",
properties: {
"variable operating cost ($/tonne)": {
$ref: "#/definitions/TimeSeries",
},
"fixed operating cost ($)": {
$ref: "#/definitions/TimeSeries",
},
"opening cost ($)": {
$ref: "#/definitions/TimeSeries",
},
},
required: [
"variable operating cost ($/tonne)",
"fixed operating cost ($)",
"opening cost ($)",
],
},
},
},
required: ["capacities (tonne)"],
},
},
InitialAmount: {
type: "object",
additionalProperties: {
type: "object",
properties: {
location: {
type: "string",
},
"latitude (deg)": {
type: "number",
},
"longitude (deg)": {
type: "number",
},
"amount (tonne)": {
$ref: "#/definitions/TimeSeries",
},
},
required: ["amount (tonne)"],
},
},
Product: {
type: "object",
additionalProperties: {
type: "object",
properties: {
"transportation cost ($/km/tonne)": {
$ref: "#/definitions/TimeSeries",
},
"transportation energy (J/km/tonne)": {
$ref: "#/definitions/TimeSeries",
},
"transportation emissions (tonne/km/tonne)": {
type: "object",
additionalProperties: {
$ref: "#/definitions/TimeSeries",
},
},
"initial amounts": {
$ref: "#/definitions/InitialAmount",
},
"disposal limit (tonne)": {
$ref: "#/definitions/TimeSeries",
},
"disposal cost ($/tonne)": {
$ref: "#/definitions/TimeSeries",
},
"acquisition cost ($/tonne)": {
$ref: "#/definitions/TimeSeries",
},
},
required: ["transportation cost ($/km/tonne)"],
},
},
},
type: "object",
properties: {
parameters: {
$ref: "#/definitions/Parameters",
},
plants: {
$ref: "#/definitions/Plant",
},
products: {
$ref: "#/definitions/Product",
},
},
required: ["parameters", "plants", "products"],
};
export const validate = ajv.compile(schema);

@ -1,26 +0,0 @@
import styles from "./Button.module.css";
const Button = (props) => {
let className = styles.Button;
if (props.kind === "inline") {
className += " " + styles.inline;
}
let tooltip = "";
if (props.tooltip !== undefined) {
tooltip = <span className={styles.tooltip}>{props.tooltip}</span>;
}
return (
<button
className={className}
onClick={props.onClick}
disabled={props.disabled}
>
{tooltip}
{props.label}
</button>
);
};
export default Button;

@ -1,67 +0,0 @@
.Button {
padding: 6px 36px;
margin: 12px 6px;
line-height: 24px;
border: var(--box-border);
/* background-color: white; */
box-shadow: var(--box-shadow);
border-radius: var(--border-radius);
cursor: pointer;
color: rgba(0, 0, 0, 0.8);
text-transform: uppercase;
font-weight: bold;
font-size: 12px;
background: linear-gradient(rgb(255, 255, 255) 25%, rgb(245, 245, 245) 100%);
}
.Button:hover {
background: rgb(245, 245, 245);
}
.Button:active {
background: rgba(220, 220, 220);
}
.inline {
padding: 0 12px;
margin: 2px 4px 2px 0;
height: 32px;
font-size: 11px;
}
/* .inline:last-child {
margin: 2px 1px;
} */
.tooltip {
visibility: hidden;
background-color: #333;
color: white;
opacity: 0%;
width: 180px;
margin-top: 36px;
margin-left: -180px;
position: absolute;
z-index: 100;
text-transform: none;
font-size: 13px;
border-radius: 4px;
box-shadow: 4px 4px 8px rgba(0, 0, 0, 0.25);
line-height: 18px;
padding: 6px;
transition: opacity 0.5s;
font-weight: normal;
text-align: left;
padding: 6px 12px;
}
.Button:hover .tooltip {
visibility: visible;
opacity: 100%;
transition: opacity 0.5s;
}
.Button:disabled {
color: rgba(0, 0, 0, 0.25);
cursor: default;
}

@ -1,7 +0,0 @@
import styles from "./Card.module.css";
const Card = (props) => {
return <div className={styles.Card}>{props.children}</div>;
};
export default Card;

@ -1,22 +0,0 @@
.Card {
border: var(--box-border);
box-shadow: var(--box-shadow);
border-radius: var(--border-radius);
background-color: white;
padding: 12px;
min-height: 24px;
}
.Card h1 {
margin: 12px -12px 0px -12px;
padding: 6px 12px 0px 12px;
font-size: 14px;
line-height: 35px;
border-top: 1px solid #ddd;
}
.Card h1:first-child {
margin: -12px -12px 0px -12px;
border-top: none;
background: none;
}

@ -1,91 +0,0 @@
import form_styles from "./Form.module.css";
import Button from "./Button";
import { validate } from "./Form";
const DictInputRow = (props) => {
const dict = { ...props.value };
if (!props.disableKeys) {
dict[""] = "0";
}
let unit = "";
if (props.unit) {
unit = <span className={form_styles.FormRow_unit}>({props.unit})</span>;
}
let tooltip = "";
if (props.tooltip !== undefined) {
tooltip = <Button label="?" kind="inline" tooltip={props.tooltip} />;
}
const onChangeValue = (key, v) => {
const newDict = { ...dict };
newDict[key] = v;
props.onChange(newDict);
};
const onChangeKey = (prevKey, newKey) => {
const newDict = renameKey(dict, prevKey, newKey);
if (!("" in newDict)) newDict[""] = "";
props.onChange(newDict);
};
const form = [];
Object.keys(dict).forEach((key, index) => {
let label = (
<span>
{props.label} {unit}
</span>
);
if (index > 0) {
label = "";
}
let isValid = true;
if (props.validate !== undefined) {
isValid = validate(props.validate, dict[key]);
}
let className = "";
if (!isValid) className = form_styles.invalid;
form.push(
<div className={form_styles.FormRow} key={index}>
<label>{label}</label>
<input
type="text"
data-index={index}
value={key}
placeholder={props.keyPlaceholder}
disabled={props.disableKeys}
onChange={(e) => onChangeKey(key, e.target.value)}
/>
<input
type="text"
data-index={index}
value={dict[key]}
placeholder={props.valuePlaceholder}
className={className}
onChange={(e) => onChangeValue(key, e.target.value)}
/>
{tooltip}
</div>
);
});
return <>{form}</>;
};
export function renameKey(obj, prevKey, newKey) {
const keys = Object.keys(obj);
return keys.reduce((acc, val) => {
if (val === prevKey) {
acc[newKey] = obj[prevKey];
} else {
acc[val] = obj[val];
}
return acc;
}, {});
}
export default DictInputRow;

@ -1,59 +0,0 @@
import form_styles from "./Form.module.css";
import Button from "./Button";
import { useRef } from "react";
const FileInputRow = (props) => {
let tooltip = "";
if (props.tooltip !== undefined) {
tooltip = <Button label="?" kind="inline" tooltip={props.tooltip} />;
}
const fileElem = useRef();
const onClickUpload = () => {
fileElem.current.click();
};
const onFileSelected = () => {
const file = fileElem.current.files[0];
if (file) {
const reader = new FileReader();
reader.addEventListener("load", () => {
props.onFile(reader.result);
});
reader.readAsText(file);
}
fileElem.current.value = "";
};
return (
<div className={form_styles.FormRow}>
<label>{props.label}</label>
<input type="text" value={props.value} disabled="disabled" />
<Button label="Upload" kind="inline" onClick={onClickUpload} />
<Button
label="Download"
kind="inline"
onClick={props.onDownload}
disabled={props.disableDownload}
/>
<Button
label="Clear"
kind="inline"
onClick={props.onClear}
disabled={props.disableClear}
/>
<Button label="Template" kind="inline" onClick={props.onTemplate} />
{tooltip}
<input
type="file"
ref={fileElem}
accept={props.accept}
style={{ display: "none" }}
onChange={onFileSelected}
/>
</div>
);
};
export default FileInputRow;

@ -1,15 +0,0 @@
import styles from "./Footer.module.css";
const Footer = () => {
return (
<div className={styles.Footer}>
<p>RELOG: Reverse Logistics Optimization</p>
<p>
Copyright &copy; 2020&mdash;2022, UChicago Argonne, LLC. All Rights
Reserved.
</p>
</div>
);
};
export default Footer;

@ -1,8 +0,0 @@
.Footer {
padding: 12px;
color: rgba(255, 255, 255, 0.5);
text-align: center;
font-size: 14px;
line-height: 8px;
min-width: 900px;
}

@ -1,19 +0,0 @@
const VALIDATION_REGEX = {
int: new RegExp("^[0-9]+$"),
intList: new RegExp("[[0-9]*]$"),
float: new RegExp("^[0-9]*\\.?[0-9]*$"),
floatList: new RegExp("^[?[0-9,.]*]?$"),
};
export const validate = (kind, value) => {
if (!VALIDATION_REGEX[kind].test(value)) {
return false;
}
return true;
};
const Form = (props) => {
return <>{props.children}</>;
};
export default Form;

@ -1,28 +0,0 @@
.FormRow {
display: flex;
line-height: 24px;
}
.FormRow label {
width: 350px;
padding: 6px 12px;
text-align: right;
}
.FormRow input {
flex: 1;
font-family: monospace;
border: var(--box-border);
border-radius: var(--border-radius);
padding: 4px;
margin: 2px 3px;
}
.FormRow_unit {
color: rgba(0, 0, 0, 0.4);
}
.invalid {
border: 2px solid #faa !important;
background-color: rgba(255, 0, 0, 0.05);
}

@ -1,17 +0,0 @@
import styles from "./Header.module.css";
const Header = (props) => {
return (
<div className={styles.HeaderBox}>
<div className={styles.HeaderContent}>
<h1>RELOG</h1>
<h2>{props.title}</h2>
<div style={{ float: "right", paddingTop: "5px" }}>
{props.children}
</div>
</div>
</div>
);
};
export default Header;

@ -1,28 +0,0 @@
.HeaderBox {
background-color: white;
border-bottom: var(--box-border);
box-shadow: var(--box-shadow);
padding: 0;
margin: 0;
}
.HeaderContent {
margin: 0 auto;
max-width: var(--site-width);
}
.HeaderContent h1,
.HeaderContent h2 {
line-height: 48px;
font-size: 28px;
padding: 12px;
margin: 0;
display: inline-block;
vertical-align: middle;
}
.HeaderContent h2 {
font-size: 22px;
font-weight: normal;
color: rgba(0, 0, 0, 0.6);
}

@ -1,7 +0,0 @@
import styles from "./Section.module.css";
const Section = (props) => {
return <h2 className={styles.Section}>{props.title}</h2>;
};
export default Section;

@ -1,6 +0,0 @@
.Section {
line-height: 36px;
margin: 12px;
font-size: 16px;
font-weight: bold;
}

@ -1,44 +0,0 @@
import form_styles from "./Form.module.css";
import Button from "./Button";
import { validate } from "./Form";
import React from "react";
const TextInputRow = React.forwardRef((props, ref) => {
let unit = "";
if (props.unit) {
unit = <span className={form_styles.FormRow_unit}>({props.unit})</span>;
}
let tooltip = "";
if (props.tooltip !== undefined) {
tooltip = <Button label="?" kind="inline" tooltip={props.tooltip} />;
}
let isValid = true;
if (!props.disabled && props.validate !== undefined) {
isValid = validate(props.validate, props.value);
}
let className = "";
if (!isValid) className = form_styles.invalid;
return (
<div className={form_styles.FormRow}>
<label>
{props.label} {unit}
</label>
<input
type="text"
placeholder={props.default}
disabled={props.disabled}
value={props.value}
className={className}
onChange={(e) => props.onChange(e.target.value)}
ref={ref}
/>
{tooltip}
</div>
);
});
export default TextInputRow;

@ -1,109 +0,0 @@
:root {
--site-width: 1200px;
--box-border: 1px solid rgba(0, 0, 0, 0.2);
--box-shadow: 0px 2px 4px -3px rgba(0, 0, 0, 0.2);
--border-radius: 4px;
--primary: #0d6efd;
}
html,
body {
margin: 0;
padding: 0;
border: 0;
font-family: sans-serif;
}
body {
background-color: #333;
color: rgba(0, 0, 0, 0.95);
}
#contentBackground {
background-color: #f6f6f6;
}
#content {
max-width: var(--site-width);
min-width: 900px;
margin: 0 auto;
padding: 1px 6px 32px 6px;
}
.react-flow__node.selected {
box-shadow: 2px 2px 4px rgba(0, 0, 0, 0.2) !important;
border-width: 2px !important;
margin-top: -1px !important;
margin-left: -1px !important;
border-radius: 8px !important;
}
.react-flow__handle {
width: 6px !important;
height: 6px !important;
background-color: white !important;
border: 1px solid black !important;
}
.react-flow__handle:hover {
background-color: black !important;
}
.react-flow__handle-right {
right: -4px !important;
}
.react-flow__handle-left {
left: -4px !important;
}
#messageTray {
max-width: var(--site-width);
margin: 0 auto;
position: fixed;
bottom: 12px;
left: 0;
right: 0;
z-index: 100;
}
#messageTray .message {
background-color: rgb(221, 69, 69);
color: #eee;
padding: 12px;
border-radius: var(--border-radius);
box-shadow: 4px 4px 8px rgba(0, 0, 0, 0.4);
display: flex;
margin-top: 12px;
}
#messageTray .message p {
flex: 1;
margin: 0;
padding: 12px 0;
}
#messageTray .message button {
margin: 0;
background: transparent;
border: 1px solid #eee;
color: #eee;
float: right;
padding: 0 24px;
line-height: 6px;
}
#messageTray .message button:hover {
background: rgba(255, 255, 255, 0.05);
}
#messageTray .message button:active {
background: rgba(255, 255, 255, 0.1);
}
.nodata {
text-align: center;
padding: 24px 0;
color: #888;
margin: 0;
}

@ -1,27 +0,0 @@
import React from "react";
import ReactDOM from "react-dom";
import "./index.css";
import InputPage from "./casebuilder/InputPage";
import SolverPage from "./solver/SolverPage";
import { Route, BrowserRouter, Switch, Redirect } from "react-router-dom";
export const SERVER_URL = "";
ReactDOM.render(
<BrowserRouter>
<React.StrictMode>
<Switch>
<Route path="/casebuilder">
<InputPage />
</Route>
<Route path="/solver/:job_id">
<SolverPage />
</Route>
<Route path="/">
<Redirect to="/casebuilder" />
</Route>
</Switch>
</React.StrictMode>
</BrowserRouter>,
document.getElementById("root")
);

@ -1,46 +0,0 @@
import { useState } from "react";
import { useEffect } from "react";
import Section from "../common/Section";
import Card from "../common/Card";
import styles from "./FilesBlock.module.css";
import { SERVER_URL } from "..";
const FilesBlock = (props) => {
const [filesFound, setFilesFound] = useState(false);
const fetchFiles = async () => {
const response = await fetch(`${SERVER_URL}/jobs/${props.job}/output.json`);
if (response.ok) {
setFilesFound(true);
}
};
// Fetch files periodically from the server
useEffect(() => {
fetchFiles();
if (!filesFound) {
const interval = setInterval(() => {
fetchFiles();
}, 1000);
return () => clearInterval(interval);
}
}, [filesFound]);
let content = <div className="nodata">No files available</div>;
if (filesFound) {
content = (
<div className={styles.files}>
<a href={`${SERVER_URL}/jobs/${props.job}/output.zip`}>output.zip</a>
</div>
);
}
return (
<>
<Section title="Output Files" />
<Card>{content}</Card>
</>
);
};
export default FilesBlock;

@ -1,19 +0,0 @@
.files a {
display: block;
padding: 16px;
text-decoration: none;
color: var(--primary);
}
.files a:hover {
background-color: var(--primary);
color: white;
border-radius: var(--border-radius);
}
.nodata {
text-align: center;
padding: 24px 0;
color: #888;
margin: 0;
}

@ -1,47 +0,0 @@
import { useState } from "react";
import { useEffect } from "react";
import Section from "../common/Section";
import Card from "../common/Card";
import styles from "./LogBlock.module.css";
import { useRef } from "react";
import { SERVER_URL } from "..";
const LogBlock = (props) => {
const [log, setLog] = useState();
const preRef = useRef(null);
const fetchLog = async () => {
const response = await fetch(`${SERVER_URL}/jobs/${props.job}/solve.log`);
const data = await response.text();
if (log !== data) {
setLog(data);
}
};
// Fetch log periodically from the server
useEffect(() => {
fetchLog();
const interval = setInterval(() => {
fetchLog();
}, 1000);
return () => clearInterval(interval);
}, []);
// Scroll to bottom whenever the log is updated
useEffect(() => {
preRef.current.scrollTop = preRef.current.scrollHeight;
}, [log]);
return (
<>
<Section title="Optimization Log" />
<Card>
<pre ref={preRef} className={styles.log}>
{log}
</pre>
</Card>
</>
);
};
export default LogBlock;

@ -1,8 +0,0 @@
.log {
max-height: 500px;
min-height: 500px;
border: 0;
margin: 0;
overflow: auto;
line-height: 1.4em;
}

