| `limit (tonne)` | Maximum amount of this greenhouse gas allowed to be emitted per year across the entire supply chain. Entry may be `null` if unlimited. |
| `penalty ($/tonne)` | Penalty cost per tonne of this greenhouse gas emitted. |
@ -55,20 +55,22 @@ The mathematical model employed by RELOG is based on three main components:
| $K^\text{cap}_{p}$ | Capacity of plant $p$, if the plant is open | tonne |
| $K^\text{disp-limit}_{mt}$ | Maximum amount of material $m$ that can be disposed of (globally) at time $t$ | tonne |
| $K^\text{disp-limit}_{mut}$ | Maximum amount of material $m$ that can be disposed of at plant/center $u$ at time $t$ | tonne |
| $K^\text{em-limit}_{gt}$ | Maximum amount of greenhouse gas $g$ allowed to be emitted (globally) at time $t$ | tonne |
| $K^\text{em-plant}_{gpt}$ | Amount of greenhouse gas $g$ released by plant $p$ at time $t$ for each tonne of input material processed | tonne/tonne |
| $K^\text{em-tr}_{gmt}$ | Amount of greenhouse gas $g$ released by transporting 1 tonne of material $m$ over one km at time $t$ | tonne/km-tonne |
| $K^\text{mix}_{pmt}$ | If plant $p$ receives one tonne of input material at time $t$, then $K^\text{mix}_{pmt}$ is the amount of product $m$ in this mix. Must be between zero and one, and the sum of these amounts must equal to one. | tonne |
| $K^\text{out-fix}_{cmt}$ | Fixed amount of material $m$ collected at center $m$ at time $t$ | \$/tonne |
| $K^\text{out-var-len}_{cm}$ | Length of the $K^\text{out-var}_{c,m,*}$ vector. | -- |
| $K^\text{out-var}_{c,m,i}$ | Factor used to calculate variable amount of material $m$ collected at center $m$. See `eq_z_collected` for more details. | -- |
| $K^\text{output}_{pmt}$ | Amount of material $m$ produced by plant $p$ at time $t$ for each tonne of input material processed | tonne |
| $K^\text{plant-em}_{gpt}$ | Amount of greenhouse gas $g$ released by plant $p$ at time $t$ for each tonne of input material processed | tonne/tonne |
| $K^\text{tr-em}_{gmt}$ | Amount of greenhouse gas $g$ released by transporting 1 tonne of material $m$ over one km at time $t$ | tonne/km-tonne |
| $R^\text{tr}_{mt}$ | Cost to send material $m$ at time $t$ | \$/km-tonne |
| $R^\text{collect}_{cmt}$ | Cost of collecting material $m$ at center $c$ at time $t$ | \$/tonne |
| $R^\text{disp}_{umt}$ | Cost to dispose of material at plant/center $u$ at time $t$ | \$/tonne |
| $R^\text{em}_{gt}$ | Penalty cost per tonne of greenhouse gas $g$ emitted at time $t$ | \$/tonne |
| $R^\text{fix}_{ut}$ | Fixed operating cost for plant/center $u$ at time $t$ | \$ |
| $R^\text{open}_{pt}$ | Cost to open plant $p$ at time $t$ | \$ |
| $R^\text{rev}_{ct}$ | Revenue for selling the input product of center $c$ at this center at time $t$ | \$/tonne |
| $R^\text{tr}_{mt}$ | Cost to send material $m$ at time $t$ | \$/km-tonne |
| $R^\text{var}_{pt}$ | Cost to process one tonne of input material at plant $p$ at time $t$ | \$/tonne |
| $K^\text{out-fix}_{cmt}$ | Fixed amount of material $m$ collected at center $m$ at time $t$ | \$/tonne |
| $K^\text{out-var}_{c,m,i}$ | Factor used to calculate variable amount of material $m$ collected at center $m$. See `eq_z_collected` for more details. | -- |
| $K^\text{out-var-len}_{cm}$ | Length of the $K^\text{out-var}_{c,m,*}$ vector. | -- |
## Decision variables
@ -80,8 +82,8 @@ The mathematical model employed by RELOG is based on three main components:
| $z^{\text{disp}}_{umt}$ | `z_disp[u.name, m.name, t]` | Amount of product $m$ disposed of at plant/center $u$ at time $t$ | tonne |
| $z^{\text{input}}_{ut}$ | `z_input[u.name, t]` | Total plant/center input at time $t$ | tonne |
| $z^{\text{prod}}_{umt}$ | `z_prod[u.name, m.name, t]` | Amount of product $m$ produced by plant/center $u$ at time $t$ | tonne |
| $z^{\text{tr-em}}_{guvmt}$ | `z_tr_em[g.name, u.name, v.name, m.name, t]` | Amount of greenhouse gas $g$ released at time $t$ due to transportation of material $m$ from $u$ to $v$ | tonne |
| $z^{\text{plant-em}}_{gpt}$ | `z_plant_em[g.name, p.name, t]` | Amount of greenhouse gas $g$ released by plant $p$ at time $t$ | tonne |
| $z^{\text{em-tr}}_{guvmt}$ | `z_em_tr[g.name, u.name, v.name, m.name, t]` | Amount of greenhouse gas $g$ released at time $t$ due to transportation of material $m$ from $u$ to $v$ | tonne |
| $z^{\text{em-plant}}_{gpt}$ | `z_em_plant[g.name, p.name, t]` | Amount of greenhouse gas $g$ released by plant $p$ at time $t$ | tonne |
## Objective function
@ -151,6 +153,13 @@ The goals is to minimize a linear objective function with the following terms: