mirror of
https://github.com/ANL-CEEESA/RELOG.git
synced 2025-12-05 23:38:52 -06:00
Compare commits
1 Commits
feature/co
...
feature/re
| Author | SHA1 | Date | |
|---|---|---|---|
| d85868c71a |
27
.github/workflows/lint.yml
vendored
27
.github/workflows/lint.yml
vendored
@@ -1,27 +0,0 @@
|
||||
name: Lint
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: julia-actions/setup-julia@latest
|
||||
with:
|
||||
version: '1'
|
||||
- uses: actions/checkout@v1
|
||||
- name: Format check
|
||||
shell: julia --color=yes {0}
|
||||
run: |
|
||||
using Pkg
|
||||
Pkg.add(PackageSpec(name="JuliaFormatter", version="0.14.4"))
|
||||
using JuliaFormatter
|
||||
format("src", verbose=true)
|
||||
format("test", verbose=true)
|
||||
out = String(read(Cmd(`git diff`)))
|
||||
if isempty(out)
|
||||
exit(0)
|
||||
end
|
||||
@error "Some files have not been formatted !!!"
|
||||
write(stdout, out)
|
||||
exit(1)
|
||||
15
.github/workflows/tagbot.yml
vendored
15
.github/workflows/tagbot.yml
vendored
@@ -1,15 +0,0 @@
|
||||
name: TagBot
|
||||
on:
|
||||
issue_comment:
|
||||
types:
|
||||
- created
|
||||
workflow_dispatch:
|
||||
jobs:
|
||||
TagBot:
|
||||
if: github.event_name == 'workflow_dispatch' || github.actor == 'JuliaTagBot'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: JuliaRegistries/TagBot@v1
|
||||
with:
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
ssh: ${{ secrets.DOCUMENTER_KEY }}
|
||||
8
.github/workflows/test.yml
vendored
8
.github/workflows/test.yml
vendored
@@ -1,16 +1,14 @@
|
||||
name: Build & Test
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
schedule:
|
||||
- cron: '45 10 * * *'
|
||||
- push
|
||||
- pull_request
|
||||
jobs:
|
||||
test:
|
||||
name: Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }}
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
version: ['1.3', '1.4', '1.5', '1.6']
|
||||
version: ['1.3', '1.4', '1.5', 'nightly']
|
||||
os:
|
||||
- ubuntu-latest
|
||||
arch:
|
||||
|
||||
4
.gitignore
vendored
4
.gitignore
vendored
@@ -8,7 +8,3 @@ instances/*.py
|
||||
notebooks
|
||||
.idea
|
||||
*.lp
|
||||
Manifest.toml
|
||||
data
|
||||
build
|
||||
benchmark
|
||||
|
||||
43
CHANGELOG.md
43
CHANGELOG.md
@@ -1,49 +1,28 @@
|
||||
# Changelog
|
||||
# Version 0.5.0 (TBD)
|
||||
|
||||
All notable changes to this project will be documented in this file.
|
||||
|
||||
- The format is based on [Keep a Changelog][changelog].
|
||||
- This project adheres to [Semantic Versioning][semver].
|
||||
- For versions before 1.0, we follow the [Pkg.jl convention][pkjjl]
|
||||
that `0.a.b` is compatible with `0.a.c`.
|
||||
|
||||
[changelog]: https://keepachangelog.com/en/1.0.0/
|
||||
[semver]: https://semver.org/spec/v2.0.0.html
|
||||
[pkjjl]: https://pkgdocs.julialang.org/v1/compatibility/#compat-pre-1.0
|
||||
|
||||
## [0.5.1] -- 2021-07-23
|
||||
## Added
|
||||
- Allow user to specify locations as unique identifiers, instead of latitude and longitude (e.g. `us-state:IL` or `2018-us-county:17043`)
|
||||
- Add what-if scenarios.
|
||||
- Add products report.
|
||||
|
||||
## [0.5.0] -- 2021-01-06
|
||||
## Added
|
||||
- Allow plants to store input material for processing in later years
|
||||
|
||||
## [0.4.0] -- 2020-09-18
|
||||
## Added
|
||||
# Version 0.4.0 (Sep 18, 2020)
|
||||
|
||||
- Generate simplified solution reports (CSV)
|
||||
|
||||
## [0.3.3] -- 2020-10-13
|
||||
## Added
|
||||
# Version 0.3.3 (Aug 13, 2020)
|
||||
|
||||
- Add option to write solution to JSON file in RELOG.solve
|
||||
- Improve error message when instance is infeasible
|
||||
- Make output file more readable
|
||||
|
||||
## [0.3.2] -- 2020-10-07
|
||||
## Added
|
||||
# Version 0.3.2 (Aug 7, 2020)
|
||||
|
||||
- Add "building period" parameter
|
||||
|
||||
## [0.3.1] -- 2020-07-17
|
||||
## Fixed
|
||||
# Version 0.3.1 (July 17, 2020)
|
||||
|
||||
- Fix expansion cost breakdown
|
||||
|
||||
## [0.3.0] -- 2020-06-25
|
||||
## Added
|
||||
- Track emissions and energy (transportation and plants)
|
||||
# Version 0.3.0 (June 25, 2020)
|
||||
|
||||
## Changed
|
||||
- Track emissions and energy (transportation and plants)
|
||||
- Minor changes to input file format:
|
||||
- Make all dictionary keys lowercase
|
||||
- Rename "outputs (tonne)" to "outputs (tonne/tonne)"
|
||||
|
||||
14
Makefile
14
Makefile
@@ -1,11 +1,15 @@
|
||||
JULIA := julia --project=.
|
||||
JULIA := julia --color=yes --project=@.
|
||||
SRC_FILES := $(wildcard src/*.jl test/*.jl)
|
||||
VERSION := 0.5
|
||||
|
||||
all: docs test
|
||||
|
||||
build/sysimage.so: src/sysimage.jl Project.toml Manifest.toml
|
||||
@$(JULIA) src/sysimage.jl
|
||||
mkdir -p build
|
||||
$(JULIA) src/sysimage.jl
|
||||
|
||||
build/test.log: $(SRC_FILES) build/sysimage.so
|
||||
cd test; $(JULIA) --sysimage ../build/sysimage.so runtests.jl
|
||||
|
||||
clean:
|
||||
rm -rf build/*
|
||||
@@ -13,11 +17,7 @@ clean:
|
||||
docs:
|
||||
mkdocs build -d ../docs/$(VERSION)/
|
||||
|
||||
format:
|
||||
julia -e 'using JuliaFormatter; format(["src", "test"], verbose=true);'
|
||||
|
||||
test:
|
||||
@$(JULIA) --sysimage build/sysimage.so test/runtests.jl
|
||||
test: build/test.log
|
||||
|
||||
test-watch:
|
||||
bash -c "while true; do make test --quiet; sleep 1; done"
|
||||
|
||||
441
Manifest.toml
Normal file
441
Manifest.toml
Normal file
@@ -0,0 +1,441 @@
|
||||
# This file is machine-generated - editing it directly is not advised
|
||||
|
||||
[[Base64]]
|
||||
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
|
||||
|
||||
[[BenchmarkTools]]
|
||||
deps = ["JSON", "Logging", "Printf", "Statistics", "UUIDs"]
|
||||
git-tree-sha1 = "9e62e66db34540a0c919d72172cc2f642ac71260"
|
||||
uuid = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
|
||||
version = "0.5.0"
|
||||
|
||||
[[BinaryProvider]]
|
||||
deps = ["Libdl", "Logging", "SHA"]
|
||||
git-tree-sha1 = "ecdec412a9abc8db54c0efc5548c64dfce072058"
|
||||
uuid = "b99e7846-7c00-51b0-8f62-c81ae34c0232"
|
||||
version = "0.5.10"
|
||||
|
||||
[[Bzip2_jll]]
|
||||
deps = ["Libdl", "Pkg"]
|
||||
git-tree-sha1 = "03a44490020826950c68005cafb336e5ba08b7e8"
|
||||
uuid = "6e34b625-4abd-537c-b88f-471c36dfa7a0"
|
||||
version = "1.0.6+4"
|
||||
|
||||
[[CEnum]]
|
||||
git-tree-sha1 = "215a9aa4a1f23fbd05b92769fdd62559488d70e9"
|
||||
uuid = "fa961155-64e5-5f13-b03f-caf6b980ea82"
|
||||
version = "0.4.1"
|
||||
|
||||
[[CSV]]
|
||||
deps = ["CategoricalArrays", "DataFrames", "Dates", "Mmap", "Parsers", "PooledArrays", "SentinelArrays", "Tables", "Unicode"]
|
||||
git-tree-sha1 = "a390152e6850405a48ca51bd7ca33d11a21d6230"
|
||||
uuid = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
|
||||
version = "0.7.7"
|
||||
|
||||
[[Calculus]]
|
||||
deps = ["LinearAlgebra"]
