Adding product demand constraints

This commit is contained in:
Kavitha G Menon
2025-11-26 00:34:34 -06:00
parent 7dbc3cf90b
commit 8186482db5
2 changed files with 44 additions and 0 deletions

View File

@@ -66,6 +66,8 @@ The mathematical model employed by RELOG is based on three main components:
| $K^\text{out-var}_{cmi}$ | Factor used to calculate variable amount of material $m$ collected at center $c$. See `eq_z_collected` for more details. | -- |
| $K^\text{output}_{pmt}$ | Amount of material $m$ produced by plant $p$ at time $t$ for each tonne of input material processed | tonne |
| $K^\text{storage-limit}_{pm}$ | Maximum amount of material $m$ that can be stored at plant $p$ at any time | tonne |
| $K^\text{dem-min}_{mt}$ | Minimum demand of material $m$ at time $t$ | tonne |
| $K^\text{dem-max}_{mt}$ | Maximum demand of material $m$ at time $t$ | tonne |
| $R^\text{collect}_{cmt}$ | Cost of collecting material $m$ at center $c$ at time $t$ | \$/tonne |
| $R^\text{disp}_{umt}$ | Cost to dispose of material at plant/center $u$ at time $t$ | \$/tonne |
| $R^\text{em}_{gt}$ | Penalty cost per tonne of greenhouse gas $g$ emitted at time $t$ | \$/tonne |
@@ -326,6 +328,21 @@ The goal is to minimize a linear objective function with the following terms:
\end{align*}
```
- Minimum product demands for products at centers:
```math
\begin{align*}
& \sum_{c : m \in M^-_c} \sum_{u : (u,m) \in E^-(c)} y_{ucmt} \geq K^\text{dem-min}_{mt}
& \forall m \in M, t \in T
\end{align*}
```
- Maximum product demands for products at centers:
```math
\begin{align*}
& \sum_{c : m \in M^-_c} \sum_{u : (u,m) \in E^-(c)} y_{ucmt} \leq K^\text{dem-max}_{mt}
& \forall m \in M, t \in T
\end{align*}
```
- Calculation of amount collected by the center
(`eq_z_collected[c.name, m.name, t]`). In the equation below,
$K^\text{out-var-len}$ is the length of the $K^\text{out-var}_{c,m,*}$ vector.

View File

@@ -356,6 +356,33 @@ function build_model(instance::Instance; optimizer, variable_names::Bool = false
)
end
# Demand bounds (only when active: > 0 for min; finite and > 0 for max)
eq_min_demand = _init(model, :eq_min_demand)
eq_max_demand = _init(model, :eq_max_demand)
for m in products, t in T
if m.minimum_demand[t] > 0
eq_min_demand[m.name, t] = @constraint(
model,
sum(
y[src.name, c.name, m.name, t]
for c in centers if c.input == m
for (src, m2) in E_in[c] if m2 == m
) >= m.minimum_demand[t]
)
end
if isfinite(m.maximum_demand[t]) && m.maximum_demand[t] > 0
eq_max_demand[m.name, t] = @constraint(
model,
sum(
y[src.name, c.name, m.name, t]
for c in centers if c.input == m
for (src, m2) in E_in[c] if m2 == m
) <= m.maximum_demand[t]
)
end
end
# Plants: Disposal limit
eq_disposal_limit = _init(model, :eq_disposal_limit)
for p in plants, m in keys(p.output), t in T