Compare commits

..

2 Commits

@ -76,6 +76,7 @@ Base.@kwdef mutable struct Instance
m_init::dict{Tuple{Center,Product,Component,Time},Float64} m_init::dict{Tuple{Center,Product,Component,Time},Float64}
m_plant_disp::dict{Tuple{Plant,Product,Time},Float64} m_plant_disp::dict{Tuple{Plant,Product,Time},Float64}
m_store::dict{Tuple{Center,Product,Time},Float64} m_store::dict{Tuple{Center,Product,Time},Float64}
selected_edges::Union{Nothing,Set} = nothing
end end
@ -529,15 +530,15 @@ function compress(original::Instance)::Instance
(s, 1) => sum([original.m_emission[s, t] for t in T]) for s in original.emissions (s, 1) => sum([original.m_emission[s, t] for t in T]) for s in original.emissions
) )
m_init = Dict( m_init = Dict(
(q, r, c, 1) => sum([original.m_init[q, r, c, t] for t in T]) for (q, r, c, 1) => length(T) * maximum([original.m_init[q, r, c, t] for t in T]) for
q in original.centers for r in q.prod_out for c in r.comp q in original.centers for r in q.prod_out for c in r.comp
) )
m_plant_disp = Dict( m_plant_disp = Dict(
(p, r, 1) => sum([original.m_plant_disp[p, r, t] for t in T]) for (p, r, 1) => length(T) * minimum([original.m_plant_disp[p, r, t] for t in T]) for
p in original.plants for r in p.prod_out p in original.plants for r in p.prod_out
) )
m_store = Dict( m_store = Dict(
(q, r, 1) => sum([original.m_store[q, r, t] for t in T]) for (q, r, 1) => length(T) * minimum([original.m_store[q, r, t] for t in T]) for
q in original.centers for r in q.prod_out q in original.centers for r in q.prod_out
) )
return Instance(; return Instance(;
@ -574,7 +575,7 @@ function benchmark_compress(filename, optimizer; max_centers=[Inf], max_plants=[
# Solve original # Solve original
orig = read_json(filename; max_centers=mc, max_plants=mp) orig = read_json(filename; max_centers=mc, max_plants=mp)
reset_timer!() reset_timer!()
stats_orig = solve(orig; optimizer) _, stats_orig = solve(orig; optimizer)
stats_orig["Filename"] = filename stats_orig["Filename"] = filename
stats_orig["Method"] = "Original" stats_orig["Method"] = "Original"
push!(stats, stats_orig) push!(stats, stats_orig)
@ -582,7 +583,7 @@ function benchmark_compress(filename, optimizer; max_centers=[Inf], max_plants=[
# Solve compressed # Solve compressed
compressed = compress(orig) compressed = compress(orig)
reset_timer!() reset_timer!()
stats_comp = solve(compressed; optimizer) model_comp, stats_comp = solve(compressed; optimizer)
stats_comp["Filename"] = filename stats_comp["Filename"] = filename
stats_comp["Method"] = "Compressed" stats_comp["Method"] = "Compressed"
push!(stats, stats_comp) push!(stats, stats_comp)
@ -604,16 +605,70 @@ function generate_json()
write_json(data, "output-3/case.json") write_json(data, "output-3/case.json")
end end
function solve(filename, optimizer; max_centers = Inf, max_plants = Inf) function solve(filename, optimizer; max_centers=Inf, max_plants=Inf, heuristic=false)
reset_timer!() reset_timer!()
@timeit "Read JSON" begin @timeit "Read JSON" begin
data = read_json(filename; max_centers, max_plants) data = read_json(filename; max_centers, max_plants)
end end
return solve(data; optimizer = optimizer, output_dir = dirname(filename)) return solve(data; optimizer=optimizer, output_dir=dirname(filename), heuristic)
print_timer() print_timer()
end end
function solve(data::Instance; optimizer, output_dir=nothing) function solve(data::Instance; optimizer, output_dir=nothing, heuristic=false)
if heuristic
@info "Solving compressed instance..."
comp_data = compress(data)
comp_model, comp_stats = solve(comp_data; optimizer, heuristic=false)
# Filter plants
selected_plants = Plant[]
for p in comp_data.plants
if value(comp_model[:x_open][p, 1]) > 0.5
push!(selected_plants, p)
end
end
@info "Selected $(length(selected_plants)) out of $(length(comp_data.plants)) plants"
# Filter edges
selected_edges = Set()
for (src, dst, r) in comp_model[:E]
if value(comp_model[:y_total][src, dst, r][1]) > 0.5
push!(selected_edges, (src, dst, r))
end
end
@info "Selected $(length(selected_edges)) out of $(length(comp_model[:E])) transportation edges"
data = Instance(;
data.T,
data.centers,
plants=selected_plants,
data.products,
data.emissions,
data.alpha_mix,
data.alpha_plant_emission,
data.alpha_tr_emission,
data.c_acq,
data.c_center_disp,
data.c_emission,
data.c_fix,
data.c_open,
data.c_plant_disp,
data.c_store,
data.c_tr,
data.c_var,
data.m_cap,
data.m_center_disp,
data.m_dist,
data.m_emission,
data.m_init,
data.m_plant_disp,
data.m_store,
selected_edges,
)
end
T = data.T T = data.T
centers = data.centers centers = data.centers
plants = data.plants plants = data.plants
@ -630,7 +685,11 @@ function solve(data::Instance; optimizer, output_dir=nothing)
E_in = dict(src => [] for src in plants) E_in = dict(src => [] for src in plants)
E_out = dict(src => [] for src in plants centers) E_out = dict(src => [] for src in plants centers)
function push_edge!(src, dst, r) function push_edge!(src, dst, r)
push!(E, (src, dst, r)) e = (src, dst, r)
if data.selected_edges !== nothing && e data.selected_edges
return
end
push!(E, e)
push!(E_out[src], (dst, r)) push!(E_out[src], (dst, r))
push!(E_in[dst], (src, r)) push!(E_in[dst], (src, r))
end end
@ -654,6 +713,9 @@ function solve(data::Instance; optimizer, output_dir=nothing)
end end
end end
end end
model[:E] = E
model[:E_in] = E_in
model[:E_out] = E_out
@printf("Building optimization problem with:\n") @printf("Building optimization problem with:\n")
@printf(" %8d plants\n", length(plants)) @printf(" %8d plants\n", length(plants))
@ -662,6 +724,25 @@ function solve(data::Instance; optimizer, output_dir=nothing)
@printf(" %8d time periods\n", length(T)) @printf(" %8d time periods\n", length(T))
@printf(" %8d transportation edges\n", length(E)) @printf(" %8d transportation edges\n", length(E))
available = Dict((r, t) => 0.0 for r in data.products, t in T)
for q in centers, t in T
for r in q.prod_out, s in r.comp
available[r, t] += data.m_init[q, r, s, t]
end
end
capacity = Dict(r => 0.0 for r in data.products)
for p in plants
capacity[p.prod_in] += data.m_cap[p]
end
for r in products, t in T
if available[r, t] > capacity[r]
@warn "Not enough capacity to process $(r.name) at time $t: $(available[r,t]) > $(capacity[r])"
end
end
# Decision variables # Decision variables
# ------------------------------------------------------------------------- # -------------------------------------------------------------------------
@timeit "Model: Add variables" begin @timeit "Model: Add variables" begin
@ -1045,13 +1126,14 @@ function solve(data::Instance; optimizer, output_dir=nothing)
"Time periods" => length(T), "Time periods" => length(T),
"Model build time (s)" => model_build_time, "Model build time (s)" => model_build_time,
"Variables" => num_variables(model), "Variables" => num_variables(model),
"Constraints" => num_constraints(model, count_variable_in_set_constraints=false), "Constraints" =>
num_constraints(model, count_variable_in_set_constraints=false),
"Objective Value" => objective_value(model), "Objective Value" => objective_value(model),
"Solve time (s)" => solve_time(model), "Solve time (s)" => solve_time(model),
) )
if output_dir === nothing if output_dir === nothing
return stats return model, stats
end end
# Report: Transportation # Report: Transportation
@ -1256,5 +1338,5 @@ function solve(data::Instance; optimizer, output_dir=nothing)
end end
CSV.write("$output_dir/transp-emissions.csv", df) CSV.write("$output_dir/transp-emissions.csv", df)
return stats return model, stats
end end

Loading…
Cancel
Save