|
||||
git-tree-sha1 = "f641eb0a4f00c343bbc32346e1217b86f3ce9dad"
|
||||
uuid = "49dc2e85-a5d0-5ad3-a950-438e2897f1b9"
|
||||
version = "0.5.1"
|
||||
|
||||
[[CategoricalArrays]]
|
||||
deps = ["DataAPI", "Future", "JSON", "Missings", "Printf", "Statistics", "StructTypes", "Unicode"]
|
||||
git-tree-sha1 = "2ac27f59196a68070e132b25713f9a5bbc5fa0d2"
|
||||
uuid = "324d7699-5711-5eae-9e2f-1d82baa6b597"
|
||||
version = "0.8.3"
|
||||
|
||||
[[Cbc]]
|
||||
deps = ["BinaryProvider", "Libdl", "MathOptInterface", "MathProgBase", "SparseArrays", "Test"]
|
||||
git-tree-sha1 = "62d80f448b5d77b3f0a59cecf6197aad2a3aa280"
|
||||
uuid = "9961bab8-2fa3-5c5a-9d89-47fab24efd76"
|
||||
version = "0.6.7"
|
||||
|
||||
[[Clp]]
|
||||
deps = ["BinaryProvider", "CEnum", "Clp_jll", "Libdl", "MathOptInterface", "SparseArrays"]
|
||||
git-tree-sha1 = "581763750759c1e38df2a35a0b3bdee496a062c7"
|
||||
uuid = "e2554f3b-3117-50c0-817c-e040a3ddf72d"
|
||||
version = "0.8.1"
|
||||
|
||||
[[Clp_jll]]
|
||||
deps = ["CoinUtils_jll", "CompilerSupportLibraries_jll", "Libdl", "OpenBLAS32_jll", "Osi_jll", "Pkg"]
|
||||
git-tree-sha1 = "79263d9383ca89b35f31c33ab5b880536a8413a4"
|
||||
uuid = "06985876-5285-5a41-9fcb-8948a742cc53"
|
||||
version = "1.17.6+6"
|
||||
|
||||
[[CodecBzip2]]
|
||||
deps = ["Bzip2_jll", "Libdl", "TranscodingStreams"]
|
||||
git-tree-sha1 = "2e62a725210ce3c3c2e1a3080190e7ca491f18d7"
|
||||
uuid = "523fee87-0ab8-5b00-afb7-3ecf72e48cfd"
|
||||
version = "0.7.2"
|
||||
|
||||
[[CodecZlib]]
|
||||
deps = ["TranscodingStreams", "Zlib_jll"]
|
||||
git-tree-sha1 = "ded953804d019afa9a3f98981d99b33e3db7b6da"
|
||||
uuid = "944b1d66-785c-5afd-91f1-9de20f533193"
|
||||
version = "0.7.0"
|
||||
|
||||
[[CoinUtils_jll]]
|
||||
deps = ["CompilerSupportLibraries_jll", "Libdl", "OpenBLAS32_jll", "Pkg"]
|
||||
git-tree-sha1 = "ee1f06ab89337b7f194c29377ab174e752cdf60d"
|
||||
uuid = "be027038-0da8-5614-b30d-e42594cb92df"
|
||||
version = "2.11.3+3"
|
||||
|
||||
[[CommonSubexpressions]]
|
||||
deps = ["MacroTools", "Test"]
|
||||
git-tree-sha1 = "7b8a93dba8af7e3b42fecabf646260105ac373f7"
|
||||
uuid = "bbf7d656-a473-5ed7-a52c-81e309532950"
|
||||
version = "0.3.0"
|
||||
|
||||
[[Compat]]
|
||||
deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "SHA", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"]
|
||||
git-tree-sha1 = "7c7f4cda0d58ec999189d70f5ee500348c4b4df1"
|
||||
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
|
||||
version = "3.16.0"
|
||||
|
||||
[[CompilerSupportLibraries_jll]]
|
||||
deps = ["Libdl", "Pkg"]
|
||||
git-tree-sha1 = "7c4f882c41faa72118841185afc58a2eb00ef612"
|
||||
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
|
||||
version = "0.3.3+0"
|
||||
|
||||
[[CoordinateTransformations]]
|
||||
deps = ["LinearAlgebra", "StaticArrays"]
|
||||
git-tree-sha1 = "c230b1d94db9fdd073168830437e64b9db627fcb"
|
||||
uuid = "150eb455-5306-5404-9cee-2592286d6298"
|
||||
version = "0.6.0"
|
||||
|
||||
[[DataAPI]]
|
||||
git-tree-sha1 = "176e23402d80e7743fc26c19c681bfb11246af32"
|
||||
uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a"
|
||||
version = "1.3.0"
|
||||
|
||||
[[DataFrames]]
|
||||
deps = ["CategoricalArrays", "Compat", "DataAPI", "Future", "InvertedIndices", "IteratorInterfaceExtensions", "Missings", "PooledArrays", "Printf", "REPL", "Reexport", "SortingAlgorithms", "Statistics", "TableTraits", "Tables", "Unicode"]
|
||||
git-tree-sha1 = "a7c1c9a6e47a92321bbc9d500dab9b04cc4a6a39"
|
||||
uuid = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
|
||||
version = "0.21.7"
|
||||
|
||||
[[DataStructures]]
|
||||
deps = ["InteractiveUtils", "OrderedCollections"]
|
||||
git-tree-sha1 = "88d48e133e6d3dd68183309877eac74393daa7eb"
|
||||
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
|
||||
version = "0.17.20"
|
||||
|
||||
[[DataValueInterfaces]]
|
||||
git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6"
|
||||
uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464"
|
||||
version = "1.0.0"
|
||||
|
||||
[[Dates]]
|
||||
deps = ["Printf"]
|
||||
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
|
||||
|
||||
[[DelimitedFiles]]
|
||||
deps = ["Mmap"]
|
||||
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
|
||||
|
||||
[[DiffResults]]
|
||||
deps = ["StaticArrays"]
|
||||
git-tree-sha1 = "da24935df8e0c6cf28de340b958f6aac88eaa0cc"
|
||||
uuid = "163ba53b-c6d8-5494-b064-1a9d43ac40c5"
|
||||
version = "1.0.2"
|
||||
|
||||
[[DiffRules]]
|
||||
deps = ["NaNMath", "Random", "SpecialFunctions"]
|
||||
git-tree-sha1 = "eb0c34204c8410888844ada5359ac8b96292cfd1"
|
||||
uuid = "b552c78f-8df3-52c6-915a-8e097449b14b"
|
||||
version = "1.0.1"
|
||||
|
||||
[[Distributed]]
|
||||
deps = ["Random", "Serialization", "Sockets"]
|
||||
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
|
||||
|
||||
[[ForwardDiff]]
|
||||
deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "NaNMath", "Random", "SpecialFunctions", "StaticArrays"]
|
||||
git-tree-sha1 = "1d090099fb82223abc48f7ce176d3f7696ede36d"
|
||||
uuid = "f6369f11-7733-5829-9624-2563aa707210"
|
||||
version = "0.10.12"
|
||||
|
||||
[[Future]]
|
||||
deps = ["Random"]
|
||||
uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820"
|
||||
|
||||
[[GZip]]
|
||||
deps = ["Libdl"]
|
||||
git-tree-sha1 = "039be665faf0b8ae36e089cd694233f5dee3f7d6"
|
||||
uuid = "92fee26a-97fe-5a0c-ad85-20a5f3185b63"
|
||||
version = "0.5.1"
|
||||
|
||||
[[Geodesy]]
|
||||
deps = ["CoordinateTransformations", "Dates", "LinearAlgebra", "StaticArrays", "Test"]
|
||||
git-tree-sha1 = "f80ea86cb88db337a1906e245e495592f0b5cc25"
|
||||
uuid = "0ef565a4-170c-5f04-8de2-149903a85f3d"
|
||||
version = "0.5.0"
|
||||
|
||||
[[HTTP]]
|
||||
deps = ["Base64", "Dates", "IniFile", "MbedTLS", "Sockets"]
|
||||
git-tree-sha1 = "c7ec02c4c6a039a98a15f955462cd7aea5df4508"
|
||||
uuid = "cd3eb016-35fb-5094-929b-558a96fad6f3"
|
||||
version = "0.8.19"
|
||||
|
||||
[[IniFile]]
|
||||
deps = ["Test"]
|
||||
git-tree-sha1 = "098e4d2c533924c921f9f9847274f2ad89e018b8"
|
||||
uuid = "83e8ac13-25f8-5344-8a64-a9f2b223428f"
|
||||
version = "0.5.0"
|
||||
|
||||
[[InteractiveUtils]]
|
||||
deps = ["Markdown"]
|
||||
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
|
||||
|
||||
[[InvertedIndices]]
|
||||
deps = ["Test"]
|
||||
git-tree-sha1 = "15732c475062348b0165684ffe28e85ea8396afc"
|
||||
uuid = "41ab1584-1d38-5bbf-9106-f11c6c58b48f"
|
||||
version = "1.0.0"
|
||||
|
||||
[[IteratorInterfaceExtensions]]
|
||||
git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856"
|
||||
uuid = "82899510-4779-5014-852e-03e436cf321d"
|
||||
version = "1.0.0"
|
||||
|
||||
[[JSON]]
|
||||
deps = ["Dates", "Mmap", "Parsers", "Unicode"]
|
||||