@ -1,238 +0,0 @@
import * as d3 from "d3";
import { group } from "d3-array";
import * as L from "leaflet";
import "leaflet/dist/leaflet.css";
import { useEffect, useState } from "react";
import { SERVER_URL } from "..";
import Card from "../common/Card";
import Section from "../common/Section";
function drawMap(csv_plants, csv_tr) {
const mapLink = '<a href="http://openstreetmap.org">OpenStreetMap</a>';
const base = L.tileLayer(
"https://{s}.basemaps.cartocdn.com/light_all/{z}/{x}/{y}{r}.png",
{
attribution:
'&copy; <a href="https://www.openstreetmap.org/copyright">OpenStreetMap</a> contributors &copy; <a href="https://carto.com/attributions">CARTO</a>',
subdomains: "abcd",
maxZoom: 10,
}
);
const plant_types = [...new Set(csv_plants.map((d) => d["plant type"]))];
plant_types.push("Multiple");
const plant_color = d3
.scaleOrdinal()
.domain(plant_types)
.range([
"#558B2F",
"#FF8F00",
"#0277BD",
"#AD1457",
"#00838F",
"#4527A0",
"#C62828",
"#424242",
]);
const plant_locations = d3
.nest()
.key((d) => d["location name"])
.rollup(function (v) {
return {
amount_processed: d3.sum(v, function (d) {
return d["amount processed (tonne)"];
}),
latitude: d3.mean(v, function (d) {
return d["latitude (deg)"];
}),
longitude: d3.mean(v, function (d) {
return d["longitude (deg)"];
}),
plant_types: [...new Set(v.map((d) => d["plant type"]))],
};
})
.entries(csv_plants);
const plant_scale = d3
.scaleSqrt()
.range([2, 10])
.domain([0, d3.max(plant_locations, (d) => d.value.amount_processed)]);
const plants_array = [];
plant_locations.forEach((d) => {
if (d.value.plant_types.length > 1) {
d.value.plant_type = "Multiple";
} else {
d.value.plant_type = d.value.plant_types[0];
}
const marker = L.circleMarker([d.value.latitude, d.value.longitude], {
id: "circleMarker",
className: "marker",
color: "#222",
weight: 1,
fillColor: plant_color(d.value.plant_type),
fillOpacity: 0.9,
radius: plant_scale(d.value.amount_processed),
});
const num = d.value.amount_processed.toFixed(2);
const num_parts = num.toString().split(".");
num_parts[0] = num_parts[0].replace(/\B(?=(\d{3})+(?!\d))/g, ",");
marker.bindTooltip(
`<b>${d.key}</b>
<br>
Amount processed:
${num_parts.join(".")}
<br>
Plant types:
${d.value.plant_types}`
);
plants_array.push(marker);
});
const collection_centers = d3
.nest()
.key((d) => d["source location name"])
.rollup(function (v) {
return {
source_lat: d3.mean(v, (d) => d["source latitude (deg)"]),
source_long: d3.mean(v, (d) => d["source longitude (deg)"]),
amount: d3.sum(v, (d) => d["amount (tonne)"]),
};
})
.entries(csv_tr);
//Color scale for the collection centers
const colors = d3
.scaleLog()
.domain([
d3.min(collection_centers, (d) => d.value.amount),
d3.max(collection_centers, (d) => d.value.amount),
])
.range(["#777", "#777"]);
//Plot the collection centers
const collection_array = [];
collection_centers.forEach(function (d) {
const marker = L.circleMarker([d.value.source_lat, d.value.source_long], {
color: "#000",
fillColor: colors(d.value.amount),
fillOpacity: 1,
radius: 1.25,
weight: 0,
className: "marker",
});
collection_array.push(marker);
});
const transportation_lines = group(
csv_tr,
(d) => d["source location name"],
(d) => d["destination location name"]
);
//Plot the transportation lines
const transport_array = [];
transportation_lines.forEach(function (d1) {
d1.forEach(function (d2) {
const object = d2[0];
const line = L.polyline(
[
[object["source latitude (deg)"], object["source longitude (deg)"]],
[
object["destination latitude (deg)"],
object["destination longitude (deg)"],
],
],
{
color: "#666",
stroke: true,
weight: 0.5,
opacity: Math.max(0.1, 0.5 / d1.size),
}
);
transport_array.push(line);
});
});
const plants = L.layerGroup(plants_array);
const cities = L.layerGroup(collection_array);
const transport = L.layerGroup(transport_array);
const baseMaps = {
"Open Street Map": base,
};
const overlayMaps = {
Plants: plants,
"Collection Centers": cities,
"Transportation Lines": transport,
};
cities.on({
add: function () {
cities.eachLayer((layer) => layer.bringToBack());
},
});
transport.on({
add: function () {
plants.eachLayer((layer) => layer.bringToFront());
},
});
function setHeight() {
let mapDiv = document.getElementById("map");
mapDiv.style.height = `${+mapDiv.offsetWidth * 0.55}px`;
}
//$(window).resize(setHeight);
setHeight();
const map = L.map("map", {
layers: [base, plants],
}).setView([37.8, -96.9], 4);
const svg6 = d3.select(map.getPanes().overlayPane).append("svg");
svg6.append("g").attr("class", "leaflet-zoom-hide");
L.control.layers(baseMaps, overlayMaps).addTo(map);
}
const MapBlock = (props) => {
const [filesFound, setFilesFound] = useState(false);
const fetchFiles = () => {
const file_prefix = `${SERVER_URL}/jobs/${props.job}/case`;
d3.csv(`${file_prefix}_plants.csv`).then((csv_plants) => {
d3.csv(`${file_prefix}_tr.csv`).then((csv_tr) => {
setFilesFound(true);
drawMap(csv_plants, csv_tr, file_prefix);
});
});
};
// Fetch files periodically from the server
useEffect(() => {
fetchFiles();
if (!filesFound) {
const interval = setInterval(() => {
fetchFiles();
}, 1000);
return () => clearInterval(interval);
}
}, [filesFound]);
return (
<>
<Section title="Map" />
<Card>
<div id="map">
<div className="nodata">No data available</div>
</div>
</Card>
</>
);
};
export default MapBlock;

@ -1,28 +0,0 @@
import React from "react";
import { useParams } from "react-router-dom";
import Footer from "../common/Footer";
import Header from "../common/Header";
import LogBlock from "./LogBlock";
import FilesBlock from "./FilesBlock";
import MapBlock from "./MapBlock";
const SolverPage = () => {
const params = useParams();
return (
<>
<Header title="Solver"></Header>
<div id="contentBackground">
{" "}
<div id="content">
<LogBlock job={params.job_id} />
<FilesBlock job={params.job_id} />
<MapBlock job={params.job_id} />
</div>
</div>
<Footer />
</>
);
};
export default SolverPage;

@ -1,33 +1,7 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
module RELOG
using Pkg
version() = Pkg.dependencies()[Base.UUID("a2afcdf7-cf04-4913-85f9-c0d81ddf2008")].version
include("instance/structs.jl")
include("graph/structs.jl")
include("instance/geodb.jl")
include("graph/dist.jl")
include("graph/build.jl")
include("graph/csv.jl")
include("instance/compress.jl")
include("instance/parse.jl")
include("instance/validate.jl")
include("model/build.jl")
include("model/getsol.jl")
include("model/resolve.jl")
include("model/solve.jl")
include("reports/plant_emissions.jl")
include("reports/plant_outputs.jl")
include("reports/plants.jl")
include("reports/products.jl")
include("reports/tr_emissions.jl")
include("reports/tr.jl")
include("reports/write.jl")
include("web/web.jl")
end
end # module RELOG

@ -1,97 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function build_graph(instance::Instance)::Graph
arcs = []
next_index = 0
process_nodes = ProcessNode[]
plant_shipping_nodes = ShippingNode[]
collection_shipping_nodes = ShippingNode[]
name_to_process_node_map = Dict{Tuple{AbstractString,AbstractString},ProcessNode}()
collection_center_to_node = Dict()
process_nodes_by_input_product =
Dict(product => ProcessNode[] for product in instance.products)
shipping_nodes_by_plant = Dict(plant => [] for plant in instance.plants)
# Build collection center shipping nodes
for center in instance.collection_centers
node = ShippingNode(next_index, center, center.product, [], [])
next_index += 1
collection_center_to_node[center] = node
push!(collection_shipping_nodes, node)
end
# Build process and shipping nodes for plants
for plant in instance.plants
pn = ProcessNode(next_index, plant, [], [])
next_index += 1
push!(process_nodes, pn)
push!(process_nodes_by_input_product[plant.input], pn)
name_to_process_node_map[(plant.plant_name, plant.location_name)] = pn
for product in keys(plant.output)
sn = ShippingNode(next_index, plant, product, [], [])
next_index += 1
push!(plant_shipping_nodes, sn)
push!(shipping_nodes_by_plant[plant], sn)
end
end
# Build arcs from collection centers to plants, and from one plant to another
for source in [collection_shipping_nodes; plant_shipping_nodes]
for dest in process_nodes_by_input_product[source.product]
source.location != dest.location || continue
distance = _calculate_distance(
source.location.latitude,
source.location.longitude,
dest.location.latitude,
dest.location.longitude,
instance.distance_metric,
)
values = Dict("distance" => distance)
arc = Arc(source, dest, values)
push!(source.outgoing_arcs, arc)
push!(dest.incoming_arcs, arc)
push!(arcs, arc)
end
end
# Build arcs from process nodes to shipping nodes within a plant
for source in process_nodes
plant = source.location
for dest in shipping_nodes_by_plant[plant]
weight = plant.output[dest.product]
values = Dict("weight" => weight)
arc = Arc(source, dest, values)
push!(source.outgoing_arcs, arc)
push!(dest.incoming_arcs, arc)
push!(arcs, arc)
end
end
return Graph(
process_nodes,
plant_shipping_nodes,
collection_shipping_nodes,
arcs,
name_to_process_node_map,
collection_center_to_node,
)
end
function print_graph_stats(instance::Instance, graph::Graph)::Nothing
@info @sprintf(" %12d time periods", instance.time)
@info @sprintf(" %12d process nodes", length(graph.process_nodes))
@info @sprintf(" %12d shipping nodes (plant)", length(graph.plant_shipping_nodes))
@info @sprintf(
" %12d shipping nodes (collection)",
length(graph.collection_shipping_nodes)
)
@info @sprintf(" %12d arcs", length(graph.arcs))
return
end

@ -1,11 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function to_csv(graph::Graph)
result = ""
for a in graph.arcs
result *= "$(a.source.index),$(a.dest.index)\n"
end
return result
end

@ -1,60 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Geodesy
using NearestNeighbors
using DataFrames
function _calculate_distance(
source_lat,
source_lon,
dest_lat,
dest_lon,
::EuclideanDistance,
)::Float64
x = LLA(source_lat, source_lon, 0.0)
y = LLA(dest_lat, dest_lon, 0.0)
return round(euclidean_distance(x, y) / 1000.0, digits = 3)
end
function _calculate_distance(
source_lat,
source_lon,
dest_lat,
dest_lon,
metric::KnnDrivingDistance,
)::Float64
if metric.tree === nothing
basedir = joinpath(dirname(@__FILE__), "..", "..", "data")
csv_filename = joinpath(basedir, "dist_driving.csv")
# Download pre-computed driving data
if !isfile(csv_filename)
_download_zip(
"https://axavier.org/RELOG/0.6/data/dist_driving_0b9a6ad6.zip",
basedir,
csv_filename,
0x0b9a6ad6,
)
end
# Fit kNN model
df = DataFrame(CSV.File(csv_filename, missingstring = "NaN"))
dropmissing!(df)
coords = Matrix(df[!, [:source_lat, :source_lon, :dest_lat, :dest_lon]])'
metric.ratios = Matrix(df[!, [:ratio]])
metric.tree = KDTree(coords)
end
# Compute Euclidean distance
dist_euclidean =
_calculate_distance(source_lat, source_lon, dest_lat, dest_lon, EuclideanDistance())
# Predict ratio
idxs, _ = knn(metric.tree, [source_lat, source_lon, dest_lat, dest_lon], 5)
ratio_pred = mean(metric.ratios[idxs])
dist_pred = round(dist_euclidean * ratio_pred, digits = 3)
isfinite(dist_pred) || error("non-finite distance detected: $dist_pred")
return dist_pred
end

@ -1,45 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Geodesy
abstract type Node end
mutable struct Arc
source::Node
dest::Node
values::Dict{String,Float64}
end
mutable struct ProcessNode <: Node
index::Int
location::Plant
incoming_arcs::Vector{Arc}
outgoing_arcs::Vector{Arc}
end
mutable struct ShippingNode <: Node
index::Int
location::Union{Plant,CollectionCenter}
product::Product
incoming_arcs::Vector{Arc}
outgoing_arcs::Vector{Arc}
end
mutable struct Graph
process_nodes::Vector{ProcessNode}
plant_shipping_nodes::Vector{ShippingNode}
collection_shipping_nodes::Vector{ShippingNode}
arcs::Vector{Arc}
name_to_process_node_map::Dict{Tuple{AbstractString,AbstractString},ProcessNode}
collection_center_to_node::Dict{CollectionCenter,ShippingNode}
end
function Base.show(io::IO, instance::Graph)
print(io, "RELOG graph with ")
print(io, "$(length(instance.process_nodes)) process nodes, ")
print(io, "$(length(instance.plant_shipping_nodes)) plant shipping nodes, ")
print(io, "$(length(instance.collection_shipping_nodes)) collection shipping nodes, ")
print(io, "$(length(instance.arcs)) arcs")
end

@ -1,63 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataStructures
using JSON
using JSONSchema
using Printf
using Statistics
"""
_compress(instance::Instance)
Create a single-period instance from a multi-period one. Specifically,
replaces every time-dependent attribute, such as initial_amounts,
by a list with a single element, which is either a sum, an average,
or something else that makes sense to that specific attribute.
"""
function _compress(instance::Instance)::Instance
T = instance.time
compressed = deepcopy(instance)
compressed.time = 1
compressed.building_period = [1]
# Compress products
for p in compressed.products
p.acquisition_cost = [mean(p.acquisition_cost)]
p.disposal_cost = [mean(p.disposal_cost)]
p.disposal_limit = [sum(p.disposal_limit)]
p.transportation_cost = [mean(p.transportation_cost)]
p.transportation_energy = [mean(p.transportation_energy)]
for (emission_name, emission_value) in p.transportation_emissions
p.transportation_emissions[emission_name] = [mean(emission_value)]
end
end
# Compress collection centers
for c in compressed.collection_centers
c.amount = [maximum(c.amount) * T]
end
# Compress plants
for plant in compressed.plants
plant.energy = [mean(plant.energy)]
for (emission_name, emission_value) in plant.emissions
plant.emissions[emission_name] = [mean(emission_value)]
end
for s in plant.sizes
s.capacity *= T
s.variable_operating_cost = [mean(s.variable_operating_cost)]
s.opening_cost = [s.opening_cost[1]]
s.fixed_operating_cost = [sum(s.fixed_operating_cost)]
end
for (prod_name, disp_limit) in plant.disposal_limit
plant.disposal_limit[prod_name] = [sum(disp_limit)]
end
for (prod_name, disp_cost) in plant.disposal_cost
plant.disposal_cost[prod_name] = [mean(disp_cost)]
end
end
return compressed
end

