Dist: Drop NaN in training dataset

relog-web
Alinson S. Xavier 3 years ago
parent d1f6796c96
commit 79748e3c13
Signed by: isoron
GPG Key ID: 0DA8E4B9E1109DCA

@ -40,7 +40,8 @@ function _calculate_distance(
end
# Fit kNN model
df = DataFrame(CSV.File(csv_filename))
df = DataFrame(CSV.File(csv_filename, missingstring="NaN"))
dropmissing!(df)
coords = Matrix(df[!, [:source_lat, :source_lon, :dest_lat, :dest_lon]])'
metric.ratios = Matrix(df[!, [:ratio]])
metric.tree = KDTree(coords)
@ -53,5 +54,7 @@ function _calculate_distance(
# Predict ratio
idxs, _ = knn(metric.tree, [source_lat, source_lon, dest_lat, dest_lon], 5)
ratio_pred = mean(metric.ratios[idxs])
return round(dist_euclidean * ratio_pred, digits = 3)
dist_pred = round(dist_euclidean * ratio_pred, digits = 3)
isfinite(dist_pred) || error("non-finite distance detected: $dist_pred")
return dist_pred
end

Loading…
Cancel
Save