git-tree-sha1 = "81690084b6198a2e1da36fcfda16eeca9f9f24e4"
|
||||
uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
|
||||
version = "0.21.1"
|
||||
|
||||
[[JSONSchema]]
|
||||
deps = ["BinaryProvider", "HTTP", "JSON"]
|
||||
git-tree-sha1 = "b0a7f9328967df5213691d318a03cf70ea8c76b1"
|
||||
uuid = "7d188eb4-7ad8-530c-ae41-71a32a6d4692"
|
||||
version = "0.2.0"
|
||||
|
||||
[[JuMP]]
|
||||
deps = ["Calculus", "DataStructures", "ForwardDiff", "LinearAlgebra", "MathOptInterface", "MutableArithmetics", "NaNMath", "Random", "SparseArrays", "Statistics"]
|
||||
git-tree-sha1 = "cbab42e2e912109d27046aa88f02a283a9abac7c"
|
||||
uuid = "4076af6c-e467-56ae-b986-b466b2749572"
|
||||
version = "0.21.3"
|
||||
|
||||
[[LibGit2]]
|
||||
deps = ["Printf"]
|
||||
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
|
||||
|
||||
[[Libdl]]
|
||||
uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb"
|
||||
|
||||
[[LinearAlgebra]]
|
||||
deps = ["Libdl"]
|
||||
uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
|
||||
|
||||
[[Logging]]
|
||||
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
|
||||
|
||||
[[MacroTools]]
|
||||
deps = ["Markdown", "Random"]
|
||||
git-tree-sha1 = "f7d2e3f654af75f01ec49be82c231c382214223a"
|
||||
uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
|
||||
version = "0.5.5"
|
||||
|
||||
[[Markdown]]
|
||||
deps = ["Base64"]
|
||||
uuid = "d6f4376e-aef5-505a-96c1-9c027394607a"
|
||||
|
||||
[[MathOptInterface]]
|
||||
deps = ["BenchmarkTools", "CodecBzip2", "CodecZlib", "JSON", "JSONSchema", "LinearAlgebra", "MutableArithmetics", "OrderedCollections", "SparseArrays", "Test", "Unicode"]
|
||||
git-tree-sha1 = "27f2ef85879b8f1d144266ab44f076ba0dfbd8a1"
|
||||
uuid = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
|
||||
version = "0.9.13"
|
||||
|
||||
[[MathProgBase]]
|
||||
deps = ["LinearAlgebra", "SparseArrays"]
|
||||
git-tree-sha1 = "9abbe463a1e9fc507f12a69e7f29346c2cdc472c"
|
||||
uuid = "fdba3010-5040-5b88-9595-932c9decdf73"
|
||||
version = "0.7.8"
|
||||
|
||||
[[MbedTLS]]
|
||||
deps = ["Dates", "MbedTLS_jll", "Random", "Sockets"]
|
||||
git-tree-sha1 = "426a6978b03a97ceb7ead77775a1da066343ec6e"
|
||||
uuid = "739be429-bea8-5141-9913-cc70e7f3736d"
|
||||
version = "1.0.2"
|
||||
|
||||
[[MbedTLS_jll]]
|
||||
deps = ["Libdl", "Pkg"]
|
||||
git-tree-sha1 = "c0b1286883cac4e2b617539de41111e0776d02e8"
|
||||
uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1"
|
||||
version = "2.16.8+0"
|
||||
|
||||
[[Missings]]
|
||||
deps = ["DataAPI"]
|
||||
git-tree-sha1 = "ed61674a0864832495ffe0a7e889c0da76b0f4c8"
|
||||
uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28"
|
||||
version = "0.4.4"
|
||||
|
||||
[[Mmap]]
|
||||
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
|
||||
|
||||
[[MutableArithmetics]]
|
||||
deps = ["LinearAlgebra", "SparseArrays", "Test"]
|
||||
git-tree-sha1 = "6cf09794783b9de2e662c4e8b60d743021e338d0"
|
||||
uuid = "d8a4904e-b15c-11e9-3269-09a3773c0cb0"
|
||||
version = "0.2.10"
|
||||
|
||||
[[NaNMath]]
|
||||
git-tree-sha1 = "c84c576296d0e2fbb3fc134d3e09086b3ea617cd"
|
||||
uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3"
|
||||
version = "0.3.4"
|
||||
|
||||
[[OpenBLAS32_jll]]
|
||||
deps = ["CompilerSupportLibraries_jll", "Libdl", "Pkg"]
|
||||
git-tree-sha1 = "793b33911239d2651c356c823492b58d6490d36a"
|
||||
uuid = "656ef2d0-ae68-5445-9ca0-591084a874a2"
|
||||
version = "0.3.9+4"
|
||||
|
||||
[[OpenSpecFun_jll]]
|
||||
deps = ["CompilerSupportLibraries_jll", "Libdl", "Pkg"]
|
||||
git-tree-sha1 = "d51c416559217d974a1113522d5919235ae67a87"
|
||||
uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e"
|
||||
version = "0.5.3+3"
|
||||
|
||||
[[OrderedCollections]]
|
||||
git-tree-sha1 = "16c08bf5dba06609fe45e30860092d6fa41fde7b"
|
||||
uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
|
||||
version = "1.3.1"
|
||||
|
||||
[[Osi_jll]]
|
||||
deps = ["CoinUtils_jll", "CompilerSupportLibraries_jll", "Libdl", "OpenBLAS32_jll", "Pkg"]
|
||||
git-tree-sha1 = "bd436a97280df40938e66ae8d18e57aceb072856"
|
||||
uuid = "7da25872-d9ce-5375-a4d3-7a845f58efdd"
|
||||
version = "0.108.5+3"
|
||||
|
||||
[[PackageCompiler]]
|
||||
deps = ["Libdl", "Pkg", "UUIDs"]
|
||||
git-tree-sha1 = "98aa9c653e1dc3473bb5050caf8501293db9eee1"
|
||||
uuid = "9b87118b-4619-50d2-8e1e-99f35a4d4d9d"
|
||||
version = "1.2.1"
|
||||
|
||||
[[Parsers]]
|
||||
deps = ["Dates", "Test"]
|
||||
git-tree-sha1 = "8077624b3c450b15c087944363606a6ba12f925e"
|
||||
uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0"
|
||||
version = "1.0.10"
|
||||
|
||||
[[Pkg]]
|
||||
deps = ["Dates", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "UUIDs"]
|
||||
uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
|
||||
|
||||
[[PooledArrays]]
|
||||
deps = ["DataAPI"]
|
||||
git-tree-sha1 = "b1333d4eced1826e15adbdf01a4ecaccca9d353c"
|
||||
uuid = "2dfb63ee-cc39-5dd5-95bd-886bf059d720"
|
||||
version = "0.5.3"
|
||||
|
||||
[[Printf]]
|
||||
deps = ["Unicode"]
|
||||
uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7"
|
||||
|
||||
[[ProgressBars]]
|
||||
deps = ["Printf"]
|
||||
git-tree-sha1 = "e66732bbdaad368cfc642cef1f639df5812dc818"
|
||||
uuid = "49802e3a-d2f1-5c88-81d8-b72133a6f568"
|
||||
version = "0.6.0"
|
||||
|
||||
[[REPL]]
|
||||
deps = ["InteractiveUtils", "Markdown", "Sockets"]
|
||||
uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb"
|
||||
|
||||
[[Random]]
|
||||
deps = ["Serialization"]
|
||||
uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
|
||||
|
||||
[[Reexport]]
|
||||
deps = ["Pkg"]
|
||||
git-tree-sha1 = "7b1d07f411bc8ddb7977ec7f377b97b158514fe0"
|
||||
uuid = "189a3867-3050-52da-a836-e630ba90ab69"
|
||||
version = "0.2.0"
|
||||
|
||||
[[SHA]]
|
||||
uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce"
|
||||
|
||||
[[SentinelArrays]]
|
||||
deps = ["Dates", "Random"]
|
||||
git-tree-sha1 = "7a74946ace3b34fbb6c10e61b6e250b33d7e758c"
|
||||
uuid = "91c51154-3ec4-41a3-a24f-3f23e20d615c"
|
||||
version = "1.2.15"
|
||||
|
||||
[[Serialization]]
|
||||
uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b"
|
||||
|
||||
[[SharedArrays]]
|
||||
deps = ["Distributed", "Mmap", "Random", "Serialization"]
|
||||
uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383"
|
||||
|
||||
[[Sockets]]
|
||||
uuid = "6462fe0b-24de-5631-8697-dd941f90decc"
|
||||
|
||||
[[SortingAlgorithms]]
|
||||
deps = ["DataStructures", "Random", "Test"]
|
||||
git-tree-sha1 = "03f5898c9959f8115e30bc7226ada7d0df554ddd"
|
||||
uuid = "a2af1166-a08f-5f64-846c-94a0d3cef48c"
|
||||
version = "0.3.1"
|
||||
|
||||
[[SparseArrays]]
|
||||
deps = ["LinearAlgebra", "Random"]
|
||||
uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
|
||||
|
||||