@ -1,212 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using CRC
using CSV
using DataFrames
using Shapefile
using Statistics
using ZipFile
using ProgressBars
using OrderedCollections
import Downloads: download
import Base: parse
crc32 = crc(CRC_32)
struct GeoPoint
lat::Float64
lon::Float64
end
struct GeoRegion
centroid::GeoPoint
population::Int
GeoRegion(; centroid, population) = new(centroid, population)
end
DB_CACHE = Dict{String,Dict{String,GeoRegion}}()
function centroid(geom::Shapefile.Polygon)::GeoPoint
x_max, x_min, y_max, y_min = -Inf, Inf, -Inf, Inf
for p in geom.points
x_max = max(x_max, p.x)
x_min = min(x_min, p.x)
y_max = max(y_max, p.y)
y_min = min(y_min, p.y)
end
x_center = (x_max + x_min) / 2.0
y_center = (y_max + y_min) / 2.0
return GeoPoint(round(y_center, digits = 5), round(x_center, digits = 5))
end
function _download_file(url, output, expected_crc32)::Nothing
if isfile(output)
return
end
mkpath(dirname(output))
@info "Downloading: $url"
fname = download(url)
actual_crc32 = open(crc32, fname)
expected_crc32 == actual_crc32 || error("CRC32 mismatch")
cp(fname, output)
return
end
function _download_zip(url, outputdir, expected_output_file, expected_crc32)::Nothing
if isfile(expected_output_file)
return
end
mkpath(outputdir)
@info "Downloading: $url"
zip_filename = download(url)
actual_crc32 = open(crc32, zip_filename)
expected_crc32 == actual_crc32 || error("CRC32 mismatch")
open(zip_filename) do zip_file
zr = ZipFile.Reader(zip_file)
for file in zr.files
open(joinpath(outputdir, file.name), "w") do output_file
write(output_file, read(file))
end
end
end
return
end
function _geodb_load_gov_census(;
db_name,
extract_cols,
shp_crc32,
shp_filename,
shp_url,
population_url,
population_crc32,
population_col,
population_preprocess,
population_join,
)::Dict{String,GeoRegion}
basedir = joinpath(dirname(@__FILE__), "..", "..", "data", db_name)
csv_filename = "$basedir/locations.csv"
if !isfile(csv_filename)
# Download required files
_download_zip(shp_url, basedir, joinpath(basedir, shp_filename), shp_crc32)
_download_file(population_url, "$basedir/population.csv", population_crc32)
# Read shapefile
@info "Processing: $shp_filename"
table = Shapefile.Table(joinpath(basedir, shp_filename))
geoms = Shapefile.shapes(table)
# Build empty dataframe
df = DataFrame()
cols = extract_cols(table, 1)
for k in keys(cols)
df[!, k] = []
end
df[!, "latitude"] = Float64[]
df[!, "longitude"] = Float64[]
# Add regions to dataframe
for (i, geom) in tqdm(enumerate(geoms))
c = centroid(geom)
cols = extract_cols(table, i)
push!(df, [values(cols)..., c.lat, c.lon])
end
sort!(df)
# Join with population data
population = DataFrame(CSV.File("$basedir/population.csv"))
population_preprocess(population)
population = population[:, [population_join, population_col]]
rename!(population, population_col => "population")
df = leftjoin(df, population, on = population_join)
# Write output
CSV.write(csv_filename, df)
end
if db_name keys(DB_CACHE)
csv = CSV.File(csv_filename)
DB_CACHE[db_name] = Dict(
string(row.id) => GeoRegion(
centroid = GeoPoint(row.latitude, row.longitude),
population = (row.population === missing ? 0 : row.population),
) for row in csv
)
end
return DB_CACHE[db_name]
end
# 2018 US counties
# -----------------------------------------------------------------------------
function _extract_cols_2018_us_county(
table::Shapefile.Table,
i::Int,
)::OrderedDict{String,Any}
return OrderedDict(
"id" => table.STATEFP[i] * table.COUNTYFP[i],
"statefp" => table.STATEFP[i],
"countyfp" => table.COUNTYFP[i],
"name" => table.NAME[i],
)
end
function _population_preprocess_2018_us_county(df)
df[!, "id"] = [@sprintf("%02d%03d", row.STATE, row.COUNTY) for row in eachrow(df)]
end
function _geodb_load_2018_us_county()::Dict{String,GeoRegion}
return _geodb_load_gov_census(
db_name = "2018-us-county",
extract_cols = _extract_cols_2018_us_county,
shp_crc32 = 0x83eaec6d,
shp_filename = "cb_2018_us_county_500k.shp",
shp_url = "https://www2.census.gov/geo/tiger/GENZ2018/shp/cb_2018_us_county_500k.zip",
population_url = "https://www2.census.gov/programs-surveys/popest/datasets/2010-2019/counties/totals/co-est2019-alldata.csv",
population_crc32 = 0xf85b0405,
population_col = "POPESTIMATE2019",
population_join = "id",
population_preprocess = _population_preprocess_2018_us_county,
)
end
# US States
# -----------------------------------------------------------------------------
function _extract_cols_us_state(table::Shapefile.Table, i::Int)::OrderedDict{String,Any}
return OrderedDict(
"id" => table.STUSPS[i],
"statefp" => parse(Int, table.STATEFP[i]),
"name" => table.NAME[i],
)
end
function _population_preprocess_us_state(df)
rename!(df, "STATE" => "statefp")
end
function _geodb_load_us_state()::Dict{String,GeoRegion}
return _geodb_load_gov_census(
db_name = "us-state",
extract_cols = _extract_cols_us_state,
shp_crc32 = 0x9469e5ca,
shp_filename = "cb_2018_us_state_500k.shp",
shp_url = "https://www2.census.gov/geo/tiger/GENZ2018/shp/cb_2018_us_state_500k.zip",
population_url = "http://www2.census.gov/programs-surveys/popest/datasets/2010-2019/national/totals/nst-est2019-alldata.csv",
population_crc32 = 0x191cc64c,
population_col = "POPESTIMATE2019",
population_join = "statefp",
population_preprocess = _population_preprocess_us_state,
)
end
function geodb_load(db_name::AbstractString)::Dict{String,GeoRegion}
db_name == "2018-us-county" && return _geodb_load_2018_us_county()
db_name == "us-state" && return _geodb_load_us_state()
error("Unknown database: $db_name")
end
function geodb_query(name)::GeoRegion
db_name, id = split(name, ":")
return geodb_load(db_name)[id]
end

@ -1,233 +1,76 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataStructures
using JSON
using JSONSchema
using Printf
using Statistics
using OrderedCollections
function parsefile(path::String)::Instance
return RELOG.parse(JSON.parsefile(path))
return RELOG.parse(JSON.parsefile(path, dicttype = () -> OrderedDict()))
end
function parse(json)::Instance
basedir = dirname(@__FILE__)
json_schema = JSON.parsefile("$basedir/../schemas/input.json")
validate(json, Schema(json_schema))
T = json["parameters"]["time horizon (years)"]
json_schema["definitions"]["TimeSeries"]["minItems"] = T
json_schema["definitions"]["TimeSeries"]["maxItems"] = T
validate(json, Schema(json_schema))
building_period = [1]
if "building period (years)" in keys(json["parameters"])
building_period = json["parameters"]["building period (years)"]
end
# Read parameters
time_horizon = json["parameters"]["time horizon (years)"]
building_period = json["parameters"]["building period (years)"]
distance_metric = json["parameters"]["distance metric"]
distance_metric = EuclideanDistance()
if "distance metric" in keys(json["parameters"])
metric_name = json["parameters"]["distance metric"]
if metric_name == "driving"
distance_metric = KnnDrivingDistance()
elseif metric_name == "Euclidean"
# nop
else
error("Unknown distance metric: $metric_name")
end
end
plants = Plant[]
# Read products
products = Product[]
collection_centers = CollectionCenter[]
prod_name_to_product = Dict{String,Product}()
# Create products
for (product_name, product_dict) in json["products"]
cost = product_dict["transportation cost (\$/km/tonne)"]
energy = zeros(T)
emissions = Dict()
disposal_limit = zeros(T)
disposal_cost = zeros(T)
acquisition_cost = zeros(T)
if "transportation energy (J/km/tonne)" in keys(product_dict)
energy = product_dict["transportation energy (J/km/tonne)"]
end
if "transportation emissions (tonne/km/tonne)" in keys(product_dict)
emissions = product_dict["transportation emissions (tonne/km/tonne)"]
end
if "disposal limit (tonne)" in keys(product_dict)
disposal_limit = product_dict["disposal limit (tonne)"]
end
if "disposal cost (\$/tonne)" in keys(product_dict)
disposal_cost = product_dict["disposal cost (\$/tonne)"]
end
if "acquisition cost (\$/tonne)" in keys(product_dict)
acquisition_cost = product_dict["acquisition cost (\$/tonne)"]
end
prod_centers = []
product = Product(
acquisition_cost = acquisition_cost,
collection_centers = prod_centers,
disposal_cost = disposal_cost,
disposal_limit = disposal_limit,
name = product_name,
transportation_cost = cost,
transportation_emissions = emissions,
transportation_energy = energy,
)
push!(products, product)
prod_name_to_product[product_name] = product
# Create collection centers
if "initial amounts" in keys(product_dict)
for (center_name, center_dict) in product_dict["initial amounts"]
if "location" in keys(center_dict)
region = geodb_query(center_dict["location"])
center_dict["latitude (deg)"] = region.centroid.lat
center_dict["longitude (deg)"] = region.centroid.lon
end
center = CollectionCenter(
amount = center_dict["amount (tonne)"],
index = length(collection_centers) + 1,
latitude = center_dict["latitude (deg)"],
longitude = center_dict["longitude (deg)"],
name = center_name,
product = product,
)
push!(prod_centers, center)
push!(collection_centers, center)
end
end
products_by_name = OrderedDict{String,Product}()
for (pname, pdict) in json["products"]
tr_cost = pdict["transportation cost (\$/km/tonne)"]
tr_energy = pdict["transportation energy (J/km/tonne)"]
tr_emissions = pdict["transportation emissions (tonne/km/tonne)"]
prod = Product(; name = pname, tr_cost, tr_energy, tr_emissions)
push!(products, prod)
products_by_name[pname] = prod
end
# Create plants
for (plant_name, plant_dict) in json["plants"]
input = prod_name_to_product[plant_dict["input"]]
output = Dict()
# Plant outputs
if "outputs (tonne/tonne)" in keys(plant_dict)
output = Dict(
prod_name_to_product[key] => value for
(key, value) in plant_dict["outputs (tonne/tonne)"] if value > 0
)
end
energy = zeros(T)
emissions = Dict()
if "energy (GJ/tonne)" in keys(plant_dict)
energy = plant_dict["energy (GJ/tonne)"]
end
if "emissions (tonne/tonne)" in keys(plant_dict)
emissions = plant_dict["emissions (tonne/tonne)"]
end
for (location_name, location_dict) in plant_dict["locations"]
sizes = PlantSize[]
disposal_limit = Dict(p => [0.0 for t = 1:T] for p in keys(output))
disposal_cost = Dict(p => [0.0 for t = 1:T] for p in keys(output))
# GeoDB
if "location" in keys(location_dict)
region = geodb_query(location_dict["location"])
location_dict["latitude (deg)"] = region.centroid.lat
location_dict["longitude (deg)"] = region.centroid.lon
end
# Disposal
if "disposal" in keys(location_dict)
for (product_name, disposal_dict) in location_dict["disposal"]
limit = [1e8 for t = 1:T]
if "limit (tonne)" in keys(disposal_dict)
limit = disposal_dict["limit (tonne)"]
end
disposal_limit[prod_name_to_product[product_name]] = limit
disposal_cost[prod_name_to_product[product_name]] =
disposal_dict["cost (\$/tonne)"]
end
end
# Capacities
for (capacity_name, capacity_dict) in location_dict["capacities (tonne)"]
push!(
sizes,
PlantSize(
capacity = Base.parse(Float64, capacity_name),
fixed_operating_cost = capacity_dict["fixed operating cost (\$)"],
opening_cost = capacity_dict["opening cost (\$)"],
variable_operating_cost = capacity_dict["variable operating cost (\$/tonne)"],
),
)
end
length(sizes) > 1 || push!(sizes, deepcopy(sizes[1]))
sort!(sizes, by = x -> x.capacity)
# Initial capacity
initial_capacity = 0
if "initial capacity (tonne)" in keys(location_dict)
initial_capacity = location_dict["initial capacity (tonne)"]
end
# Storage
storage_limit = 0
storage_cost = zeros(T)
if "storage" in keys(location_dict)
storage_dict = location_dict["storage"]
storage_limit = storage_dict["limit (tonne)"]
storage_cost = storage_dict["cost (\$/tonne)"]
end
# Validation: Capacities
if length(sizes) != 2
throw("At most two capacities are supported")
end
if sizes[1].variable_operating_cost != sizes[2].variable_operating_cost
throw("Variable operating costs must be the same for all capacities")
end
plant = Plant(
disposal_cost = disposal_cost,
disposal_limit = disposal_limit,
emissions = emissions,
energy = energy,
index = length(plants) + 1,
initial_capacity = initial_capacity,
input = input,
latitude = location_dict["latitude (deg)"],
location_name = location_name,
longitude = location_dict["longitude (deg)"],
output = output,
plant_name = plant_name,
sizes = sizes,
storage_cost = storage_cost,
storage_limit = storage_limit,
)
push!(plants, plant)
# Read centers
centers = Center[]
centers_by_name = OrderedDict{String,Center}()
for (cname, cdict) in json["centers"]
latitude = cdict["latitude (deg)"]
longitude = cdict["longitude (deg)"]
input = nothing
revenue = [0.0 for t = 1:time_horizon]
if cdict["input"] !== nothing
input = products_by_name[cdict["input"]]
revenue = cdict["revenue (\$/tonne)"]
end
outputs = [products_by_name[p] for p in cdict["outputs"]]
operating_cost = cdict["operating cost (\$)"]
prod_dict(key, null_val) = OrderedDict(
p => [v === nothing ? null_val : v for v in cdict[key][p.name]] for
p in outputs
)
fixed_output = prod_dict("fixed output (tonne)", 0.0)
var_output = prod_dict("variable output (tonne/tonne)", 0.0)
collection_cost = prod_dict("collection cost (\$/tonne)", 0.0)
disposal_limit = prod_dict("disposal limit (tonne)", Inf)
disposal_cost = prod_dict("disposal cost (\$/tonne)", 0.0)
center = Center(;
latitude,
longitude,
input,
outputs,
revenue,
operating_cost,
fixed_output,
var_output,
collection_cost,
disposal_cost,
disposal_limit,
)
push!(centers, center)
centers_by_name[cname] = center
end
@info @sprintf("%12d collection centers", length(collection_centers))
@info @sprintf("%12d candidate plant locations", length(plants))
return Instance(
time = T,
products = products,
collection_centers = collection_centers,
plants = plants,
building_period = building_period,
distance_metric = distance_metric,
return Instance(;
time_horizon,
building_period,
distance_metric,
products,
products_by_name,
centers,
centers_by_name,
)
end

@ -1,73 +1,32 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using OrderedCollections
using DataStructures
using JSON
using JSONSchema
using Printf
using Statistics
Base.@kwdef mutable struct Product
acquisition_cost::Vector{Float64}
collection_centers::Vector
disposal_cost::Vector{Float64}
disposal_limit::Vector{Float64}
Base.@kwdef struct Product
name::String
transportation_cost::Vector{Float64}
transportation_emissions::Dict{String,Vector{Float64}}
transportation_energy::Vector{Float64}
tr_cost::Vector{Float64}
tr_energy::Vector{Float64}
tr_emissions::OrderedDict{String,Vector{Float64}}
end
Base.@kwdef mutable struct CollectionCenter
amount::Vector{Float64}
index::Int64
Base.@kwdef struct Center
latitude::Float64
longitude::Float64
name::String
product::Product
end
Base.@kwdef mutable struct PlantSize
capacity::Float64
fixed_operating_cost::Vector{Float64}
opening_cost::Vector{Float64}
variable_operating_cost::Vector{Float64}
input::Union{Product,Nothing}
outputs::Vector{Product}
fixed_output::OrderedDict{Product,Vector{Float64}}
var_output::OrderedDict{Product,Vector{Float64}}
revenue::Vector{Float64}
collection_cost::OrderedDict{Product,Vector{Float64}}
operating_cost::Vector{Float64}
disposal_limit::OrderedDict{Product,Vector{Float64}}
disposal_cost::OrderedDict{Product,Vector{Float64}}
end
Base.@kwdef mutable struct Plant
disposal_cost::Dict{Product,Vector{Float64}}
disposal_limit::Dict{Product,Vector{Float64}}
emissions::Dict{String,Vector{Float64}}
energy::Vector{Float64}
index::Int64
initial_capacity::Float64
input::Product
latitude::Float64
location_name::String
longitude::Float64
output::Dict{Product,Float64}
plant_name::String
sizes::Vector{PlantSize}
storage_cost::Vector{Float64}
storage_limit::Float64
end
abstract type DistanceMetric end
Base.@kwdef mutable struct KnnDrivingDistance <: DistanceMetric
tree = nothing
ratios = nothing
end
mutable struct EuclideanDistance <: DistanceMetric end
Base.@kwdef mutable struct Instance
building_period::Vector{Int64}
collection_centers::Vector{CollectionCenter}
distance_metric::DistanceMetric
plants::Vector{Plant}
Base.@kwdef struct Instance
building_period::Vector{Int}
centers_by_name::OrderedDict{String,Center}
centers::Vector{Center}
distance_metric::String
products_by_name::OrderedDict{String,Product}
products::Vector{Product}
time::Int64
time_horizon::Int
end

@ -1,21 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataStructures
using JSON
using JSONSchema
using Printf
using Statistics
function validate(json, schema)
result = JSONSchema.validate(json, schema)
if result !== nothing
if result isa JSONSchema.SingleIssue
msg = "$(result.reason) in $(result.path)"
else
msg = convert(String, result)
end
throw("Error parsing input file: $(msg)")
end
end

@ -1,294 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP, LinearAlgebra, Geodesy, ProgressBars, Printf, DataStructures
function build_model(instance::Instance, graph::Graph, optimizer)::JuMP.Model
model = Model(optimizer)
model[:instance] = instance
model[:graph] = graph
create_vars!(model)
create_objective_function!(model)
create_shipping_node_constraints!(model)
create_process_node_constraints!(model)
return model
end
function create_vars!(model::JuMP.Model)
graph, T = model[:graph], model[:instance].time
model[:flow] =
Dict((a, t) => @variable(model, lower_bound = 0) for a in graph.arcs, t = 1:T)
model[:plant_dispose] = Dict(
(n, t) => @variable(
model,
lower_bound = 0,
upper_bound = n.location.disposal_limit[n.product][t]
) for n in values(graph.plant_shipping_nodes), t = 1:T
)
model[:collection_dispose] = Dict(
(n, t) => @variable(model, lower_bound = 0,) for
n in values(graph.collection_shipping_nodes), t = 1:T
)
model[:store] = Dict(
(n, t) =>
@variable(model, lower_bound = 0, upper_bound = n.location.storage_limit)
for n in values(graph.process_nodes), t = 1:T
)
model[:process] = Dict(
(n, t) => @variable(model, lower_bound = 0) for
n in values(graph.process_nodes), t = 1:T
)
model[:open_plant] = Dict(
(n, t) => @variable(model, binary = true) for n in values(graph.process_nodes),
t = 1:T
)
model[:is_open] = Dict{Tuple,Any}(
(n, t) => @variable(model, binary = true) for n in values(graph.process_nodes),
t = 1:T
)
model[:capacity] = Dict(
(n, t) => @variable(
model,
lower_bound = 0,
upper_bound = n.location.sizes[2].capacity
) for n in values(graph.process_nodes), t = 1:T
)
model[:expansion] = Dict{Tuple,Any}(
(n, t) => @variable(
model,
lower_bound = 0,
upper_bound = n.location.sizes[2].capacity - n.location.sizes[1].capacity
) for n in values(graph.process_nodes), t = 1:T
)
# Boundary constants
for n in values(graph.process_nodes)
m_init = n.location.initial_capacity
m_min = n.location.sizes[1].capacity
model[:is_open][n, 0] = m_init == 0 ? 0 : 1
model[:expansion][n, 0] = max(0, m_init - m_min)
end
end
function slope_open(plant, t)
if plant.sizes[2].capacity <= plant.sizes[1].capacity
0.0
else
(plant.sizes[2].opening_cost[t] - plant.sizes[1].opening_cost[t]) /
(plant.sizes[2].capacity - plant.sizes[1].capacity)
end
end
function slope_fix_oper_cost(plant, t)
if plant.sizes[2].capacity <= plant.sizes[1].capacity
0.0
else
(plant.sizes[2].fixed_operating_cost[t] - plant.sizes[1].fixed_operating_cost[t]) /
(plant.sizes[2].capacity - plant.sizes[1].capacity)
end
end
function create_objective_function!(model::JuMP.Model)
graph, T = model[:graph], model[:instance].time
obj = AffExpr(0.0)
# Process node costs
for n in values(graph.process_nodes), t = 1:T
# Transportation and variable operating costs
for a in n.incoming_arcs
c = n.location.input.transportation_cost[t] * a.values["distance"]
add_to_expression!(obj, c, model[:flow][a, t])
end
# Opening costs
add_to_expression!(
obj,
n.location.sizes[1].opening_cost[t],
model[:open_plant][n, t],
)
# Fixed operating costs (base)
add_to_expression!(
obj,
n.location.sizes[1].fixed_operating_cost[t],
model[:is_open][n, t],
)
# Fixed operating costs (expansion)
add_to_expression!(obj, slope_fix_oper_cost(n.location, t), model[:expansion][n, t])
# Processing costs
add_to_expression!(
obj,
n.location.sizes[1].variable_operating_cost[t],
model[:process][n, t],
)
# Storage costs
add_to_expression!(obj, n.location.storage_cost[t], model[:store][n, t])
# Expansion costs
if t < T
add_to_expression!(
obj,
slope_open(n.location, t) - slope_open(n.location, t + 1),
model[:expansion][n, t],
)
else
add_to_expression!(obj, slope_open(n.location, t), model[:expansion][n, t])
add_to_expression!(obj, -slope_open(n.location, 1) * model[:expansion][n, 0])
end
end
# Plant shipping node costs
for n in values(graph.plant_shipping_nodes), t = 1:T
# Disposal costs
add_to_expression!(
obj,
n.location.disposal_cost[n.product][t],
model[:plant_dispose][n, t],
)
end
# Collection shipping node costs
for n in values(graph.collection_shipping_nodes), t = 1:T
# Acquisition costs
add_to_expression!(
obj,
n.location.product.acquisition_cost[t] * n.location.amount[t],
)
# Disposal costs -- in this case, we recover the acquisition cost.
add_to_expression!(
obj,
(n.location.product.disposal_cost[t] - n.location.product.acquisition_cost[t]),
model[:collection_dispose][n, t],
)
end
@objective(model, Min, obj)
end
function create_shipping_node_constraints!(model::JuMP.Model)
graph, T = model[:graph], model[:instance].time
model[:eq_balance] = OrderedDict()
for t = 1:T
# Collection centers
for n in graph.collection_shipping_nodes
model[:eq_balance][n, t] = @constraint(
model,
sum(model[:flow][a, t] for a in n.outgoing_arcs) +
model[:collection_dispose][n, t] == n.location.amount[t]
)
end
for prod in model[:instance].products
if isempty(prod.collection_centers)
continue
end
expr = AffExpr()
for center in prod.collection_centers
n = graph.collection_center_to_node[center]
add_to_expression!(expr, model[:collection_dispose][n, t])
end
@constraint(model, expr <= prod.disposal_limit[t])
end
# Plants
for n in graph.plant_shipping_nodes
@constraint(
model,
sum(model[:flow][a, t] for a in n.incoming_arcs) ==
sum(model[:flow][a, t] for a in n.outgoing_arcs) +
model[:plant_dispose][n, t]
)
end
end
end
function create_process_node_constraints!(model::JuMP.Model)
graph, T = model[:graph], model[:instance].time
for t = 1:T, n in graph.process_nodes
input_sum = AffExpr(0.0)
for a in n.incoming_arcs
add_to_expression!(input_sum, 1.0, model[:flow][a, t])
end
# Output amount is implied by amount processed
for a in n.outgoing_arcs
@constraint(
model,
model[:flow][a, t] == a.values["weight"] * model[:process][n, t]
)
end
# If plant is closed, capacity is zero
@constraint(
model,
model[:capacity][n, t] <= n.location.sizes[2].capacity * model[:is_open][n, t]
)
# If plant is closed, storage cannot be used
@constraint(
model,
model[:store][n, t] <= n.location.storage_limit * model[:is_open][n, t]
)
# If plant is open, capacity is greater than base
@constraint(
model,
model[:capacity][n, t] >= n.location.sizes[1].capacity * model[:is_open][n, t]
)
# Capacity is linked to expansion
@constraint(
model,
model[:capacity][n, t] <=
n.location.sizes[1].capacity + model[:expansion][n, t]
)
# Can only process up to capacity
@constraint(model, model[:process][n, t] <= model[:capacity][n, t])
# Plant capacity can only increase over time
if t > 1
@constraint(model, model[:capacity][n, t] >= model[:capacity][n, t-1])
end
@constraint(model, model[:expansion][n, t] >= model[:expansion][n, t-1])
# Amount received equals amount processed plus stored
store_in = 0
if t > 1
store_in = model[:store][n, t-1]
end
if t == T
@constraint(model, model[:store][n, t] == 0)
end
@constraint(
model,
input_sum + store_in == model[:store][n, t] + model[:process][n, t]
)
# Plant is currently open if it was already open in the previous time period or
# if it was built just now
@constraint(
model,
model[:is_open][n, t] == model[:is_open][n, t-1] + model[:open_plant][n, t]
)
# Plant can only be opened during building period
if t model[:instance].building_period
@constraint(model, model[:open_plant][n, t] == 0)
end
end
end

@ -1,243 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP, LinearAlgebra, Geodesy, ProgressBars, Printf, DataStructures
function get_solution(model::JuMP.Model; marginal_costs = true)
graph, instance = model[:graph], model[:instance]
T = instance.time
output = OrderedDict(
"Plants" => OrderedDict(),
"Products" => OrderedDict(),
"Costs" => OrderedDict(
"Fixed operating (\$)" => zeros(T),
"Variable operating (\$)" => zeros(T),
"Opening (\$)" => zeros(T),
"Transportation (\$)" => zeros(T),
"Disposal (\$)" => zeros(T),
"Expansion (\$)" => zeros(T),
"Storage (\$)" => zeros(T),
"Total (\$)" => zeros(T),
),
"Energy" =>
OrderedDict("Plants (GJ)" => zeros(T), "Transportation (GJ)" => zeros(T)),
"Emissions" => OrderedDict(
"Plants (tonne)" => OrderedDict(),
"Transportation (tonne)" => OrderedDict(),
),
)
plant_to_process_node = OrderedDict(n.location => n for n in graph.process_nodes)
plant_to_shipping_nodes = OrderedDict()
for p in instance.plants
plant_to_shipping_nodes[p] = []
for a in plant_to_process_node[p].outgoing_arcs
push!(plant_to_shipping_nodes[p], a.dest)
end
end
# Products
for n in graph.collection_shipping_nodes
location_dict = OrderedDict{Any,Any}(
"Latitude (deg)" => n.location.latitude,
"Longitude (deg)" => n.location.longitude,
"Amount (tonne)" => n.location.amount,
"Dispose (tonne)" =>
[JuMP.value(model[:collection_dispose][n, t]) for t = 1:T],
"Acquisition cost (\$)" => [
(n.location.amount[t] - JuMP.value(model[:collection_dispose][n, t])) * n.location.product.acquisition_cost[t] for t = 1:T
],
"Disposal cost (\$)" => [
(
JuMP.value(model[:collection_dispose][n, t]) *
n.location.product.disposal_cost[t]
) for t = 1:T
],
)
if marginal_costs
location_dict["Marginal cost (\$/tonne)"] = [
round(abs(JuMP.shadow_price(model[:eq_balance][n, t])), digits = 2) for
t = 1:T
]
end
if n.product.name keys(output["Products"])
output["Products"][n.product.name] = OrderedDict()
end
output["Products"][n.product.name][n.location.name] = location_dict
end
# Plants
for plant in instance.plants
skip_plant = true
process_node = plant_to_process_node[plant]
plant_dict = OrderedDict{Any,Any}(
"Input" => OrderedDict(),
"Output" =>
OrderedDict("Send" => OrderedDict(), "Dispose" => OrderedDict()),
"Input product" => plant.input.name,
"Total input (tonne)" => [0.0 for t = 1:T],
"Total output" => OrderedDict(),
"Latitude (deg)" => plant.latitude,
"Longitude (deg)" => plant.longitude,
"Capacity (tonne)" =>
[JuMP.value(model[:capacity][process_node, t]) for t = 1:T],
"Opening cost (\$)" => [
JuMP.value(model[:open_plant][process_node, t]) *
plant.sizes[1].opening_cost[t] for t = 1:T
],
"Fixed operating cost (\$)" => [
JuMP.value(model[:is_open][process_node, t]) *
plant.sizes[1].fixed_operating_cost[t] +
JuMP.value(model[:expansion][process_node, t]) *
slope_fix_oper_cost(plant, t) for t = 1:T
],
"Expansion cost (\$)" => [
(
if t == 1
slope_open(plant, t) * (
JuMP.value(model[:expansion][process_node, t]) -
model[:expansion][process_node, 0]
)
else
slope_open(plant, t) * (
JuMP.value(model[:expansion][process_node, t]) -
JuMP.value(model[:expansion][process_node, t-1])
)
end
) for t = 1:T
],
"Process (tonne)" =>
[JuMP.value(model[:process][process_node, t]) for t = 1:T],
"Variable operating cost (\$)" => [
JuMP.value(model[:process][process_node, t]) *
plant.sizes[1].variable_operating_cost[t] for t = 1:T
],
"Storage (tonne)" =>
[JuMP.value(model[:store][process_node, t]) for t = 1:T],
"Storage cost (\$)" => [
JuMP.value(model[:store][process_node, t]) * plant.storage_cost[t]
for t = 1:T
],
)
output["Costs"]["Fixed operating (\$)"] += plant_dict["Fixed operating cost (\$)"]
output["Costs"]["Variable operating (\$)"] +=
plant_dict["Variable operating cost (\$)"]
output["Costs"]["Opening (\$)"] += plant_dict["Opening cost (\$)"]
output["Costs"]["Expansion (\$)"] += plant_dict["Expansion cost (\$)"]
output["Costs"]["Storage (\$)"] += plant_dict["Storage cost (\$)"]
# Inputs
for a in process_node.incoming_arcs
vals = [JuMP.value(model[:flow][a, t]) for t = 1:T]
if sum(vals) <= 1e-3
continue
end
skip_plant = false
dict = OrderedDict{Any,Any}(
"Amount (tonne)" => vals,
"Distance (km)" => a.values["distance"],
"Latitude (deg)" => a.source.location.latitude,
"Longitude (deg)" => a.source.location.longitude,
"Transportation cost (\$)" =>
a.source.product.transportation_cost .* vals .* a.values["distance"],
"Transportation energy (J)" =>
vals .* a.values["distance"] .* a.source.product.transportation_energy,
"Emissions (tonne)" => OrderedDict(),
)
emissions_dict = output["Emissions"]["Transportation (tonne)"]
for (em_name, em_values) in a.source.product.transportation_emissions
dict["Emissions (tonne)"][em_name] =
em_values .* dict["Amount (tonne)"] .* a.values["distance"]
if em_name keys(emissions_dict)
emissions_dict[em_name] = zeros(T)
end
emissions_dict[em_name] += dict["Emissions (tonne)"][em_name]
end
if a.source.location isa CollectionCenter
plant_name = "Origin"
location_name = a.source.location.name
else
plant_name = a.source.location.plant_name
location_name = a.source.location.location_name
end
if plant_name keys(plant_dict["Input"])
plant_dict["Input"][plant_name] = OrderedDict()
end
plant_dict["Input"][plant_name][location_name] = dict
plant_dict["Total input (tonne)"] += vals
output["Costs"]["Transportation (\$)"] += dict["Transportation cost (\$)"]
output["Energy"]["Transportation (GJ)"] +=
dict["Transportation energy (J)"] / 1e9
end
plant_dict["Energy (GJ)"] = plant_dict["Total input (tonne)"] .* plant.energy
output["Energy"]["Plants (GJ)"] += plant_dict["Energy (GJ)"]
plant_dict["Emissions (tonne)"] = OrderedDict()
emissions_dict = output["Emissions"]["Plants (tonne)"]
for (em_name, em_values) in plant.emissions
plant_dict["Emissions (tonne)"][em_name] =
em_values .* plant_dict["Total input (tonne)"]
if em_name keys(emissions_dict)
emissions_dict[em_name] = zeros(T)
end
emissions_dict[em_name] += plant_dict["Emissions (tonne)"][em_name]
end
# Outputs
for shipping_node in plant_to_shipping_nodes[plant]
product_name = shipping_node.product.name
plant_dict["Total output"][product_name] = zeros(T)
plant_dict["Output"]["Send"][product_name] = product_dict = OrderedDict()
disposal_amount =
[JuMP.value(model[:plant_dispose][shipping_node, t]) for t = 1:T]
if sum(disposal_amount) > 1e-5
skip_plant = false
plant_dict["Output"]["Dispose"][product_name] =
disposal_dict = OrderedDict()
disposal_dict["Amount (tonne)"] =
[JuMP.value(model[:plant_dispose][shipping_node, t]) for t = 1:T]
disposal_dict["Cost (\$)"] = [
disposal_dict["Amount (tonne)"][t] *
plant.disposal_cost[shipping_node.product][t] for t = 1:T
]
plant_dict["Total output"][product_name] += disposal_amount
output["Costs"]["Disposal (\$)"] += disposal_dict["Cost (\$)"]
end
for a in shipping_node.outgoing_arcs
vals = [JuMP.value(model[:flow][a, t]) for t = 1:T]
if sum(vals) <= 1e-3
continue
end
skip_plant = false
dict = OrderedDict(
"Amount (tonne)" => vals,
"Distance (km)" => a.values["distance"],
"Latitude (deg)" => a.dest.location.latitude,
"Longitude (deg)" => a.dest.location.longitude,
)
if a.dest.location.plant_name keys(product_dict)
product_dict[a.dest.location.plant_name] = OrderedDict()
end
product_dict[a.dest.location.plant_name][a.dest.location.location_name] =
dict
plant_dict["Total output"][product_name] += vals
end
end
if !skip_plant
if plant.plant_name keys(output["Plants"])
output["Plants"][plant.plant_name] = OrderedDict()
end
output["Plants"][plant.plant_name][plant.location_name] = plant_dict
end
end
output["Costs"]["Total (\$)"] = sum(values(output["Costs"]))
return output
end