[[SpecialFunctions]]
|
||||
deps = ["OpenSpecFun_jll"]
|
||||
git-tree-sha1 = "d8d8b8a9f4119829410ecd706da4cc8594a1e020"
|
||||
uuid = "276daf66-3868-5448-9aa4-cd146d93841b"
|
||||
version = "0.10.3"
|
||||
|
||||
[[StaticArrays]]
|
||||
deps = ["LinearAlgebra", "Random", "Statistics"]
|
||||
git-tree-sha1 = "016d1e1a00fabc556473b07161da3d39726ded35"
|
||||
uuid = "90137ffa-7385-5640-81b9-e52037218182"
|
||||
version = "0.12.4"
|
||||
|
||||
[[Statistics]]
|
||||
deps = ["LinearAlgebra", "SparseArrays"]
|
||||
uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
|
||||
|
||||
[[StructTypes]]
|
||||
deps = ["Dates", "UUIDs"]
|
||||
git-tree-sha1 = "1ed04f622a39d2e5a6747c3a70be040c00333933"
|
||||
uuid = "856f2bd8-1eba-4b0a-8007-ebc267875bd4"
|
||||
version = "1.1.0"
|
||||
|
||||
[[TableTraits]]
|
||||
deps = ["IteratorInterfaceExtensions"]
|
||||
git-tree-sha1 = "b1ad568ba658d8cbb3b892ed5380a6f3e781a81e"
|
||||
uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c"
|
||||
version = "1.0.0"
|
||||
|
||||
[[Tables]]
|
||||
deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "TableTraits", "Test"]
|
||||
git-tree-sha1 = "b7f762e9820b7fab47544c36f26f54ac59cf8abf"
|
||||
uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c"
|
||||
version = "1.0.5"
|
||||
|
||||
[[Test]]
|
||||
deps = ["Distributed", "InteractiveUtils", "Logging", "Random"]
|
||||
uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
|
||||
|
||||
[[TranscodingStreams]]
|
||||
deps = ["Random", "Test"]
|
||||
git-tree-sha1 = "7c53c35547de1c5b9d46a4797cf6d8253807108c"
|
||||
uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa"
|
||||
version = "0.9.5"
|
||||
|
||||
[[UUIDs]]
|
||||
deps = ["Random", "SHA"]
|
||||
uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
|
||||
|
||||
[[Unicode]]
|
||||
uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
|
||||
|
||||
[[Zlib_jll]]
|
||||
deps = ["Libdl", "Pkg"]
|
||||
git-tree-sha1 = "fdd89e5ab270ea0f2a0174bd9093e557d06d4bfa"
|
||||
uuid = "83775a58-1f1d-513f-b197-d71354ab007a"
|
||||
version = "1.2.11+16"
|
||||
13
Project.toml
13
Project.toml
@@ -1,16 +1,14 @@
|
||||
name = "RELOG"
|
||||
uuid = "a2afcdf7-cf04-4913-85f9-c0d81ddf2008"
|
||||
authors = ["Alinson S Xavier <axavier@anl.gov>"]
|
||||
version = "0.5.1"
|
||||
version = "0.5.0"
|
||||
|
||||
[deps]
|
||||
CRC = "44b605c4-b955-5f2b-9b6d-d2bd01d3d205"
|
||||
CSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
|
||||
Cbc = "9961bab8-2fa3-5c5a-9d89-47fab24efd76"
|
||||
Clp = "e2554f3b-3117-50c0-817c-e040a3ddf72d"
|
||||
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
|
||||
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
|
||||
Downloads = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
|
||||
GZip = "92fee26a-97fe-5a0c-ad85-20a5f3185b63"
|
||||
Geodesy = "0ef565a4-170c-5f04-8de2-149903a85f3d"
|
||||
JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
|
||||
@@ -18,17 +16,13 @@ JSONSchema = "7d188eb4-7ad8-530c-ae41-71a32a6d4692"
|
||||
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
|
||||
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
|
||||
MathOptInterface = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
|
||||
OrderedCollections = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
|
||||
PackageCompiler = "9b87118b-4619-50d2-8e1e-99f35a4d4d9d"
|
||||
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
|
||||
ProgressBars = "49802e3a-d2f1-5c88-81d8-b72133a6f568"
|
||||
Shapefile = "8e980c4a-a4fe-5da2-b3a7-4b4b0353a2f4"
|
||||
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
|
||||
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
|
||||
ZipFile = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea"
|
||||
|
||||
[compat]
|
||||
CRC = "4"
|
||||
CSV = "0.7"
|
||||
Cbc = "0.6"
|
||||
Clp = "0.8"
|
||||
@@ -37,12 +31,9 @@ DataStructures = "0.17"
|
||||
GZip = "0.5"
|
||||
Geodesy = "0.5"
|
||||
JSON = "0.21"
|
||||
JSONSchema = "0.3"
|
||||
JSONSchema = "0.2"
|
||||
JuMP = "0.21"
|
||||
MathOptInterface = "0.9"
|
||||
OrderedCollections = "1.4"
|
||||
PackageCompiler = "1"
|
||||
ProgressBars = "0.6"
|
||||
Shapefile = "0.7"
|
||||
ZipFile = "0.9"
|
||||
julia = "1"
|
||||
|
||||
@@ -4,132 +4,73 @@
|
||||
},
|
||||
"products": {
|
||||
"P1": {
|
||||
"transportation cost ($/km/tonne)": [
|
||||
0.015,
|
||||
0.015
|
||||
],
|
||||
"transportation energy (J/km/tonne)": [
|
||||
0.12,
|
||||
0.11
|
||||
],
|
||||
"transportation cost ($/km/tonne)": [0.015, 0.015],
|
||||
"transportation energy (J/km/tonne)": [0.12, 0.11],
|
||||
"transportation emissions (tonne/km/tonne)": {
|
||||
"CO2": [
|
||||
0.052,
|
||||
0.050
|
||||
],
|
||||
"CH4": [
|
||||
0.003,
|
||||
0.002
|
||||
]
|
||||
},
|
||||
"CO2": [0.052, 0.050],
|
||||
"CH4": [0.003, 0.002]
|
||||
},
|
||||
"initial amounts": {
|
||||
"C1": {
|
||||
"latitude (deg)": 7.0,
|
||||
"longitude (deg)": 7.0,
|
||||
"amount (tonne)": [
|
||||
934.56,
|
||||
934.56
|
||||
]
|
||||
"amount (tonne)": [934.56, 934.56]
|
||||
},
|
||||
"C2": {
|
||||
"latitude (deg)": 7.0,
|
||||
"longitude (deg)": 19.0,
|
||||
"amount (tonne)": [
|
||||
198.95,
|
||||
198.95
|
||||
]
|
||||
"amount (tonne)": [198.95, 198.95]
|
||||
},
|
||||
"C3": {
|
||||
"latitude (deg)": 84.0,
|
||||
"longitude (deg)": 76.0,
|
||||
"amount (tonne)": [
|
||||
212.97,
|
||||
212.97
|
||||
]
|
||||
"amount (tonne)": [212.97, 212.97]
|
||||
},
|
||||
"C4": {
|
||||
"latitude (deg)": 21.0,
|
||||
"longitude (deg)": 16.0,
|
||||
"amount (tonne)": [
|
||||
352.19,
|
||||
352.19
|
||||
]
|
||||
"amount (tonne)": [352.19, 352.19]
|
||||
},
|
||||
"C5": {
|
||||
"latitude (deg)": 32.0,
|
||||
"longitude (deg)": 92.0,
|
||||
"amount (tonne)": [
|
||||
510.33,
|
||||
510.33
|
||||
]
|
||||
"amount (tonne)": [510.33, 510.33]
|
||||
},
|
||||
"C6": {
|
||||
"latitude (deg)": 14.0,
|
||||
"longitude (deg)": 62.0,
|
||||
"amount (tonne)": [
|
||||
471.66,
|
||||
471.66
|
||||
]
|
||||
"amount (tonne)": [471.66, 471.66]
|
||||
},
|
||||
"C7": {
|
||||
"latitude (deg)": 30.0,
|
||||
"longitude (deg)": 83.0,
|
||||
"amount (tonne)": [
|
||||
785.21,
|
||||
785.21
|
||||
]
|
||||
"amount (tonne)": [785.21, 785.21]
|
||||
},
|
||||
"C8": {
|
||||
"latitude (deg)": 35.0,
|
||||
"longitude (deg)": 40.0,
|
||||
"amount (tonne)": [
|
||||
706.17,
|
||||
706.17
|
||||
]
|
||||
"amount (tonne)": [706.17, 706.17]
|
||||
},
|
||||
"C9": {
|
||||
"latitude (deg)": 74.0,
|
||||
"longitude (deg)": 52.0,
|
||||
"amount (tonne)": [
|
||||
30.08,
|
||||
30.08
|
||||
]
|
||||
"amount (tonne)": [30.08, 30.08]
|
||||
},
|
||||
"C10": {
|
||||
"latitude (deg)": 22.0,
|
||||
"longitude (deg)": 54.0,
|
||||
"amount (tonne)": [
|
||||
536.52,
|
||||
536.52
|
||||
]
|
||||
"amount (tonne)": [536.52, 536.52]