@ -1,99 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP
function resolve(model_old, filename::AbstractString; kwargs...)::OrderedDict
@info "Reading $filename..."
instance = RELOG.parsefile(filename)
return resolve(model_old, instance; kwargs...)
end
function resolve(model_old, instance::Instance; optimizer = nothing)::OrderedDict
milp_optimizer = lp_optimizer = optimizer
if optimizer === nothing
milp_optimizer = _get_default_milp_optimizer()
lp_optimizer = _get_default_lp_optimizer()
end
@info "Building new graph..."
graph = build_graph(instance)
_print_graph_stats(instance, graph)
@info "Building new optimization model..."
model_new = RELOG.build_model(instance, graph, milp_optimizer)
@info "Fixing decision variables..."
_fix_plants!(model_old, model_new)
JuMP.set_optimizer(model_new, lp_optimizer)
@info "Optimizing MILP..."
JuMP.optimize!(model_new)
if !has_values(model_new)
@warn("No solution available")
return OrderedDict()
end
@info "Extracting solution..."
solution = get_solution(model_new, marginal_costs = true)
return solution
end
function _fix_plants!(model_old, model_new)::Nothing
T = model_new[:instance].time
# Fix open_plant variables
for ((node_old, t), var_old) in model_old[:open_plant]
value_old = JuMP.value(var_old)
node_new = model_new[:graph].name_to_process_node_map[(
node_old.location.plant_name,
node_old.location.location_name,
)]
var_new = model_new[:open_plant][node_new, t]
JuMP.unset_binary(var_new)
JuMP.fix(var_new, value_old)
end
# Fix is_open variables
for ((node_old, t), var_old) in model_old[:is_open]
t > 0 || continue
value_old = JuMP.value(var_old)
node_new = model_new[:graph].name_to_process_node_map[(
node_old.location.plant_name,
node_old.location.location_name,
)]
var_new = model_new[:is_open][node_new, t]
JuMP.unset_binary(var_new)
JuMP.fix(var_new, value_old)
end
# Fix plant capacities
for ((node_old, t), var_old) in model_old[:capacity]
value_old = JuMP.value(var_old)
node_new = model_new[:graph].name_to_process_node_map[(
node_old.location.plant_name,
node_old.location.location_name,
)]
var_new = model_new[:capacity][node_new, t]
JuMP.delete_lower_bound(var_new)
JuMP.delete_upper_bound(var_new)
JuMP.fix(var_new, value_old)
end
# Fix plant expansion
for ((node_old, t), var_old) in model_old[:expansion]
t > 0 || continue
value_old = JuMP.value(var_old)
node_new = model_new[:graph].name_to_process_node_map[(
node_old.location.plant_name,
node_old.location.location_name,
)]
var_new = model_new[:expansion][node_new, t]
JuMP.delete_lower_bound(var_new)
JuMP.delete_upper_bound(var_new)
JuMP.fix(var_new, value_old)
end
end

@ -1,126 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP, LinearAlgebra, Geodesy, ProgressBars, Printf, DataStructures, HiGHS
function _get_default_milp_optimizer()
return optimizer_with_attributes(HiGHS.Optimizer)
end
function _get_default_lp_optimizer()
return optimizer_with_attributes(HiGHS.Optimizer)
end
function _print_graph_stats(instance::Instance, graph::Graph)::Nothing
@info @sprintf("%12d time periods", instance.time)
@info @sprintf("%12d process nodes", length(graph.process_nodes))
@info @sprintf("%12d shipping nodes (plant)", length(graph.plant_shipping_nodes))
@info @sprintf(
"%12d shipping nodes (collection)",
length(graph.collection_shipping_nodes)
)
@info @sprintf("%12d arcs", length(graph.arcs))
return
end
function solve(
instance::Instance;
optimizer = nothing,
lp_optimizer = nothing,
output = nothing,
marginal_costs = true,
return_model = false,
)
if lp_optimizer == nothing
if optimizer == nothing
# If neither is provided, use default LP optimizer.
lp_optimizer = _get_default_lp_optimizer()
else
# If only MIP optimizer is provided, use it as
# LP solver too.
lp_optimizer = optimizer
end
end
if optimizer == nothing
optimizer = _get_default_milp_optimizer()
end
@info "Building graph..."
graph = RELOG.build_graph(instance)
_print_graph_stats(instance, graph)
@info "Building optimization model..."
model = RELOG.build_model(instance, graph, optimizer)
@info "Optimizing MILP..."
JuMP.optimize!(model)
if !has_values(model)
error("No solution available")
end
if marginal_costs
@info "Re-optimizing with integer variables fixed..."
all_vars = JuMP.all_variables(model)
vals = OrderedDict(var => JuMP.value(var) for var in all_vars)
JuMP.set_optimizer(model, lp_optimizer)
for var in all_vars
if JuMP.is_binary(var)
JuMP.unset_binary(var)
JuMP.fix(var, vals[var])
end
end
JuMP.optimize!(model)
end
@info "Extracting solution..."
solution = get_solution(model, marginal_costs = marginal_costs)
if output != nothing
write(solution, output)
end
if return_model
return solution, model
else
return solution
end
end
function solve(filename::AbstractString; heuristic = false, kwargs...)
@info "Reading $filename..."
instance = RELOG.parsefile(filename)
if heuristic && instance.time > 1
@info "Solving single-period version..."
compressed = _compress(instance)
csol, _ = solve(
compressed;
return_model = true,
output = nothing,
marginal_costs = false,
kwargs...,
)
@info "Filtering candidate locations..."
selected_pairs = []
for (plant_name, plant_dict) in csol["Plants"]
for (location_name, location_dict) in plant_dict
push!(selected_pairs, (plant_name, location_name))
end
end
filtered_plants = []
for p in instance.plants
if (p.plant_name, p.location_name) in selected_pairs
push!(filtered_plants, p)
end
end
instance.plants = filtered_plants
@info "Solving original version..."
end
sol = solve(instance; kwargs...)
return sol
end

@ -1,38 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataFrames
using CSV
function plant_emissions_report(solution)::DataFrame
df = DataFrame()
df."plant type" = String[]
df."location name" = String[]
df."year" = Int[]
df."emission type" = String[]
df."emission amount (tonne)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (plant_name, plant_dict) in solution["Plants"]
for (location_name, location_dict) in plant_dict
for (emission_name, emission_amount) in location_dict["Emissions (tonne)"]
for year = 1:T
push!(
df,
[
plant_name,
location_name,
year,
emission_name,
round(emission_amount[year], digits = 6),
],
)
end
end
end
end
return df
end
write_plant_emissions_report(solution, filename) =
CSV.write(filename, plant_emissions_report(solution))

@ -1,66 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataFrames
using CSV
function plant_outputs_report(solution)::DataFrame
df = DataFrame()
df."plant type" = String[]
df."location name" = String[]
df."year" = Int[]
df."product name" = String[]
df."amount produced (tonne)" = Float64[]
df."amount sent (tonne)" = Float64[]
df."amount disposed (tonne)" = Float64[]
df."disposal cost (\$)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (plant_name, plant_dict) in solution["Plants"]
for (location_name, location_dict) in plant_dict
for (product_name, amount_produced) in location_dict["Total output"]
send_dict = location_dict["Output"]["Send"]
disposal_dict = location_dict["Output"]["Dispose"]
sent = zeros(T)
if product_name in keys(send_dict)
for (dst_plant_name, dst_plant_dict) in send_dict[product_name]
for (dst_location_name, dst_location_dict) in dst_plant_dict
sent += dst_location_dict["Amount (tonne)"]
end
end
end
sent = round.(sent, digits = 6)
disposal_amount = zeros(T)
disposal_cost = zeros(T)
if product_name in keys(disposal_dict)
disposal_amount += disposal_dict[product_name]["Amount (tonne)"]
disposal_cost += disposal_dict[product_name]["Cost (\$)"]
end
disposal_amount = round.(disposal_amount, digits = 6)
disposal_cost = round.(disposal_cost, digits = 6)
for year = 1:T
push!(
df,
[
plant_name,
location_name,
year,
product_name,
round(amount_produced[year], digits = 6),
sent[year],
disposal_amount[year],
disposal_cost[year],
],
)
end
end
end
end
return df
end
write_plant_outputs_report(solution, filename) =
CSV.write(filename, plant_outputs_report(solution))

@ -1,79 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataFrames
using CSV
function plants_report(solution)::DataFrame
df = DataFrame()
df."plant type" = String[]
df."location name" = String[]
df."year" = Int[]
df."latitude (deg)" = Float64[]
df."longitude (deg)" = Float64[]
df."capacity (tonne)" = Float64[]
df."amount processed (tonne)" = Float64[]
df."amount received (tonne)" = Float64[]
df."amount in storage (tonne)" = Float64[]
df."utilization factor (%)" = Float64[]
df."energy (GJ)" = Float64[]
df."opening cost (\$)" = Float64[]
df."expansion cost (\$)" = Float64[]
df."fixed operating cost (\$)" = Float64[]
df."variable operating cost (\$)" = Float64[]
df."storage cost (\$)" = Float64[]
df."total cost (\$)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (plant_name, plant_dict) in solution["Plants"]
for (location_name, location_dict) in plant_dict
for year = 1:T
capacity = round(location_dict["Capacity (tonne)"][year], digits = 6)
received = round(location_dict["Total input (tonne)"][year], digits = 6)
processed = round(location_dict["Process (tonne)"][year], digits = 6)
in_storage = round(location_dict["Storage (tonne)"][year], digits = 6)
utilization_factor = round(processed / capacity * 100.0, digits = 6)
energy = round(location_dict["Energy (GJ)"][year], digits = 6)
latitude = round(location_dict["Latitude (deg)"], digits = 6)
longitude = round(location_dict["Longitude (deg)"], digits = 6)
opening_cost = round(location_dict["Opening cost (\$)"][year], digits = 6)
expansion_cost =
round(location_dict["Expansion cost (\$)"][year], digits = 6)
fixed_cost =
round(location_dict["Fixed operating cost (\$)"][year], digits = 6)
var_cost =
round(location_dict["Variable operating cost (\$)"][year], digits = 6)
storage_cost = round(location_dict["Storage cost (\$)"][year], digits = 6)
total_cost = round(
opening_cost + expansion_cost + fixed_cost + var_cost + storage_cost,
digits = 6,
)
push!(
df,
[
plant_name,
location_name,
year,
latitude,
longitude,
capacity,
processed,
received,
in_storage,
utilization_factor,
energy,
opening_cost,
expansion_cost,
fixed_cost,
var_cost,
storage_cost,
total_cost,
],
)
end
end
end
return df
end
write_plants_report(solution, filename) = CSV.write(filename, plants_report(solution))

@ -1,56 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataFrames
using CSV
function products_report(solution; marginal_costs)::DataFrame
df = DataFrame()
df."product name" = String[]
df."location name" = String[]
df."latitude (deg)" = Float64[]
df."longitude (deg)" = Float64[]
df."year" = Int[]
df."amount (tonne)" = Float64[]
df."amount disposed (tonne)" = Float64[]
df."marginal cost (\$/tonne)" = Float64[]
df."acquisition cost (\$)" = Float64[]
df."disposal cost (\$)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (prod_name, prod_dict) in solution["Products"]
for (location_name, location_dict) in prod_dict
for year = 1:T
if marginal_costs
marginal_cost = location_dict["Marginal cost (\$/tonne)"][year]
else
marginal_cost = 0.0
end
latitude = round(location_dict["Latitude (deg)"], digits = 6)
longitude = round(location_dict["Longitude (deg)"], digits = 6)
amount = location_dict["Amount (tonne)"][year]
amount_disposed = location_dict["Dispose (tonne)"][year]
acquisition_cost = location_dict["Acquisition cost (\$)"][year]
disposal_cost = location_dict["Disposal cost (\$)"][year]
push!(
df,
[
prod_name,
location_name,
latitude,
longitude,
year,
amount,
amount_disposed,
marginal_cost,
acquisition_cost,
disposal_cost,
],
)
end
end
end
return df
end
write_products_report(solution, filename; marginal_costs = true) = CSV.write(filename, products_report(solution; marginal_costs))

@ -1,75 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataFrames
using CSV
function transportation_report(solution)::DataFrame
df = DataFrame()
df."source type" = String[]
df."source location name" = String[]
df."source latitude (deg)" = Float64[]
df."source longitude (deg)" = Float64[]
df."destination type" = String[]
df."destination location name" = String[]
df."destination latitude (deg)" = Float64[]
df."destination longitude (deg)" = Float64[]
df."product" = String[]
df."year" = Int[]
df."distance (km)" = Float64[]
df."amount (tonne)" = Float64[]
df."amount-distance (tonne-km)" = Float64[]
df."transportation cost (\$)" = Float64[]
df."transportation energy (GJ)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (dst_plant_name, dst_plant_dict) in solution["Plants"]
for (dst_location_name, dst_location_dict) in dst_plant_dict
for (src_plant_name, src_plant_dict) in dst_location_dict["Input"]
for (src_location_name, src_location_dict) in src_plant_dict
for year = 1:T
push!(
df,
[
src_plant_name,
src_location_name,
round(src_location_dict["Latitude (deg)"], digits = 6),
round(src_location_dict["Longitude (deg)"], digits = 6),
dst_plant_name,
dst_location_name,
round(dst_location_dict["Latitude (deg)"], digits = 6),
round(dst_location_dict["Longitude (deg)"], digits = 6),
dst_location_dict["Input product"],
year,
round(src_location_dict["Distance (km)"], digits = 6),
round(
src_location_dict["Amount (tonne)"][year],
digits = 6,
),
round(
src_location_dict["Amount (tonne)"][year] *
src_location_dict["Distance (km)"],
digits = 6,
),
round(
src_location_dict["Transportation cost (\$)"][year],
digits = 6,
),
round(
src_location_dict["Transportation energy (J)"][year] /
1e9,
digits = 6,
),
],
)
end
end
end
end
end
return df
end
write_transportation_report(solution, filename) =
CSV.write(filename, transportation_report(solution))

@ -1,71 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataFrames
using CSV
function transportation_emissions_report(solution)::DataFrame
df = DataFrame()
df."source type" = String[]
df."source location name" = String[]
df."source latitude (deg)" = Float64[]
df."source longitude (deg)" = Float64[]
df."destination type" = String[]
df."destination location name" = String[]
df."destination latitude (deg)" = Float64[]
df."destination longitude (deg)" = Float64[]
df."product" = String[]
df."year" = Int[]
df."distance (km)" = Float64[]
df."shipped amount (tonne)" = Float64[]
df."shipped amount-distance (tonne-km)" = Float64[]
df."emission type" = String[]
df."emission amount (tonne)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (dst_plant_name, dst_plant_dict) in solution["Plants"]
for (dst_location_name, dst_location_dict) in dst_plant_dict
for (src_plant_name, src_plant_dict) in dst_location_dict["Input"]
for (src_location_name, src_location_dict) in src_plant_dict
for (emission_name, emission_amount) in
src_location_dict["Emissions (tonne)"]
for year = 1:T
push!(
df,
[
src_plant_name,
src_location_name,
round(src_location_dict["Latitude (deg)"], digits = 6),
round(src_location_dict["Longitude (deg)"], digits = 6),
dst_plant_name,
dst_location_name,
round(dst_location_dict["Latitude (deg)"], digits = 6),
round(dst_location_dict["Longitude (deg)"], digits = 6),
dst_location_dict["Input product"],
year,
round(src_location_dict["Distance (km)"], digits = 6),
round(
src_location_dict["Amount (tonne)"][year],
digits = 6,
),
round(
src_location_dict["Amount (tonne)"][year] *
src_location_dict["Distance (km)"],
digits = 6,
),
emission_name,
round(emission_amount[year], digits = 6),
],
)
end
end
end
end
end
end
return df
end
write_transportation_emissions_report(solution, filename) =
CSV.write(filename, transportation_emissions_report(solution))

@ -1,24 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataFrames
using CSV
import Base: write
function write(solution::AbstractDict, filename::AbstractString)
@info "Writing solution: $filename"
open(filename, "w") do file
JSON.print(file, solution, 2)
end
end
function write_reports(solution::AbstractDict, basename::AbstractString; marginal_costs = true)
RELOG.write_products_report(solution, "$(basename)_products.csv"; marginal_costs)
RELOG.write_plants_report(solution, "$(basename)_plants.csv")
RELOG.write_plant_outputs_report(solution, "$(basename)_plant_outputs.csv")
RELOG.write_plant_emissions_report(solution, "$(basename)_plant_emissions.csv")
RELOG.write_transportation_report(solution, "$(basename)_tr.csv")
RELOG.write_transportation_emissions_report(solution, "$(basename)_tr_emissions.csv")
return
end

@ -1,192 +0,0 @@
{
"$schema": "http://json-schema.org/draft-07/schema#",
"$id": "https://anl-ceeesa.github.io/RELOG/input",
"title": "Schema for RELOG Input File",
"definitions": {
"TimeSeries": {
"type": "array",
"items": {
"type": "number"
}
},
"Parameters": {
"type": "object",
"properties": {
"time horizon (years)": {
"type": "number"
},
"distance metric": {
"type": "string"
}
},
"required": ["time horizon (years)"]
},
"Plant": {
"type": "object",
"additionalProperties": {
"type": "object",
"properties": {
"input": {
"type": "string"
},
"outputs (tonne/tonne)": {
"type": "object",
"additionalProperties": {
"type": "number"
}
},
"energy (GJ/tonne)": {
"$ref": "#/definitions/TimeSeries"
},
"emissions (tonne/tonne)": {
"type": "object",
"additionalProperties": {
"$ref": "#/definitions/TimeSeries"
}
},
"locations": {
"$ref": "#/definitions/PlantLocation"
}
},
"required": ["input", "locations"]
}
},
"PlantLocation": {
"type": "object",
"additionalProperties": {
"type": "object",
"properties": {
"location": {
"type": "string"
},
"latitude (deg)": {
"type": "number"
},
"longitude (deg)": {
"type": "number"
},
"initial capacity (tonne)": {
"type": "number"
},
"disposal": {
"type": "object",
"additionalProperties": {
"type": "object",
"properties": {
"cost ($/tonne)": {
"$ref": "#/definitions/TimeSeries"
},
"limit (tonne)": {
"$ref": "#/definitions/TimeSeries"
}
},
"required": ["cost ($/tonne)"]
}
},
"storage": {
"type": "object",
"properties": {
"cost ($/tonne)": {
"$ref": "#/definitions/TimeSeries"
},
"limit (tonne)": {
"type": "number"
}
},
"required": ["cost ($/tonne)", "limit (tonne)"]
},
"capacities (tonne)": {
"type": "object",
"additionalProperties": {
"type": "object",
"properties": {
"variable operating cost ($/tonne)": {
"$ref": "#/definitions/TimeSeries"
},
"fixed operating cost ($)": {
"$ref": "#/definitions/TimeSeries"
},
"opening cost ($)": {
"$ref": "#/definitions/TimeSeries"
}
},
"required": [
"variable operating cost ($/tonne)",
"fixed operating cost ($)",
"opening cost ($)"
]
}
}
},
"required": ["capacities (tonne)"]
}
},
"InitialAmount": {
"type": "object",
"additionalProperties": {
"type": "object",
"properties": {
"location": {
"type": "string"
},
"latitude (deg)": {
"type": "number"
},
"longitude (deg)": {
"type": "number"
},
"amount (tonne)": {
"$ref": "#/definitions/TimeSeries"
}
},
"required": ["amount (tonne)"]
}
},
"Product": {
"type": "object",
"additionalProperties": {
"type": "object",
"properties": {
"transportation cost ($/km/tonne)": {
"$ref": "#/definitions/TimeSeries"
},
"transportation energy (J/km/tonne)": {
"$ref": "#/definitions/TimeSeries"
},
"transportation emissions (tonne/km/tonne)": {
"type": "object",
"additionalProperties": {
"$ref": "#/definitions/TimeSeries"
}
},
"initial amounts": {
"$ref": "#/definitions/InitialAmount"
},
"disposal limit (tonne)": {
"$ref": "#/definitions/TimeSeries"
},
"disposal cost ($/tonne)": {
"$ref": "#/definitions/TimeSeries"
},
"acquisition cost ($/tonne)": {
"$ref": "#/definitions/TimeSeries"
}
},
"required": ["transportation cost ($/km/tonne)"]
}
}
},
"type": "object",
"properties": {
"parameters": {
"$ref": "#/definitions/Parameters"
},
"plants": {
"$ref": "#/definitions/Plant"
},
"products": {
"$ref": "#/definitions/Product"
}
},
"required": ["parameters", "plants", "products"]
}

@ -1,115 +0,0 @@
println("Initializing...")
using Logging
using JSON
using JuMP
using HiGHS
using RELOG
function solve(root, filename)
ref_file = "$root/$filename"
optimizer = optimizer_with_attributes(
HiGHS.Optimizer,
"time_limit" => parse(Float64, ENV["RELOG_TIME_LIMIT_SEC"]),
)
ref_solution, ref_model = RELOG.solve(
ref_file,
optimizer = optimizer,
lp_optimizer = HiGHS.Optimizer,
return_model = true,
marginal_costs = true,
)
Libc.flush_cstdio()
flush(stdout)
sleep(1)
if length(ref_solution) == 0
return
end
RELOG.write_products_report(ref_solution, replace(ref_file, ".json" => "_products.csv"))
RELOG.write_plants_report(ref_solution, replace(ref_file, ".json" => "_plants.csv"))
RELOG.write_plant_outputs_report(
ref_solution,
replace(ref_file, ".json" => "_plant_outputs.csv"),
)
RELOG.write_plant_emissions_report(
ref_solution,
replace(ref_file, ".json" => "_plant_emissions.csv"),
)
RELOG.write_transportation_report(ref_solution, replace(ref_file, ".json" => "_tr.csv"))
RELOG.write_transportation_emissions_report(
ref_solution,
replace(ref_file, ".json" => "_tr_emissions.csv"),
)
isdir("$root/scenarios") || return
for filename in readdir("$root/scenarios")
scenario = "$root/scenarios/$filename"
endswith(filename, ".json") || continue
sc_solution = RELOG.resolve(
ref_model,
scenario,
optimizer = optimizer,
lp_optimizer = HiGHS.Optimizer,
)
if length(sc_solution) == 0
return
end
RELOG.write_plants_report(sc_solution, replace(scenario, ".json" => "_plants.csv"))
RELOG.write_products_report(
sc_solution,
replace(scenario, ".json" => "_products.csv"),
)
RELOG.write_plant_outputs_report(
sc_solution,
replace(scenario, ".json" => "_plant_outputs.csv"),
)
RELOG.write_plant_emissions_report(
sc_solution,
replace(scenario, ".json" => "_plant_emissions.csv"),
)
RELOG.write_transportation_report(
sc_solution,
replace(scenario, ".json" => "_tr.csv"),
)
RELOG.write_transportation_emissions_report(
sc_solution,
replace(scenario, ".json" => "_tr_emissions.csv"),
)
end
end
function solve_recursive(path)
cd(path)
# Solve instances
for (root, dirs, files) in walkdir(".")
if occursin(r"scenarios"i, root)
continue
end
for filename in files
endswith(filename, ".json") || continue
solve(root, filename)
end
end
# Collect results
results = []
for (root, dirs, files) in walkdir(".")
for filename in files
endswith(filename, "_plants.csv") || continue
push!(
results,
joinpath(replace(root, path => ""), replace(filename, "_plants.csv" => "")),
)
end
end
open("output.json", "w") do file
JSON.print(file, results)
end
run(`zip -r output.zip .`)
end
solve_recursive(ARGS[1])

@ -1,65 +0,0 @@
import HTTP
import JSON
using Random
const ROUTER = HTTP.Router()
const PROJECT_DIR = joinpath(dirname(@__FILE__), "..", "..")
const STATIC_DIR = joinpath(PROJECT_DIR, "relog-web", "build", "static")
const JOBS_DIR = joinpath(PROJECT_DIR, "jobs")
function serve_file(req::HTTP.Request, filename)
if isfile(filename)
open(filename) do file
return HTTP.Response(200, read(file))
end
else
return HTTP.Response(404)
end
end
function submit(req::HTTP.Request)
# Generate random job id
job_id = lowercase(randstring(12))
# Create job folder
job_path = joinpath(JOBS_DIR, job_id)
mkpath(job_path)
# Write JSON file
case = JSON.parse(String(req.body))
open(joinpath(job_path, "case.json"), "w") do file
JSON.print(file, case)
end
# Run job
run(
`bash -c "(julia --project=$PROJECT_DIR $PROJECT_DIR/src/web/run.jl $job_path 2>&1 | tee $job_path/solve.log) >/dev/null 2>&1 &"`,
)
response = Dict("job_id" => job_id)
return HTTP.Response(200, body = JSON.json(response))
end
function get_index(req::HTTP.Request)
return serve_file(req, joinpath(STATIC_DIR, "..", "index.html"))
end
function get_static(req::HTTP.Request)
return serve_file(req, joinpath(STATIC_DIR, req.target[9:end]))
end
function get_jobs(req::HTTP.Request)
return serve_file(req, joinpath(JOBS_DIR, req.target[7:end]))
end
HTTP.@register(ROUTER, "GET", "/static", get_static)
HTTP.@register(ROUTER, "GET", "/jobs", get_jobs)
HTTP.@register(ROUTER, "POST", "/submit", submit)
HTTP.@register(ROUTER, "GET", "/", get_index)
function web(host = "127.0.0.1", port = 8080)
@info "Launching web interface: http://$(host):$(port)/"
Base.exit_on_sigint(false)
HTTP.serve(ROUTER, host, port)
Base.exit_on_sigint(true)
end

@ -1,19 +1,12 @@
name = "RELOGT"
uuid = "a6dae211-05d8-42ed-9081-b88c982fc90a"
uuid = "d5238ab2-e29b-4856-ba0f-d2b80f40b47d"
authors = ["Alinson S. Xavier <git@axavier.org>"]
version = "0.1.0"
[deps]
GZip = "92fee26a-97fe-5a0c-ad85-20a5f3185b63"
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b"
JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
JuliaFormatter = "98e50ef6-434e-11e9-1051-2b60c6c9e899"
MathOptInterface = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
RELOG = "a2afcdf7-cf04-4913-85f9-c0d81ddf2008"
OrderedCollections = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
RELOG = "7cafaa7a-b311-45f0-b313-80bf15b5e5e5"
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[compat]
JuliaFormatter = "1"

@ -1,202 +0,0 @@
{
"parameters": {
"time horizon (years)": 2
},
"products": {
"P1": {
"transportation cost ($/km/tonne)": [0.015, 0.015],
"transportation energy (J/km/tonne)": [0.12, 0.11],
"transportation emissions (tonne/km/tonne)": {
"CO2": [0.052],
"CH4": [0.003, 0.002]
},
"initial amounts": {
"C1": {
"latitude (deg)": 7.0,
"longitude (deg)": 7.0,
"amount (tonne)": [934.56, 934.56]
},
"C2": {
"latitude (deg)": 7.0,
"longitude (deg)": 19.0,
"amount (tonne)": [198.95, 198.95]
},
"C3": {
"latitude (deg)": 84.0,
"longitude (deg)": 76.0,
"amount (tonne)": [212.97, 212.97]
},
"C4": {
"latitude (deg)": 21.0,
"longitude (deg)": 16.0,
"amount (tonne)": [352.19, 352.19]
},
"C5": {
"latitude (deg)": 32.0,
"longitude (deg)": 92.0,
"amount (tonne)": [510.33, 510.33]
},
"C6": {
"latitude (deg)": 14.0,
"longitude (deg)": 62.0,
"amount (tonne)": [471.66, 471.66]
},
"C7": {
"latitude (deg)": 30.0,
"longitude (deg)": 83.0,
"amount (tonne)": [785.21, 785.21]
},
"C8": {
"latitude (deg)": 35.0,
"longitude (deg)": 40.0,
"amount (tonne)": [706.17, 706.17]
},
"C9": {
"latitude (deg)": 74.0,
"longitude (deg)": 52.0,
"amount (tonne)": [30.08, 30.08]
},
"C10": {
"latitude (deg)": 22.0,
"longitude (deg)": 54.0,
"amount (tonne)": [536.52, 536.52]
}
}
},
"P2": {
"transportation cost ($/km/tonne)": [0.02, 0.02]
},
"P3": {
"transportation cost ($/km/tonne)": [0.0125, 0.0125]
},
"P4": {
"transportation cost ($/km/tonne)": [0.0175, 0.0175]
}
},
"plants": {
"F1": {
"input": "P1",
"outputs (tonne/tonne)": {
"P2": 0.2,
"P3": 0.5
},
"energy (GJ/tonne)": [0.12, 0.11],
"emissions (tonne/tonne)": {
"CO2": [0.052, 0.050],
"CH4": [0.003, 0.002]
},
"locations": {
"L1": {
"latitude (deg)": 0.0,
"longitude (deg)": 0.0,
"disposal": {
"P2": {
"cost ($/tonne)": [-10.0, -10.0],
"limit (tonne)": [1.0, 1.0]
},
"P3": {
"cost ($/tonne)": [-10.0, -10.0],
"limit (tonne)": [1.0, 1.0]
}
},
"capacities (tonne)": {
"250.0": {
"opening cost ($)": [500.0, 500.0],
"fixed operating cost ($)": [30.0, 30.0],
"variable operating cost ($/tonne)": [30.0, 30.0]
},
"1000.0": {
"opening cost ($)": [1250.0, 1250.0],
"fixed operating cost ($)": [30.0, 30.0],
"variable operating cost ($/tonne)": [30.0, 30.0]
}
}
},
"L2": {
"latitude (deg)": 0.5,
"longitude (deg)": 0.5,
"capacities (tonne)": {
"0.0": {
"opening cost ($)": [1000, 1000],
"fixed operating cost ($)": [50.0, 50.0],
"variable operating cost ($/tonne)": [50.0, 50.0]
},
"10000.0": {
"opening cost ($)": [10000, 10000],
"fixed operating cost ($)": [50.0, 50.0],
"variable operating cost ($/tonne)": [50.0, 50.0]
}
}
}
}
},
"F2": {
"input": "P2",
"outputs (tonne/tonne)": {
"P3": 0.05,
"P4": 0.80
},
"locations": {
"L3": {
"latitude (deg)": 25.0,
"longitude (deg)": 65.0,
"disposal": {
"P3": {
"cost ($/tonne)": [100.0, 100.0]
}
},
"capacities (tonne)": {
"1000.0": {
"opening cost ($)": [3000, 3000],
"fixed operating cost ($)": [50.0, 50.0],
"variable operating cost ($/tonne)": [50.0, 50.0]
}
}
},
"L4": {
"latitude (deg)": 0.75,
"longitude (deg)": 0.20,
"capacities (tonne)": {
"10000": {
"opening cost ($)": [3000, 3000],
"fixed operating cost ($)": [50.0, 50.0],
"variable operating cost ($/tonne)": [50.0, 50.0]
}
}
}
}
},
"F3": {
"input": "P4",
"locations": {
"L5": {
"latitude (deg)": 100.0,
"longitude (deg)": 100.0,
"capacities (tonne)": {
"15000": {
"opening cost ($)": [0.0, 0.0],
"fixed operating cost ($)": [0.0, 0.0],
"variable operating cost ($/tonne)": [-15.0, -15.0]
}
}
}
}
},
"F4": {
"input": "P3",
"locations": {
"L6": {
"latitude (deg)": 50.0,
"longitude (deg)": 50.0,
"capacities (tonne)": {
"10000": {
"opening cost ($)": [0.0, 0.0],
"fixed operating cost ($)": [0.0, 0.0],
"variable operating cost ($/tonne)": [-15.0, -15.0]
}
}
}
}
}
}
}

@ -1,207 +0,0 @@
{
"parameters": {
"time horizon (years)": 2,
"distance metric": "driving"
},
"products": {
"P1": {
"transportation cost ($/km/tonne)": [0.015, 0.015],
"transportation energy (J/km/tonne)": [0.12, 0.11],
"transportation emissions (tonne/km/tonne)": {
"CO2": [0.052, 0.05],
"CH4": [0.003, 0.002]
},
"initial amounts": {
"C1": {
"latitude (deg)": 7.0,
"longitude (deg)": 7.0,
"amount (tonne)": [934.56, 934.56]
},
"C2": {
"latitude (deg)": 7.0,
"longitude (deg)": 19.0,
"amount (tonne)": [198.95, 198.95]
},
"C3": {
"latitude (deg)": 84.0,
"longitude (deg)": 76.0,
"amount (tonne)": [212.97, 212.97]
},
"C4": {
"latitude (deg)": 21.0,
"longitude (deg)": 16.0,
"amount (tonne)": [352.19, 352.19]
},
"C5": {
"latitude (deg)": 32.0,
"longitude (deg)": 92.0,
"amount (tonne)": [510.33, 510.33]
},
"C6": {
"latitude (deg)": 14.0,
"longitude (deg)": 62.0,
"amount (tonne)": [471.66, 471.66]
},
"C7": {
"latitude (deg)": 30.0,
"longitude (deg)": 83.0,
"amount (tonne)": [785.21, 785.21]
},
"C8": {
"latitude (deg)": 35.0,
"longitude (deg)": 40.0,
"amount (tonne)": [706.17, 706.17]
},
"C9": {
"latitude (deg)": 74.0,
"longitude (deg)": 52.0,
"amount (tonne)": [30.08, 30.08]
},
"C10": {
"latitude (deg)": 22.0,
"longitude (deg)": 54.0,
"amount (tonne)": [536.52, 536.52]
}
},
"disposal limit (tonne)": [1.0, 1.0],
"disposal cost ($/tonne)": [-1000, -1000],
"acquisition cost ($/tonne)": [0.5, 0.5]
},
"P2": {
"transportation cost ($/km/tonne)": [0.02, 0.02]
},
"P3": {
"transportation cost ($/km/tonne)": [0.0125, 0.0125]
},
"P4": {
"transportation cost ($/km/tonne)": [0.0175, 0.0175]
}
},
"plants": {
"F1": {
"input": "P1",
"outputs (tonne/tonne)": {
"P2": 0.2,
"P3": 0.5
},
"energy (GJ/tonne)": [0.12, 0.11],
"emissions (tonne/tonne)": {
"CO2": [0.052, 0.05],
"CH4": [0.003, 0.002]
},
"locations": {
"L1": {
"latitude (deg)": 0.0,
"longitude (deg)": 0.0,
"disposal": {
"P2": {
"cost ($/tonne)": [-10.0, -10.0],
"limit (tonne)": [1.0, 1.0]
},
"P3": {
"cost ($/tonne)": [-10.0, -10.0],
"limit (tonne)": [1.0, 1.0]
}
},
"initial capacity (tonne)": 500.0,
"capacities (tonne)": {
"250.0": {
"opening cost ($)": [500.0, 500.0],
"fixed operating cost ($)": [30.0, 30.0],
"variable operating cost ($/tonne)": [30.0, 30.0]
},
"1000.0": {
"opening cost ($)": [1250.0, 1250.0],
"fixed operating cost ($)": [30.0, 30.0],
"variable operating cost ($/tonne)": [30.0, 30.0]
}
}
},
"L2": {
"latitude (deg)": 0.5,
"longitude (deg)": 0.5,
"capacities (tonne)": {
"0.0": {
"opening cost ($)": [1000, 1000],
"fixed operating cost ($)": [50.0, 50.0],
"variable operating cost ($/tonne)": [50.0, 50.0]
},
"10000.0": {
"opening cost ($)": [10000, 10000],
"fixed operating cost ($)": [50.0, 50.0],
"variable operating cost ($/tonne)": [50.0, 50.0]
}
}
}
}
},
"F2": {
"input": "P2",
"outputs (tonne/tonne)": {
"P3": 0.05,
"P4": 0.8
},
"locations": {
"L3": {
"latitude (deg)": 25.0,
"longitude (deg)": 65.0,
"disposal": {
"P3": {
"cost ($/tonne)": [100.0, 100.0]
}
},
"capacities (tonne)": {
"1000.0": {
"opening cost ($)": [3000, 3000],
"fixed operating cost ($)": [50.0, 50.0],
"variable operating cost ($/tonne)": [50.0, 50.0]
}
}
},
"L4": {
"latitude (deg)": 0.75,
"longitude (deg)": 0.2,
"capacities (tonne)": {
"10000": {
"opening cost ($)": [3000, 3000],
"fixed operating cost ($)": [50.0, 50.0],
"variable operating cost ($/tonne)": [50.0, 50.0]
}
}
}
}
},
"F3": {
"input": "P4",
"locations": {
"L5": {
"latitude (deg)": 100.0,
"longitude (deg)": 100.0,
"capacities (tonne)": {
"15000": {
"opening cost ($)": [0.0, 0.0],
"fixed operating cost ($)": [0.0, 0.0],
"variable operating cost ($/tonne)": [-15.0, -15.0]
}
}
}
}
},
"F4": {
"input": "P3",
"locations": {
"L6": {
"latitude (deg)": 50.0,
"longitude (deg)": 50.0,
"capacities (tonne)": {
"10000": {
"opening cost ($)": [0.0, 0.0],
"fixed operating cost ($)": [0.0, 0.0],
"variable operating cost ($/tonne)": [-15.0, -15.0]
}
}
}
}
}
}
}