|
||||
}
|
||||
},
|
||||
"disposal limit (tonne)": [
|
||||
1.0,
|
||||
1.0
|
||||
],
|
||||
"disposal cost ($/tonne)": [
|
||||
-1000,
|
||||
-1000
|
||||
]
|
||||
}
|
||||
},
|
||||
"P2": {
|
||||
"transportation cost ($/km/tonne)": [
|
||||
0.02,
|
||||
0.02
|
||||
]
|
||||
"transportation cost ($/km/tonne)": [0.02, 0.02]
|
||||
},
|
||||
"P3": {
|
||||
"transportation cost ($/km/tonne)": [
|
||||
0.0125,
|
||||
0.0125
|
||||
]
|
||||
"transportation cost ($/km/tonne)": [0.0125, 0.0125]
|
||||
},
|
||||
"P4": {
|
||||
"transportation cost ($/km/tonne)": [
|
||||
0.0175,
|
||||
0.0175
|
||||
]
|
||||
"transportation cost ($/km/tonne)": [0.0175, 0.0175]
|
||||
}
|
||||
},
|
||||
"plants": {
|
||||
@@ -139,74 +80,35 @@
|
||||
"P2": 0.2,
|
||||
"P3": 0.5
|
||||
},
|
||||
"energy (GJ/tonne)": [
|
||||
0.12,
|
||||
0.11
|
||||
],
|
||||
"energy (GJ/tonne)": [0.12, 0.11],
|
||||
"emissions (tonne/tonne)": {
|
||||
"CO2": [
|
||||
0.052,
|
||||
0.050
|
||||
],
|
||||
"CH4": [
|
||||
0.003,
|
||||
0.002
|
||||
]
|
||||
},
|
||||
"CO2": [0.052, 0.050],
|
||||
"CH4": [0.003, 0.002]
|
||||
},
|
||||
"locations": {
|
||||
"L1": {
|
||||
"latitude (deg)": 0.0,
|
||||
"longitude (deg)": 0.0,
|
||||
"disposal": {
|
||||
"P2": {
|
||||
"cost ($/tonne)": [
|
||||
-10.0,
|
||||
-10.0
|
||||
],
|
||||
"limit (tonne)": [
|
||||
1.0,
|
||||
1.0
|
||||
]
|
||||
"cost ($/tonne)": [-10.0, -10.0],
|
||||
"limit (tonne)": [1.0, 1.0]
|
||||
},
|
||||
"P3": {
|
||||
"cost ($/tonne)": [
|
||||
-10.0,
|
||||
-10.0
|
||||
],
|
||||
"limit (tonne)": [
|
||||
1.0,
|
||||
1.0
|
||||
]
|
||||
"cost ($/tonne)": [-10.0, -10.0],
|
||||
"limit (tonne)": [1.0, 1.0]
|
||||
}
|
||||
},
|
||||
"capacities (tonne)": {
|
||||
"250.0": {
|
||||
"opening cost ($)": [
|
||||
500.0,
|
||||
500.0
|
||||
],
|
||||
"fixed operating cost ($)": [
|
||||
30.0,
|
||||
30.0
|
||||
],
|
||||
"variable operating cost ($/tonne)": [
|
||||
30.0,
|
||||
30.0
|
||||
]
|
||||
"opening cost ($)": [500.0, 500.0],
|
||||
"fixed operating cost ($)": [30.0, 30.0],
|
||||
"variable operating cost ($/tonne)": [30.0, 30.0]
|
||||
},
|
||||
"1000.0": {
|
||||
"opening cost ($)": [
|
||||
1250.0,
|
||||
1250.0
|
||||
],
|
||||
"fixed operating cost ($)": [
|
||||
30.0,
|
||||
30.0
|
||||
],
|
||||
"variable operating cost ($/tonne)": [
|
||||
30.0,
|
||||
30.0
|
||||
]
|
||||
"opening cost ($)": [1250.0, 1250.0],
|
||||
"fixed operating cost ($)": [30.0, 30.0],
|
||||
"variable operating cost ($/tonne)": [30.0, 30.0]
|
||||
}
|
||||
}
|
||||
},
|
||||
@@ -215,35 +117,17 @@
|
||||
"longitude (deg)": 0.5,
|
||||
"capacities (tonne)": {
|
||||
"0.0": {
|
||||
"opening cost ($)": [
|
||||
1000,
|
||||
1000
|
||||
],
|
||||
"fixed operating cost ($)": [
|
||||
50.0,
|
||||
50.0
|
||||
],
|
||||
"variable operating cost ($/tonne)": [
|
||||
50.0,
|
||||
50.0
|
||||
]
|
||||
"opening cost ($)": [1000, 1000],
|
||||
"fixed operating cost ($)": [50.0, 50.0],
|
||||
"variable operating cost ($/tonne)": [50.0, 50.0]
|
||||
},
|
||||
"10000.0": {
|
||||
"opening cost ($)": [
|
||||
10000,
|
||||
10000
|
||||
],
|
||||
"fixed operating cost ($)": [
|
||||
50.0,
|
||||
50.0
|
||||
],
|
||||
"variable operating cost ($/tonne)": [
|
||||
50.0,
|
||||
50.0
|
||||
]
|
||||
"opening cost ($)": [10000, 10000],
|
||||
"fixed operating cost ($)": [50.0, 50.0],
|
||||
"variable operating cost ($/tonne)": [50.0, 50.0]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"F2": {
|
||||
@@ -258,26 +142,14 @@
|
||||
"longitude (deg)": 65.0,
|
||||
"disposal": {
|
||||
"P3": {
|
||||
"cost ($/tonne)": [
|
||||
100.0,
|
||||
100.0
|
||||
]
|
||||
"cost ($/tonne)": [100.0, 100.0]
|
||||
}
|
||||
},
|
||||
"capacities (tonne)": {
|
||||
"1000.0": {
|
||||
"opening cost ($)": [
|
||||
3000,
|
||||
3000
|
||||
],
|
||||
"fixed operating cost ($)": [
|
||||
50.0,
|
||||
50.0
|
||||
],
|
||||
"variable operating cost ($/tonne)": [
|
||||
50.0,
|
||||
50.0
|
||||
]
|
||||
"opening cost ($)": [3000, 3000],
|
||||
"fixed operating cost ($)": [50.0, 50.0],
|
||||
"variable operating cost ($/tonne)": [50.0, 50.0]
|
||||
}
|
||||
}
|
||||
},
|
||||
@@ -286,18 +158,9 @@
|
||||
"longitude (deg)": 0.20,
|
||||
"capacities (tonne)": {
|
||||
"10000": {
|
||||
"opening cost ($)": [
|
||||
3000,
|
||||
3000
|
||||
],
|
||||
"fixed operating cost ($)": [
|
||||
50.0,
|
||||
50.0
|
||||
],
|
||||
"variable operating cost ($/tonne)": [
|
||||
50.0,
|
||||
50.0
|
||||
]
|
||||
"opening cost ($)": [3000, 3000],
|
||||
"fixed operating cost ($)": [50.0, 50.0],
|
||||
"variable operating cost ($/tonne)": [50.0, 50.0]
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -311,21 +174,12 @@
|
||||
"longitude (deg)": 100.0,
|
||||
"capacities (tonne)": {
|
||||
"15000": {
|
||||
"opening cost ($)": [
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"fixed operating cost ($)": [
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"variable operating cost ($/tonne)": [
|
||||
-15.0,
|
||||
-15.0
|
||||
]
|
||||
"opening cost ($)": [0.0, 0.0],
|
||||
"fixed operating cost ($)": [0.0, 0.0],
|
||||
"variable operating cost ($/tonne)": [-15.0, -15.0]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"F4": {
|
||||
@@ -336,21 +190,12 @@
|
||||
"longitude (deg)": 50.0,
|
||||
"capacities (tonne)": {
|
||||
"10000": {
|
||||
"opening cost ($)": [
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"fixed operating cost ($)": [
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"variable operating cost ($/tonne)": [
|
||||
-15.0,
|
||||
-15.0
|
||||
]
|
||||
"opening cost ($)": [0.0, 0.0],
|
||||
"fixed operating cost ($)": [0.0, 0.0],
|
||||
"variable operating cost ($/tonne)": [-15.0, -15.0]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,347 +0,0 @@
|
||||
{
|
||||
"parameters": {
|
||||
"time horizon (years)": 2
|
||||
},
|
||||
"products": {
|
||||
"P1": {
|
||||
"transportation cost ($/km/tonne)": [
|
||||
0.015,
|
||||
0.015
|
||||
],
|
||||
"transportation energy (J/km/tonne)": [
|
||||
0.12,
|
||||
0.11
|
||||
],
|
||||
"transportation emissions (tonne/km/tonne)": {
|
||||
"CO2": [
|
||||
0.052,
|
||||
0.050
|
||||
],
|
||||
"CH4": [
|
||||
0.003,
|
||||
0.002
|
||||
]
|
||||
},
|
||||
"initial amounts": {
|
||||
"C1": {
|
||||
"location": "2018-us-county:17043",
|
||||
"amount (tonne)": [
|
||||
934.56,
|
||||
934.56
|
||||
]
|
||||
},
|
||||
"C2": {
|
||||
"latitude (deg)": 7.0,
|
||||
"longitude (deg)": 19.0,
|
||||
"amount (tonne)": [
|
||||
198.95,
|
||||
198.95
|
||||
]
|
||||
},
|
||||
"C3": {
|
||||
"latitude (deg)": 84.0,
|
||||
"longitude (deg)": 76.0,
|
||||
"amount (tonne)": [
|
||||
212.97,
|
||||
212.97
|
||||
]
|
||||
},
|
||||
"C4": {
|
||||
"latitude (deg)": 21.0,
|
||||