BIN
test/fixtures/s1.zip vendored

Binary file not shown.

@ -1,347 +0,0 @@
{
"parameters": {
"time horizon (years)": 2
},
"products": {
"P1": {
"transportation cost ($/km/tonne)": [
0.015,
0.015
],
"transportation energy (J/km/tonne)": [
0.12,
0.11
],
"transportation emissions (tonne/km/tonne)": {
"CO2": [
0.052,
0.050
],
"CH4": [
0.003,
0.002
]
},
"initial amounts": {
"C1": {
"location": "2018-us-county:17043",
"amount (tonne)": [
934.56,
934.56
]
},
"C2": {
"latitude (deg)": 7.0,
"longitude (deg)": 19.0,
"amount (tonne)": [
198.95,
198.95
]
},
"C3": {
"latitude (deg)": 84.0,
"longitude (deg)": 76.0,
"amount (tonne)": [
212.97,
212.97
]
},
"C4": {
"latitude (deg)": 21.0,
"longitude (deg)": 16.0,
"amount (tonne)": [
352.19,
352.19
]
},
"C5": {
"latitude (deg)": 32.0,
"longitude (deg)": 92.0,
"amount (tonne)": [
510.33,
510.33
]
},
"C6": {
"latitude (deg)": 14.0,
"longitude (deg)": 62.0,
"amount (tonne)": [
471.66,
471.66
]
},
"C7": {
"latitude (deg)": 30.0,
"longitude (deg)": 83.0,
"amount (tonne)": [
785.21,
785.21
]
},
"C8": {
"latitude (deg)": 35.0,
"longitude (deg)": 40.0,
"amount (tonne)": [
706.17,
706.17
]
},
"C9": {
"latitude (deg)": 74.0,
"longitude (deg)": 52.0,
"amount (tonne)": [
30.08,
30.08
]
},
"C10": {
"latitude (deg)": 22.0,
"longitude (deg)": 54.0,
"amount (tonne)": [
536.52,
536.52
]
}
}
},
"P2": {
"transportation cost ($/km/tonne)": [
0.02,
0.02
]
},
"P3": {
"transportation cost ($/km/tonne)": [
0.0125,
0.0125
]
},
"P4": {
"transportation cost ($/km/tonne)": [
0.0175,
0.0175
]
}
},
"plants": {
"F1": {
"input": "P1",
"outputs (tonne/tonne)": {
"P2": 0.2,
"P3": 0.5
},
"energy (GJ/tonne)": [
0.12,
0.11
],
"emissions (tonne/tonne)": {
"CO2": [
0.052,
0.050
],
"CH4": [
0.003,
0.002
]
},
"locations": {
"L1": {
"latitude (deg)": 0.0,
"longitude (deg)": 0.0,
"disposal": {
"P2": {
"cost ($/tonne)": [
-10.0,
-10.0
],
"limit (tonne)": [
1.0,
1.0
]
},
"P3": {
"cost ($/tonne)": [
-10.0,
-10.0
],
"limit (tonne)": [
1.0,
1.0
]
}
},
"capacities (tonne)": {
"250.0": {
"opening cost ($)": [
500.0,
500.0
],
"fixed operating cost ($)": [
30.0,
30.0
],
"variable operating cost ($/tonne)": [
30.0,
30.0
]
},
"1000.0": {
"opening cost ($)": [
1250.0,
1250.0
],
"fixed operating cost ($)": [
30.0,
30.0
],
"variable operating cost ($/tonne)": [
30.0,
30.0
]
}
}
},
"L2": {
"location": "2018-us-county:17043",
"capacities (tonne)": {
"0.0": {
"opening cost ($)": [
1000,
1000
],
"fixed operating cost ($)": [
50.0,
50.0
],
"variable operating cost ($/tonne)": [
50.0,
50.0
]
},
"10000.0": {
"opening cost ($)": [
10000,
10000
],
"fixed operating cost ($)": [
50.0,
50.0
],
"variable operating cost ($/tonne)": [
50.0,
50.0
]
}
}
}
}
},
"F2": {
"input": "P2",
"outputs (tonne/tonne)": {
"P3": 0.05,
"P4": 0.80
},
"locations": {
"L3": {
"latitude (deg)": 25.0,
"longitude (deg)": 65.0,
"disposal": {
"P3": {
"cost ($/tonne)": [
100.0,
100.0
]
}
},
"capacities (tonne)": {
"1000.0": {
"opening cost ($)": [
3000,
3000
],
"fixed operating cost ($)": [
50.0,
50.0
],
"variable operating cost ($/tonne)": [
50.0,
50.0
]
}
}
},
"L4": {
"latitude (deg)": 0.75,
"longitude (deg)": 0.20,
"capacities (tonne)": {
"10000": {
"opening cost ($)": [
3000,
3000
],
"fixed operating cost ($)": [
50.0,
50.0
],
"variable operating cost ($/tonne)": [
50.0,
50.0
]
}
}
}
}
},
"F3": {
"input": "P4",
"locations": {
"L5": {
"latitude (deg)": 100.0,
"longitude (deg)": 100.0,
"capacities (tonne)": {
"15000": {
"opening cost ($)": [
0.0,
0.0
],
"fixed operating cost ($)": [
0.0,
0.0
],
"variable operating cost ($/tonne)": [
-15.0,
-15.0
]
}
}
}
}
},
"F4": {
"input": "P3",
"locations": {
"L6": {
"latitude (deg)": 50.0,
"longitude (deg)": 50.0,
"capacities (tonne)": {
"10000": {
"opening cost ($)": [
0.0,
0.0
],
"fixed operating cost ($)": [
0.0,
0.0
],
"variable operating cost ($/tonne)": [
-15.0,
-15.0
]
}
}
}
}
}
}
}

@ -0,0 +1,107 @@
{
"parameters": {
"time horizon (years)": 4,
"building period (years)": [1],
"distance metric": "driving"
},
"products": {
"P1": {
"transportation cost ($/km/tonne)": [0.015, 0.015, 0.015, 0.015],
"transportation energy (J/km/tonne)": [0.12, 0.12, 0.12, 0.12],
"transportation emissions (tonne/km/tonne)": {
"CO2": [0.052, 0.052, 0.052, 0.052],
"CH4": [0.003, 0.003, 0.003, 0.003]
}
},
"P2": {
"transportation cost ($/km/tonne)": [0.015, 0.015, 0.015, 0.015],
"transportation energy (J/km/tonne)": [0.12, 0.12, 0.12, 0.12],
"transportation emissions (tonne/km/tonne)": {
"CO2": [0.052, 0.052, 0.052, 0.052],
"CH4": [0.003, 0.003, 0.003, 0.003]
}
},
"P3": {
"transportation cost ($/km/tonne)": [0.015, 0.015, 0.015, 0.015],
"transportation energy (J/km/tonne)": [0.12, 0.12, 0.12, 0.12],
"transportation emissions (tonne/km/tonne)": {
"CO2": [0.052, 0.052, 0.052, 0.052],
"CH4": [0.003, 0.003, 0.003, 0.003]
}
},
"P4": {
"transportation cost ($/km/tonne)": [0.015, 0.015, 0.015, 0.015],
"transportation energy (J/km/tonne)": [0.12, 0.12, 0.12, 0.12],
"transportation emissions (tonne/km/tonne)": {
"CO2": [0.052, 0.052, 0.052, 0.052],
"CH4": [0.003, 0.003, 0.003, 0.003]
}
}
},
"centers": {
"C1": {
"latitude (deg)": 41.881,
"longitude (deg)": -87.623,
"input": "P1",
"outputs": ["P2", "P3"],
"fixed output (tonne)": {
"P2": [100, 50, 0, 0],
"P3": [20, 10, 0, 0]
},
"variable output (tonne/tonne)": {
"P2": [0.12, 0.25, 0.12, 0.0],
"P3": [0.25, 0.25, 0.25, 0.0]
},
"revenue ($/tonne)": [12.0, 12.0, 12.0, 12.0],
"collection cost ($/tonne)": {
"P2": [0.25, 0.25, 0.25, 0.25],
"P3": [0.37, 0.37, 0.37, 0.37]
},
"operating cost ($)": [150.0, 150.0, 150.0, 150.0],
"disposal limit (tonne)": {
"P2": [0, 0, 0, 0],
"P3": [null, null, null, null]
},
"disposal cost ($/tonne)": {
"P2": [0.23, 0.23, 0.23, 0.23],
"P3": [1.0, 1.0, 1.0, 1.0]
}
},
"C2": {
"latitude (deg)": 41.881,
"longitude (deg)": -87.623,
"input": null,
"outputs": ["P4"],
"variable output (tonne/tonne)": {
"P4": [0, 0, 0, 0]
},
"fixed output (tonne)": {
"P4": [50, 60, 70, 80]
},
"revenue ($/tonne)": null,
"collection cost ($/tonne)": {
"P4": [0.25, 0.25, 0.25, 0.25]
},
"operating cost ($)": [150.0, 150.0, 150.0, 150.0],
"disposal limit (tonne)": {
"P4": [null, null, null, null]
},
"disposal cost ($/tonne)": {
"P4": [0, 0, 0, 0]
}
},
"C3": {
"latitude (deg)": 41.881,
"longitude (deg)": -87.623,
"input": "P1",
"outputs": [],
"variable output (tonne/tonne)": {},
"constant output (tonne)": {},
"revenue ($/tonne)": [12.0, 12.0, 12.0, 12.0],
"collection cost ($/tonne)": {},
"operating cost ($)": [150.0, 150.0, 150.0, 150.0],
"disposal limit (tonne)": {},
"disposal cost ($/tonne)": {}
}
}
}