"longitude (deg)": 16.0,
|
||||
"amount (tonne)": [
|
||||
352.19,
|
||||
352.19
|
||||
]
|
||||
},
|
||||
"C5": {
|
||||
"latitude (deg)": 32.0,
|
||||
"longitude (deg)": 92.0,
|
||||
"amount (tonne)": [
|
||||
510.33,
|
||||
510.33
|
||||
]
|
||||
},
|
||||
"C6": {
|
||||
"latitude (deg)": 14.0,
|
||||
"longitude (deg)": 62.0,
|
||||
"amount (tonne)": [
|
||||
471.66,
|
||||
471.66
|
||||
]
|
||||
},
|
||||
"C7": {
|
||||
"latitude (deg)": 30.0,
|
||||
"longitude (deg)": 83.0,
|
||||
"amount (tonne)": [
|
||||
785.21,
|
||||
785.21
|
||||
]
|
||||
},
|
||||
"C8": {
|
||||
"latitude (deg)": 35.0,
|
||||
"longitude (deg)": 40.0,
|
||||
"amount (tonne)": [
|
||||
706.17,
|
||||
706.17
|
||||
]
|
||||
},
|
||||
"C9": {
|
||||
"latitude (deg)": 74.0,
|
||||
"longitude (deg)": 52.0,
|
||||
"amount (tonne)": [
|
||||
30.08,
|
||||
30.08
|
||||
]
|
||||
},
|
||||
"C10": {
|
||||
"latitude (deg)": 22.0,
|
||||
"longitude (deg)": 54.0,
|
||||
"amount (tonne)": [
|
||||
536.52,
|
||||
536.52
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
"P2": {
|
||||
"transportation cost ($/km/tonne)": [
|
||||
0.02,
|
||||
0.02
|
||||
]
|
||||
},
|
||||
"P3": {
|
||||
"transportation cost ($/km/tonne)": [
|
||||
0.0125,
|
||||
0.0125
|
||||
]
|
||||
},
|
||||
"P4": {
|
||||
"transportation cost ($/km/tonne)": [
|
||||
0.0175,
|
||||
0.0175
|
||||
]
|
||||
}
|
||||
},
|
||||
"plants": {
|
||||
"F1": {
|
||||
"input": "P1",
|
||||
"outputs (tonne/tonne)": {
|
||||
"P2": 0.2,
|
||||
"P3": 0.5
|
||||
},
|
||||
"energy (GJ/tonne)": [
|
||||
0.12,
|
||||
0.11
|
||||
],
|
||||
"emissions (tonne/tonne)": {
|
||||
"CO2": [
|
||||
0.052,
|
||||
0.050
|
||||
],
|
||||
"CH4": [
|
||||
0.003,
|
||||
0.002
|
||||
]
|
||||
},
|
||||
"locations": {
|
||||
"L1": {
|
||||
"latitude (deg)": 0.0,
|
||||
"longitude (deg)": 0.0,
|
||||
"disposal": {
|
||||
"P2": {
|
||||
"cost ($/tonne)": [
|
||||
-10.0,
|
||||
-10.0
|
||||
],
|
||||
"limit (tonne)": [
|
||||
1.0,
|
||||
1.0
|
||||
]
|
||||
},
|
||||
"P3": {
|
||||
"cost ($/tonne)": [
|
||||
-10.0,
|
||||
-10.0
|
||||
],
|
||||
"limit (tonne)": [
|
||||
1.0,
|
||||
1.0
|
||||
]
|
||||
}
|
||||
},
|
||||
"capacities (tonne)": {
|
||||
"250.0": {
|
||||
"opening cost ($)": [
|
||||
500.0,
|
||||
500.0
|
||||
],
|
||||
"fixed operating cost ($)": [
|
||||
30.0,
|
||||
30.0
|
||||
],
|
||||
"variable operating cost ($/tonne)": [
|
||||
30.0,
|
||||
30.0
|
||||
]
|
||||
},
|
||||
"1000.0": {
|
||||
"opening cost ($)": [
|
||||
1250.0,
|
||||
1250.0
|
||||
],
|
||||
"fixed operating cost ($)": [
|
||||
30.0,
|
||||
30.0
|
||||
],
|
||||
"variable operating cost ($/tonne)": [
|
||||
30.0,
|
||||
30.0
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
"L2": {
|
||||
"location": "2018-us-county:17043",
|
||||
"capacities (tonne)": {
|
||||
"0.0": {
|
||||
"opening cost ($)": [
|
||||
1000,
|
||||
1000
|
||||
],
|
||||
"fixed operating cost ($)": [
|
||||
50.0,
|
||||
50.0
|
||||
],
|
||||
"variable operating cost ($/tonne)": [
|
||||
50.0,
|
||||
50.0
|
||||
]
|
||||
},
|
||||
"10000.0": {
|
||||
"opening cost ($)": [
|
||||
10000,
|
||||
10000
|
||||
],
|
||||
"fixed operating cost ($)": [
|
||||
50.0,
|
||||
50.0
|
||||
],
|
||||
"variable operating cost ($/tonne)": [
|
||||
50.0,
|
||||
50.0
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"F2": {
|
||||
"input": "P2",
|
||||
"outputs (tonne/tonne)": {
|
||||
"P3": 0.05,
|
||||
"P4": 0.80
|
||||
},
|
||||
"locations": {
|
||||
"L3": {
|
||||
"latitude (deg)": 25.0,
|
||||
"longitude (deg)": 65.0,
|
||||
"disposal": {
|
||||
"P3": {
|
||||
"cost ($/tonne)": [
|
||||
100.0,
|
||||
100.0
|
||||
]
|
||||
}
|
||||
},
|
||||
"capacities (tonne)": {
|
||||
"1000.0": {
|
||||
"opening cost ($)": [
|
||||
3000,
|
||||
3000
|
||||
],
|
||||
"fixed operating cost ($)": [
|
||||
50.0,
|
||||
50.0
|
||||
],
|
||||
"variable operating cost ($/tonne)": [
|
||||
50.0,
|
||||
50.0
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
"L4": {
|
||||
"latitude (deg)": 0.75,
|
||||
"longitude (deg)": 0.20,
|
||||
"capacities (tonne)": {
|
||||
"10000": {
|
||||
"opening cost ($)": [
|
||||
3000,
|
||||
3000
|
||||
],
|
||||
"fixed operating cost ($)": [
|
||||
50.0,
|
||||
50.0
|
||||
],
|
||||
"variable operating cost ($/tonne)": [
|
||||
50.0,
|
||||
50.0
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"F3": {
|
||||
"input": "P4",
|
||||
"locations": {
|
||||
"L5": {
|
||||
"latitude (deg)": 100.0,
|
||||
"longitude (deg)": 100.0,
|
||||
"capacities (tonne)": {
|
||||
"15000": {
|
||||
"opening cost ($)": [
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"fixed operating cost ($)": [
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"variable operating cost ($/tonne)": [
|
||||
-15.0,
|
||||
-15.0
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"F4": {
|
||||
"input": "P3",
|
||||
"locations": {
|
||||
"L6": {
|
||||
"latitude (deg)": 50.0,
|
||||
"longitude (deg)": 50.0,
|
||||
"capacities (tonne)": {
|
||||
"10000": {
|
||||
"opening cost ($)": [
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"fixed operating cost ($)": [
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"variable operating cost ($/tonne)": [
|
||||
-15.0,
|
||||
-15.0
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
27
src/RELOG.jl
27
src/RELOG.jl
@@ -3,26 +3,9 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
module RELOG
|
||||
|
||||
include("instance/structs.jl")
|
||||
|
||||
include("graph/structs.jl")
|
||||
|
||||
include("graph/build.jl")
|
||||
include("graph/csv.jl")
|
||||
include("instance/compress.jl")
|
||||
include("instance/geodb.jl")
|
||||
include("instance/parse.jl")
|
||||
include("instance/validate.jl")
|
||||
include("model/build.jl")
|
||||
include("model/getsol.jl")
|
||||
include("model/solve.jl")
|
||||
include("model/resolve.jl")
|
||||
include("reports/plant_emissions.jl")
|
||||
include("reports/plant_outputs.jl")
|
||||
include("reports/plants.jl")
|
||||
include("reports/products.jl")
|
||||
include("reports/tr_emissions.jl")
|
||||
include("reports/tr.jl")
|
||||
include("reports/write.jl")
|
||||
include("dotdict.jl")
|
||||
include("instance.jl")
|
||||
include("graph.jl")
|
||||
include("model.jl")
|
||||
include("reports.jl")
|
||||
end
|
||||
|
||||
@@ -36,8 +36,6 @@ The **products** section describes all products and subproducts in the simulatio
|
||||
|`transportation energy (J/km/tonne)` | The energy required to transport this product. Must be a time series. Optional.
|
||||
|`transportation emissions (tonne/km/tonne)` | A dictionary mapping the name of each greenhouse gas, produced to transport one tonne of this product along one kilometer, to the amount of gas produced (in tonnes). Must be a time series. Optional.