@ -1,950 +0,0 @@
{
"Energy": {
"Plants (GJ)": [
568.6368,
521.2504
],
"Transportation (GJ)": [
3.120910400232,
2.860834533546
]
},
"Costs": {
"Variable operating ($)": [
216672.818,
216672.818
],
"Transportation ($)": [
714499.27483131,
714499.27483131
],
"Disposal ($)": [
-20.0,
-20.0
],
"Total ($)": [
939896.86883131,
931282.09283131
],
"Fixed operating ($)": [
130.0,
130.0
],
"Opening ($)": [
4500.0,
0.0
],
"Expansion ($)": [
4114.776,
0.0
]
},
"Plants": {
"F3": {
"L5": {
"Opening cost ($)": [
0.0,
0.0
],
"Emissions (tonne)": {},
"Expansion cost ($)": [
0.0,
0.0
],
"Longitude (deg)": 100.0,
"Energy (GJ)": [
0.0,
0.0
],
"Total output": {},
"Capacity (tonne)": [
15000.0,
15000.0
],
"Latitude (deg)": 100.0,
"Output": {
"Send": {},
"Dispose": {}
},
"Total input (tonne)": [
757.3824000000001,
757.3824000000001
],
"Fixed operating cost ($)": [
0.0,
0.0
],
"Input": {
"F2": {
"L4": {
"Distance (km)": 8811.73,
"Amount (tonne)": [
757.3824000000001,
757.3824000000001
],
"Transportation energy (J)": [
0.0,
0.0
],
"Transportation cost ($)": [
116792.36127216002,
116792.36127216002
],
"Longitude (deg)": 0.2,
"Variable operating cost ($)": [
-11360.736,
-11360.736
],
"Latitude (deg)": 0.75,
"Emissions (tonne)": {}
}
}
}
}
},
"F1": {
"L1": {
"Opening cost ($)": [
500.0,
0.0
],
"Emissions (tonne)": {
"CH4": [
3.0,
2.0
],
"CO2": [
52.0,
50.0
]
},
"Expansion cost ($)": [
750.0,
0.0
],
"Longitude (deg)": 0.0,
"Energy (GJ)": [
120.0,
110.0
],
"Total output": {
"P2": [
200.0,
200.0
],
"P3": [
500.0,
500.0
]
},
"Capacity (tonne)": [
1000.0,
1000.0
],
"Latitude (deg)": 0.0,
"Output": {
"Send": {
"P2": {
"F2": {
"L4": {
"Distance (km)": 85.87,
"Amount (tonne)": [
199.0,
199.0
],
"Longitude (deg)": 0.2,
"Latitude (deg)": 0.75
}
}
},
"P3": {
"F4": {
"L6": {
"Distance (km)": 6893.41,
"Amount (tonne)": [
499.0,
499.0
],
"Longitude (deg)": 50.0,
"Latitude (deg)": 50.0
}
}
}
},
"Dispose": {
"P2": {
"Amount (tonne)": [
1.0,
1.0
],
"Cost ($)": [
-10.0,
-10.0
]
},
"P3": {
"Amount (tonne)": [
1.0,
1.0
],
"Cost ($)": [
-10.0,
-10.0
]
}
}
},
"Total input (tonne)": [
1000.0,
1000.0
],
"Fixed operating cost ($)": [
30.0,
30.0
],
"Input": {
"Origin": {
"C3": {
"Distance (km)": 8889.75,
"Amount (tonne)": [
212.97000000000003,
212.97000000000003
],
"Transportation energy (J)": [
227190.00690000004,
208257.50632500005
],
"Transportation cost ($)": [
28398.750862500005,
28398.750862500005
],
"Longitude (deg)": 76.0,
"Variable operating cost ($)": [
6389.1,
6389.1
],
"Latitude (deg)": 84.0,
"Emissions (tonne)": {
"CH4": [
0.6389100000000001,
0.42594000000000004
],
"CO2": [
11.074440000000001,
10.648500000000002
]
}
},
"C7": {
"Distance (km)": 8526.39,
"Amount (tonne)": [
246.62,
246.62
],
"Transportation energy (J)": [
252333.396216,
231305.613198
],
"Transportation cost ($)": [
31541.674527,
31541.674527
],
"Longitude (deg)": 83.0,
"Variable operating cost ($)": [
7398.6,
7398.6
],
"Latitude (deg)": 30.0,
"Emissions (tonne)": {
"CH4": [
0.7398600000000001,
0.49324
],
"CO2": [
12.82424,
12.331000000000001
]
}
},
"C5": {
"Distance (km)": 9148.52,
"Amount (tonne)": [
510.3299999999999,
510.3299999999999
],
"Transportation energy (J)": [
560251.7053919999,
513564.0632759999
],
"Transportation cost ($)": [
70031.46317399999,
70031.46317399999
],
"Longitude (deg)": 92.0,
"Variable operating cost ($)": [
15309.899999999998,
15309.899999999998
],
"Latitude (deg)": 32.0,
"Emissions (tonne)": {
"CH4": [
1.5309899999999999,
1.02066
],
"CO2": [
26.537159999999997,
25.516499999999997
]
}
},
"C9": {
"Distance (km)": 8201.21,
"Amount (tonne)": [
30.08,
30.08
],
"Transportation energy (J)": [
29603.087615999993,
27136.163647999994
],
"Transportation cost ($)": [
3700.385951999999,
3700.385951999999
],
"Longitude (deg)": 52.0,
"Variable operating cost ($)": [
902.4,
902.4
],
"Latitude (deg)": 74.0,
"Emissions (tonne)": {
"CH4": [
0.09024,
0.06016
],
"CO2": [
1.5641599999999998,
1.504
]
}
}
}
}
},
"L2": {
"Opening cost ($)": [
999.9999999999999,
0.0
],
"Emissions (tonne)": {
"CH4": [
11.21592,
7.4772799999999995
],
"CO2": [
194.40928,
186.93200000000002
]
},
"Expansion cost ($)": [
3364.7759999999994,
0.0
],
"Longitude (deg)": 0.5,
"Energy (GJ)": [
448.6368,
411.2504
],
"Total output": {
"P2": [
747.728,
747.728
],
"P3": [
1869.32,
1869.32
]
},
"Capacity (tonne)": [
3738.6399999999994,
3738.6399999999994
],
"Latitude (deg)": 0.5,
"Output": {
"Send": {
"P2": {
"F2": {
"L4": {
"Distance (km)": 43.35,
"Amount (tonne)": [
747.728,
747.728
],
"Longitude (deg)": 0.2,
"Latitude (deg)": 0.75
}
}
},
"P3": {
"F4": {
"L6": {
"Distance (km)": 6828.89,
"Amount (tonne)": [
1869.32,
1869.32
],
"Longitude (deg)": 50.0,
"Latitude (deg)": 50.0
}
}
}
},
"Dispose": {}
},
"Total input (tonne)": [
3738.64,
3738.64
],
"Fixed operating cost ($)": [
50.0,
50.0
],
"Input": {
"Origin": {
"C1": {
"Distance (km)": 1017.44,
"Amount (tonne)": [
934.56,
934.56
],
"Transportation energy (J)": [
114103.047168,
104594.459904
],
"Transportation cost ($)": [
14262.880895999999,
14262.880895999999
],
"Longitude (deg)": 7.0,
"Variable operating cost ($)": [
46728.0,
46728.0
],
"Latitude (deg)": 7.0,
"Emissions (tonne)": {
"CH4": [
2.80368,
1.86912
],
"CO2": [
48.59712,
46.728
]
}
},
"C2": {
"Distance (km)": 2165.47,
"Amount (tonne)": [
198.95,
198.95
],
"Transportation energy (J)": [
51698.430779999995,
47390.228214999996
],
"Transportation cost ($)": [
6462.303847499999,
6462.303847499999
],
"Longitude (deg)": 19.0,
"Variable operating cost ($)": [
9947.5,
9947.5
],
"Latitude (deg)": 7.0,
"Emissions (tonne)": {
"CH4": [
0.59685,
0.3979
],
"CO2": [
10.3454,
9.9475
]
}
},
"C8": {
"Distance (km)": 5421.1,
"Amount (tonne)": [
706.17,
706.17
],
"Transportation energy (J)": [
459386.18243999995,
421104.00057
],
"Transportation cost ($)": [
57423.272805,
57423.272805
],
"Longitude (deg)": 40.0,
"Variable operating cost ($)": [
35308.5,
35308.5
],
"Latitude (deg)": 35.0,
"Emissions (tonne)": {
"CH4": [
2.11851,
1.41234
],
"CO2": [
36.720839999999995,
35.3085
]
}
},
"C6": {
"Distance (km)": 6595.52,
"Amount (tonne)": [
471.66,
471.66
],
"Transportation energy (J)": [
373301.15558400005,
342192.72595200007
],
"Transportation cost ($)": [
46662.64444800001,
46662.64444800001
],
"Longitude (deg)": 62.0,
"Variable operating cost ($)": [
23583.0,
23583.0
],
"Latitude (deg)": 14.0,
"Emissions (tonne)": {
"CH4": [
1.4149800000000001,
0.94332
],
"CO2": [
24.526320000000002,
23.583000000000002
]
}
},
"C10": {
"Distance (km)": 6014.13,
"Amount (tonne)": [
536.52,
536.52
],
"Transportation energy (J)": [
387204.123312,
354937.113036
],
"Transportation cost ($)": [
48400.515413999994,
48400.515413999994
],
"Longitude (deg)": 54.0,
"Variable operating cost ($)": [
26826.0,
26826.0
],
"Latitude (deg)": 22.0,
"Emissions (tonne)": {
"CH4": [
1.6095599999999999,
1.07304
],
"CO2": [
27.89904,
26.826
]
}
},
"C4": {
"Distance (km)": 2802.12,
"Amount (tonne)": [
352.19,
352.19
],
"Transportation energy (J)": [
118425.43713599998,
108556.65070799999
],
"Transportation cost ($)": [
14803.179642,
14803.179642
],
"Longitude (deg)": 16.0,
"Variable operating cost ($)": [
17609.5,
17609.5
],
"Latitude (deg)": 21.0,
"Emissions (tonne)": {
"CH4": [
1.05657,
0.70438
],
"CO2": [
18.313879999999997,
17.6095
]
}
},
"C7": {
"Distance (km)": 8469.86,
"Amount (tonne)": [
538.59,
538.59
],
"Transportation energy (J)": [
547413.827688,
501796.008714
],
"Transportation cost ($)": [
68426.728461,
68426.728461
],
"Longitude (deg)": 83.0,
"Variable operating cost ($)": [
26929.5,
26929.5
],
"Latitude (deg)": 30.0,
"Emissions (tonne)": {
"CH4": [
1.6157700000000002,
1.07718
],
"CO2": [
28.00668,
26.929500000000004
]
}
}
}
}
}
},
"F2": {
"L4": {
"Opening cost ($)": [
2999.9999999999995,
0.0
],
"Emissions (tonne)": {},
"Expansion cost ($)": [
0.0,
0.0
],
"Longitude (deg)": 0.2,
"Energy (GJ)": [
0.0,
0.0
],
"Total output": {
"P4": [
757.3824000000001,
757.3824000000001
],
"P3": [
47.336400000000005,
47.336400000000005
]
},
"Capacity (tonne)": [
10000.0,
10000.0
],
"Latitude (deg)": 0.75,
"Output": {
"Send": {
"P4": {
"F3": {
"L5": {
"Distance (km)": 8811.73,
"Amount (tonne)": [
757.3824000000001,
757.3824000000001
],
"Longitude (deg)": 100.0,
"Latitude (deg)": 100.0
}
}
},
"P3": {
"F4": {
"L6": {
"Distance (km)": 6824.63,
"Amount (tonne)": [
47.336400000000005,
47.336400000000005
],
"Longitude (deg)": 50.0,
"Latitude (deg)": 50.0
}
}
}
},
"Dispose": {}
},
"Total input (tonne)": [
946.728,
946.728
],
"Fixed operating cost ($)": [
50.0,
50.0
],
"Input": {
"F1": {
"L1": {
"Distance (km)": 85.87,
"Amount (tonne)": [
199.0,
199.0
],
"Transportation energy (J)": [
0.0,
0.0
],
"Transportation cost ($)": [
341.7626,
341.7626
],
"Longitude (deg)": 0.0,
"Variable operating cost ($)": [
9950.0,
9950.0
],
"Latitude (deg)": 0.0,
"Emissions (tonne)": {}
},
"L2": {
"Distance (km)": 43.35,
"Amount (tonne)": [
747.728,
747.728
],
"Transportation energy (J)": [
0.0,
0.0
],
"Transportation cost ($)": [
648.280176,
648.280176
],
"Longitude (deg)": 0.5,
"Variable operating cost ($)": [
37386.399999999994,
37386.399999999994
],
"Latitude (deg)": 0.5,
"Emissions (tonne)": {}
}
}
}
}
},
"F4": {
"L6": {
"Opening cost ($)": [
0.0,
0.0
],
"Emissions (tonne)": {},
"Expansion cost ($)": [
0.0,
0.0
],
"Longitude (deg)": 50.0,
"Energy (GJ)": [
0.0,
0.0
],
"Total output": {},
"Capacity (tonne)": [
10000.0,
10000.0
],
"Latitude (deg)": 50.0,
"Output": {
"Send": {},
"Dispose": {}
},
"Total input (tonne)": [
2415.6564,
2415.6564
],
"Fixed operating cost ($)": [
0.0,
0.0
],
"Input": {
"F1": {
"L1": {
"Distance (km)": 6893.41,
"Amount (tonne)": [
499.0,
499.0
],
"Transportation energy (J)": [
0.0,
0.0
],
"Transportation cost ($)": [
42997.644875000005,
42997.644875000005
],
"Longitude (deg)": 0.0,
"Variable operating cost ($)": [
-7485.0,
-7485.0
],
"Latitude (deg)": 0.0,
"Emissions (tonne)": {}
},
"L2": {
"Distance (km)": 6828.89,
"Amount (tonne)": [
1869.32,
1869.32
],
"Transportation energy (J)": [
0.0,
0.0
],
"Transportation cost ($)": [
159567.258185,
159567.258185
],
"Longitude (deg)": 0.5,
"Variable operating cost ($)": [
-28039.8,
-28039.8
],
"Latitude (deg)": 0.5,
"Emissions (tonne)": {}
}
},
"F2": {
"L4": {
"Distance (km)": 6824.63,
"Amount (tonne)": [
47.336400000000005,
47.336400000000005
],
"Transportation energy (J)": [
0.0,
0.0
],
"Transportation cost ($)": [
4038.1676941500004,
4038.1676941500004
],
"Longitude (deg)": 0.2,
"Variable operating cost ($)": [
-710.046,
-710.046
],
"Latitude (deg)": 0.75,
"Emissions (tonne)": {}
}
}
}
}
}
},
"Emissions": {
"Transportation (tonne)": {
"CH4": [
14.21592,
9.477279999999999
],
"CO2": [
246.40927999999994,
236.93200000000002
]
},
"Plants (tonne)": {
"CH4": [
14.21592,
9.47728
],
"CO2": [
246.40928,
236.93200000000002
]
}
},
"Products": {
"P1": {
"C1": {
"Marginal cost ($/tonne)": [
133.59,
134.49
]
},
"C2": {
"Marginal cost ($/tonne)": [
150.81,
151.71
]
},
"C3": {
"Marginal cost ($/tonne)": [
250.83,
251.73
]
},
"C8": {
"Marginal cost ($/tonne)": [
199.65,
200.55
]
},
"C6": {
"Marginal cost ($/tonne)": [
217.26,
218.16
]
},
"C10": {
"Marginal cost ($/tonne)": [
208.54,
209.44
]
},
"C4": {
"Marginal cost ($/tonne)": [
160.36,
161.26
]
},
"C5": {
"Marginal cost ($/tonne)": [
254.71,
255.61
]
},
"C7": {
"Marginal cost ($/tonne)": [
245.38,
246.28
]
},
"C9": {
"Marginal cost ($/tonne)": [
240.5,
241.4
]
}
}
}
}

@ -1,11 +0,0 @@
[ Info: Reading s1.json...
[ Info: Building graph...
[ Info: 2 time periods
[ Info: 6 process nodes
[ Info: 8 shipping nodes (plant)
[ Info: 10 shipping nodes (collection)
[ Info: 38 arcs
[ Info: Building optimization model...
[ Info: Optimizing MILP...
[ Info: Re-optimizing with integer variables fixed...
[ Info: Extracting solution...

@ -1,39 +0,0 @@
{
"parameters": {
"time horizon (years)": 3
},
"products": {
"battery": {
"initial amounts": {
"Chicago": {
"latitude (deg)": 0.0,
"longitude (deg)": 0.0,
"amount (tonne)": [100.0, 0.0, 0.0]
}
},
"transportation cost ($/km/tonne)": [0.01, 0.01, 0.01]
}
},
"plants": {
"mega plant": {
"input": "battery",
"locations": {
"Chicago": {
"latitude (deg)": 0.0,
"longitude (deg)": 0.0,
"storage": {
"cost ($/tonne)": [2.0, 1.5, 1.0],
"limit (tonne)": 50.0
},
"capacities (tonne)": {
"100": {
"opening cost ($)": [0.0, 0.0, 0],
"fixed operating cost ($)": [0.0, 0.0, 0.0],
"variable operating cost ($/tonne)": [10.0, 5.0, 2.0]
}
}
}
}
}
}
}

@ -1,17 +1,10 @@
module RELOGT
using Test
using RELOG
using JuliaFormatter
include("instance/compress_test.jl")
include("instance/geodb_test.jl")
include("instance/parse_test.jl")
include("graph/build_test.jl")
include("graph/dist_test.jl")
include("model/build_test.jl")
include("model/solve_test.jl")
include("model/resolve_test.jl")
include("reports_test.jl")
basedir = dirname(@__FILE__)
@ -21,23 +14,8 @@ end
function runtests()
@testset "RELOG" begin
@testset "instance" begin
instance_compress_test()
instance_geodb_test()
instance_parse_test()
end
@testset "graph" begin
graph_build_test()
graph_dist_test()
end
@testset "model" begin
model_build_test()
model_solve_test()
model_resolve_test()
end
reports_test()
instance_parse_test()
end
return
end
function format()
@ -45,7 +23,4 @@ function format()
JuliaFormatter.format("$basedir/../../src", verbose = true)
return
end
export runtests, format
end # module RELOGT

@ -1,40 +0,0 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG
function graph_build_test()
@testset "build_graph" begin
instance = RELOG.parsefile(fixture("s1.json"))
graph = RELOG.build_graph(instance)
process_node_by_location_name =
Dict(n.location.location_name => n for n in graph.process_nodes)
@test length(graph.plant_shipping_nodes) == 8
@test length(graph.collection_shipping_nodes) == 10
@test length(graph.process_nodes) == 6
node = graph.collection_shipping_nodes[1]
@test node.location.name == "C1"
@test length(node.incoming_arcs) == 0
@test length(node.outgoing_arcs) == 2
@test node.outgoing_arcs[1].source.location.name == "C1"
@test node.outgoing_arcs[1].dest.location.plant_name == "F1"
@test node.outgoing_arcs[1].dest.location.location_name == "L1"
@test node.outgoing_arcs[1].values["distance"] == 1695.364
node = process_node_by_location_name["L1"]
@test node.location.plant_name == "F1"
@test node.location.location_name == "L1"
@test length(node.incoming_arcs) == 10
@test length(node.outgoing_arcs) == 2
node = process_node_by_location_name["L3"]
@test node.location.plant_name == "F2"
@test node.location.location_name == "L3"
@test length(node.incoming_arcs) == 2
@test length(node.outgoing_arcs) == 2
@test length(graph.arcs) == 38
end
end

@ -1,27 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using RELOG
function graph_dist_test()
@testset "KnnDrivingDistance" begin
# Euclidean distance between Chicago and Indianapolis
@test RELOG._calculate_distance(
41.866,
-87.656,
39.764,
-86.148,
RELOG.EuclideanDistance(),
) == 265.818
# Approximate driving distance between Chicago and Indianapolis
@test RELOG._calculate_distance(
41.866,
-87.656,
39.764,
-86.148,
RELOG.KnnDrivingDistance(),
) == 316.43
end
end

@ -1,54 +0,0 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG
function instance_compress_test()
@testset "compress" begin
instance = RELOG.parsefile(fixture("s1.json"))
compressed = RELOG._compress(instance)
product_name_to_product = Dict(p.name => p for p in compressed.products)
location_name_to_facility = Dict()
for p in compressed.plants
location_name_to_facility[p.location_name] = p
end
for c in compressed.collection_centers
location_name_to_facility[c.name] = c
end
p1 = product_name_to_product["P1"]
p2 = product_name_to_product["P2"]
p3 = product_name_to_product["P3"]
c1 = location_name_to_facility["C1"]
l1 = location_name_to_facility["L1"]
@test compressed.time == 1
@test compressed.building_period == [1]
@test p1.name == "P1"
@test p1.transportation_cost [0.015]
@test p1.transportation_energy [0.115]
@test p1.transportation_emissions["CO2"] [0.051]
@test p1.transportation_emissions["CH4"] [0.0025]
@test c1.name == "C1"
@test c1.amount [1869.12]
@test l1.plant_name == "F1"
@test l1.location_name == "L1"
@test l1.energy [0.115]
@test l1.emissions["CO2"] [0.051]
@test l1.emissions["CH4"] [0.0025]
@test l1.sizes[1].opening_cost [500]
@test l1.sizes[2].opening_cost [1250]
@test l1.sizes[1].fixed_operating_cost [60]
@test l1.sizes[2].fixed_operating_cost [60]
@test l1.sizes[1].variable_operating_cost [30]
@test l1.sizes[2].variable_operating_cost [30]
@test l1.disposal_limit[p2] [2.0]
@test l1.disposal_limit[p3] [2.0]
@test l1.disposal_cost[p2] [-10.0]
@test l1.disposal_cost[p3] [-10.0]
end
end

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save