|
||||
|`initial amounts` | A dictionary mapping the name of each location to its description (see below). If this product is not initially available, this key may be omitted. Must be a time series.
|
||||
| `disposal limit (tonne)` | Total amount of product that can be disposed of across all collection centers. If omitted, all product must be processed. This parameter has no effect on product disposal at plants.
|
||||
| `disposal cost ($/tonne)` | Cost of disposing one tonne of this product at a collection center. If omitted, defaults to zero. This parameter has no effect on product disposal costs at plants.
|
||||
|
||||
Each product may have some amount available at the beginning of each time period. In this case, the key `initial amounts` maps to a dictionary with the following keys:
|
||||
|
||||
@@ -75,9 +73,7 @@ Each product may have some amount available at the beginning of each time period
|
||||
"transportation emissions (tonne/km/tonne)": {
|
||||
"CO2": [0.052, 0.050],
|
||||
"CH4": [0.003, 0.002]
|
||||
},
|
||||
"disposal cost ($/tonne)": [-10.0, -12.0],
|
||||
"disposal limit (tonne)": [1.0, 1.0],
|
||||
}
|
||||
},
|
||||
"P2": {
|
||||
"transportation cost ($/km/tonne)": [0.022, 0.020]
|
||||
@@ -186,38 +182,6 @@ The keys in the `capacities (tonne)` dictionary should be the amounts (in tonnes
|
||||
}
|
||||
```
|
||||
|
||||
### Geographic database
|
||||
|
||||
Instead of specifying locations using latitudes and longitudes, it is also possible to specify them using unique identifiers, such as the name of a US state, or the county FIPS code. This works anywhere `latitude (deg)` and `longitude (deg)` are expected. For example, instead of:
|
||||
```json
|
||||
{
|
||||
"initial amounts": {
|
||||
"C1": {
|
||||
"latitude (deg)": 37.27182,
|
||||
"longitude (deg)": -119.2704,
|
||||
"amount (tonne)": [934.56, 934.56]
|
||||
},
|
||||
}
|
||||
}
|
||||
```
|
||||
is is possible to write:
|
||||
```json
|
||||
{
|
||||
"initial amounts": {
|
||||
"C1": {
|
||||
"location": "us-state:CA",
|
||||
"amount (tonne)": [934.56, 934.56]
|
||||
},
|
||||
}
|
||||
}
|
||||
```
|
||||
Location names follow the format `db:id`, where `db` is the name of the database and `id` is the identifier for a specific location. RELOG currently includes the following databases:
|
||||
|
||||
Database | Description | Examples
|
||||
---------|-------------|----------
|
||||
`us-state`| List of states of the United States. | `us-state:IL` (State of Illinois)
|
||||
`2018-us-county` | List of United States counties, as of 2018. IDs are 5-digit FIPS codes. | `2018-us-county:17043` (DuPage county in Illinois)
|
||||
|
||||
### Current limitations
|
||||
|
||||
* Each plant can only be opened exactly once. After open, the plant remains open until the end of the simulation.
|
||||
@@ -228,3 +192,4 @@ Database | Description | Examples
|
||||
## Output Data Format (JSON)
|
||||
|
||||
To be documented.
|
||||
|
||||
|
||||
@@ -6,13 +6,15 @@ In this page, we also illustrate what types of charts and visualizations can be
|
||||
|
||||
## Plants report
|
||||
|
||||
Report showing plant costs, capacities, energy expenditure and utilization factors. Generated by `RELOG.write_plants_report(solution, filename)`.
|
||||
Report showing plant costs, capacities, energy expenditure and utilization factors.
|
||||
|
||||
Generated by `RELOG.write_plants_report(solution, filename)`. For a concrete example, see [nimh_plants.csv](https://github.com/ANL-CEEESA/RELOG/blob/master/test/fixtures/nimh_plants.csv).
|
||||
|
||||
| Column | Description
|
||||
|:--------------------------------------|---------------|
|
||||
| `plant type` | Plant type.
|
||||
| `location name` | Location name.
|
||||
| `year` | What year this row corresponds to. This reports includes one row for each year.
|
||||
| `year` | What year this row corresponds to. This reports includes one row for each year in the simulation.
|
||||
| `latitude (deg)` | Latitude of the plant.
|
||||
| `longitude (deg)` | Longitude of the plant.
|
||||
| `capacity (tonne)` | Capacity of the plant at this point in time.
|
||||
@@ -70,14 +72,16 @@ gp.GeoDataFrame(data, geometry=points).plot(ax=ax);
|
||||
|
||||
## Plant outputs report
|
||||
|
||||
Report showing amount of products produced, sent and disposed of by each plant, as well as disposal costs. Generated by `RELOG.write_plant_outputs_report(solution, filename)`.
|
||||
Report showing amount of products produced, sent and disposed of by each plant, as well as disposal costs.
|
||||
|
||||
Generated by `RELOG.write_plant_outputs_report(solution, filename)`. For a concrete example, see [nimh_plant_outputs.csv](https://github.com/ANL-CEEESA/RELOG/blob/master/test/fixtures/nimh_plant_outputs.csv).
|
||||
|
||||
|
||||
| Column | Description
|
||||
|:--------------------------------------|---------------|
|
||||
| `plant type` | Plant type.
|
||||
| `location name` | Location name.
|
||||
| `year` | What year this row corresponds to. This reports includes one row for each year.
|
||||
| `year` | What year this row corresponds to. This reports includes one row for each year in the simulation.
|
||||
| `product name` | Product being produced.
|
||||
| `amount produced (tonne)` | Amount of product produced this year.
|
||||
| `amount sent (tonne)` | Amount of product produced by this plant and sent to another plant for further processing this year.
|
||||
@@ -106,7 +110,9 @@ sns.barplot(x="amount produced (tonne)",
|
||||
|
||||
## Plant emissions report
|
||||
|
||||
Report showing amount of emissions produced by each plant. Generated by `RELOG.write_plant_emissions_report(solution, filename)`.
|
||||
Report showing amount of emissions produced by each plant.
|
||||
|
||||
Generated by `RELOG.write_plant_emissions_report(solution, filename)`. For a concrete example, see [nimh_plant_emissions.csv](https://github.com/ANL-CEEESA/RELOG/blob/master/test/fixtures/nimh_plant_emissions.csv).
|
||||
|
||||
| Column | Description
|
||||
|:--------------------------------------|---------------|
|
||||
@@ -135,25 +141,11 @@ sns.barplot(x="plant type",
|
||||
|
||||
<img src="../images/ex_emissions.png" width="500px"/>
|
||||
|
||||
## Products report
|
||||
|
||||
Report showing primary product amounts, locations and marginal costs. Generated by `RELOG.write_products_report(solution, filename)`.
|
||||
|
||||
| Column | Description
|
||||
|:--------------------------------------|---------------|
|
||||
| `product name` | Product name.
|
||||
| `location name` | Name of the collection center.
|
||||
| `latitude (deg)` | Latitude of the collection center.
|
||||
| `longitude (deg)` | Longitude of the collection center.
|
||||
| `year` | What year this row corresponds to. This reports includes one row for each year.
|
||||
| `amount (tonne)` | Amount of product available at this collection center.
|
||||
| `amount disposed (tonne)` | Amount of product disposed of at this collection center.
|
||||
| `marginal cost ($/tonne)` | Cost to process one additional tonne of this product coming from this collection center.
|
||||
|
||||
|
||||
## Transportation report
|
||||
|
||||
Report showing amount of product sent from initial locations to plants, and from one plant to another. Includes the distance between each pair of locations, amount-distance shipped, transportation costs and energy expenditure. Generated by `RELOG.write_transportation_report(solution, filename)`.
|
||||
Report showing amount of product sent from initial locations to plants, and from one plant to another. Includes the distance between each pair of locations, amount-distance shipped, transportation costs and energy expenditure.
|
||||
|
||||
Generated by `RELOG.write_transportation_report(solution, filename)`. For a concrete example, see [nimh_transportation.csv](https://github.com/ANL-CEEESA/RELOG/blob/master/test/fixtures/nimh_transportation.csv).
|
||||
|
||||
|
||||
| Column | Description
|
||||
@@ -239,7 +231,9 @@ gp.GeoDataFrame(data, geometry=points).plot(ax=ax,
|
||||
|
||||
## Transportation emissions report
|
||||
|
||||
Report showing emissions for each trip between initial locations and plants, and between pairs of plants. Generated by `RELOG.write_transportation_emissions_report(solution, filename)`.
|
||||
Report showing emissions for each trip between initial locations and plants, and between pairs of plants.
|
||||
|
||||
Generated by `RELOG.write_transportation_emissions_report(solution, filename)`. For a concrete example, see [nimh_transportation_emissions.csv](https://github.com/ANL-CEEESA/RELOG/blob/master/test/fixtures/nimh_transportation_emissions.csv).
|
||||
|
||||
| Column | Description
|
||||
|:--------------------------------------|---------------|
|
||||
|
||||
@@ -70,7 +70,7 @@ For a complete description of the file formats above, and for a complete list of
|
||||
|
||||
Fundamentally, RELOG decides when and where to build plants based on a deterministic optimization problem that minimizes costs for a particular input file provided by the user. In practical situations, it may not be possible to perfectly estimate some (or most) entries in this input file in advance, such as costs, demands and emissions. In this situation, it may be interesting to evaluate how well does the facility location plan produced by RELOG work if costs, demands and emissions turn out to be different.
|
||||
|
||||
To simplify this what-if analysis, RELOG provides the `resolve` method, which updates a previous solution based on a new scenario, but keeps some of the previous decisions fixed. More precisely, given an optimal solution produced by RELOG and a new input file describing the new scenario, the `resolve` method reoptimizes the supply chain and produces a new solution which still builds the same set of plants as before, in exactly the same locations and with the same capacities, but that may now utilize the plants differently, based on the new data. For example, in the new solution, plants that were previously used at full capacity may now be utilized at half-capacity instead. As another example, regions that were previously served by a certain plant may now be served by a different one.
|
||||
To simplify this what-if analysis, RELOG provides the `resolve` method, which updates a previous solution based on a new scenario. The method accepts a previous optimal solution, produced by RELOG, and a new input file, which describes the new scenario. The method reoptimizes the supply chain for this new input file, and produces a new solution which still builds the same set of plants as before, in exactly the same locations and with the same capacities, but that may now utilize the plants differently, based on the new data. For example, in the new solution, plants that were previously used at full capacity may now be utilized at half-capacity instead. As another example, regions that were previously served by a certain plant may now be served by a different one.
|
||||
|
||||
The following snippet shows how to use the method:
|
||||
|
||||
@@ -79,14 +79,14 @@ The following snippet shows how to use the method:
|
||||
using RELOG
|
||||
|
||||
# Optimize for the average scenario
|
||||
solution_avg, model_avg = RELOG.solve("input_avg.json", return_model=true)
|
||||
solution_avg = RELOG.solve("input_avg.json")
|
||||
|
||||
# Write reports for the average scenario
|
||||
RELOG.write_plants_report(solution_avg, "plants_avg.csv")
|
||||
RELOG.write_transportation_report(solution_avg, "transportation_avg.csv")
|
||||
|
||||
# Re-optimize for the high-demand scenario, keeping plants fixed
|
||||
solution_high = RELOG.resolve(model_avg, "input_high.json")
|
||||
solution_high = RELOG.resolve(solution_avg, "input_high.json")
|
||||
|
||||
# Write reports for the high-demand scenario
|
||||
RELOG.write_plants_report(solution_high, "plants_high.csv")
|
||||
|
||||
68
src/dotdict.jl
Normal file
68
src/dotdict.jl
Normal file
@@ -0,0 +1,68 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
struct DotDict
|
||||
inner::Dict
|
||||
end
|
||||
|
||||
DotDict() = DotDict(Dict())
|
||||
|
||||
function Base.setproperty!(d::DotDict, key::Symbol, value)
|
||||
setindex!(getfield(d, :inner), value, key)
|
||||
end
|
||||
|
||||
function Base.getproperty(d::DotDict, key::Symbol)
|
||||
(key == :inner ? getfield(d, :inner) : d.inner[key])
|
||||
end
|
||||
|
||||
function Base.getindex(d::DotDict, key::Int64)
|
||||
d.inner[Symbol(key)]
|
||||
end
|
||||
|
||||
function Base.getindex(d::DotDict, key::Symbol)
|
||||
d.inner[key]
|
||||
end
|
||||
|
||||
function Base.keys(d::DotDict)
|
||||
keys(d.inner)
|
||||
end
|
||||
|
||||
function Base.values(d::DotDict)
|
||||
values(d.inner)
|
||||
end
|
||||
|
||||
function Base.iterate(d::DotDict)
|
||||
iterate(values(d.inner))
|
||||
end
|
||||
|
||||
function Base.iterate(d::DotDict, v::Int64)
|
||||
iterate(values(d.inner), v)
|
||||
end
|
||||
|
||||
function Base.length(d::DotDict)
|
||||
length(values(d.inner))
|
||||
end
|
||||
|
||||
function Base.show(io::IO, d::DotDict)
|
||||
print(io, "DotDict with $(length(keys(d.inner))) entries:\n")
|
||||
count = 0
|
||||
for k in keys(d.inner)
|
||||
count += 1
|
||||
if count > 10
|
||||
print(io, " ...\n")
|
||||
break
|
||||
end
|
||||
print(io, " :$(k) => $(d.inner[k])\n")
|
||||
end
|
||||
end
|
||||
|
||||
function recursive_to_dot_dict(el)
|
||||
if typeof(el) == Dict{String, Any}
|
||||
return DotDict(Dict(Symbol(k) => recursive_to_dot_dict(el[k]) for k in keys(el)))
|
||||
else
|
||||
return el
|
||||
end
|
||||
end
|
||||
|
||||
export recursive_to_dot_dict
|
||||
@@ -4,43 +4,69 @@
|
||||
|
||||
using Geodesy
|
||||
|
||||
function calculate_distance(source_lat, source_lon, dest_lat, dest_lon)::Float64
|
||||
x = LLA(source_lat, source_lon, 0.0)
|
||||
y = LLA(dest_lat, dest_lon, 0.0)
|
||||
return round(distance(x, y) / 1000.0, digits = 2)
|
||||
|
||||
abstract type Node
|
||||
end
|
||||
|
||||
|
||||
mutable struct Arc
|
||||
source::Node
|
||||
dest::Node
|
||||
values::Dict{String, Float64}
|
||||
end
|
||||
|
||||
|
||||
mutable struct ProcessNode <: Node
|
||||
index::Int
|
||||
location::Plant
|
||||
incoming_arcs::Array{Arc}
|
||||
outgoing_arcs::Array{Arc}
|
||||
end
|
||||
|
||||
|
||||
mutable struct ShippingNode <: Node
|
||||
index::Int
|
||||
location::Union{Plant, CollectionCenter}
|
||||
product::Product
|
||||
incoming_arcs::Array{Arc}
|
||||
outgoing_arcs::Array{Arc}
|
||||
end
|
||||
|
||||
|
||||
mutable struct Graph
|
||||
process_nodes::Array{ProcessNode}
|
||||
plant_shipping_nodes::Array{ShippingNode}
|
||||
collection_shipping_nodes::Array{ShippingNode}
|
||||
arcs::Array{Arc}
|
||||
end
|
||||
|
||||
|
||||
function build_graph(instance::Instance)::Graph
|
||||
arcs = []
|
||||
next_index = 0
|
||||
process_nodes = ProcessNode[]
|
||||
plant_shipping_nodes = ShippingNode[]
|
||||
collection_shipping_nodes = ShippingNode[]
|
||||
|
||||
name_to_process_node_map = Dict{Tuple{AbstractString,AbstractString},ProcessNode}()
|
||||
collection_center_to_node = Dict()
|
||||
|
||||
process_nodes_by_input_product =
|
||||
Dict(product => ProcessNode[] for product in instance.products)
|
||||
shipping_nodes_by_plant = Dict(plant => [] for plant in instance.plants)
|
||||
|
||||
|
||||
process_nodes_by_input_product = Dict(product => ProcessNode[]
|
||||
for product in instance.products)
|
||||
shipping_nodes_by_plant = Dict(plant => []
|
||||
for plant in instance.plants)
|
||||
|
||||
# Build collection center shipping nodes
|
||||
for center in instance.collection_centers
|
||||
node = ShippingNode(next_index, center, center.product, [], [])
|
||||
next_index += 1
|
||||
collection_center_to_node[center] = node
|
||||
push!(collection_shipping_nodes, node)
|
||||
end
|
||||
|
||||
|
||||
# Build process and shipping nodes for plants
|
||||
for plant in instance.plants
|
||||
pn = ProcessNode(next_index, plant, [], [])
|
||||
next_index += 1
|
||||
push!(process_nodes, pn)
|
||||
push!(process_nodes_by_input_product[plant.input], pn)
|
||||
|
||||
name_to_process_node_map[(plant.plant_name, plant.location_name)] = pn
|
||||
|
||||
|
||||
for product in keys(plant.output)
|
||||
sn = ShippingNode(next_index, plant, product, [], [])
|
||||
next_index += 1
|
||||
@@ -48,16 +74,14 @@ function build_graph(instance::Instance)::Graph
|
||||
push!(shipping_nodes_by_plant[plant], sn)
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
# Build arcs from collection centers to plants, and from one plant to another
|
||||
for source in [collection_shipping_nodes; plant_shipping_nodes]
|
||||
for dest in process_nodes_by_input_product[source.product]
|
||||
distance = calculate_distance(
|
||||
source.location.latitude,
|
||||
source.location.longitude,
|
||||
dest.location.latitude,
|
||||
dest.location.longitude,
|
||||
)
|
||||
distance = calculate_distance(source.location.latitude,
|
||||
source.location.longitude,
|
||||
dest.location.latitude,
|
||||
dest.location.longitude)
|
||||
values = Dict("distance" => distance)
|
||||
arc = Arc(source, dest, values)
|
||||
push!(source.outgoing_arcs, arc)
|
||||
@@ -65,7 +89,7 @@ function build_graph(instance::Instance)::Graph
|
||||
push!(arcs, arc)
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
# Build arcs from process nodes to shipping nodes within a plant
|
||||
for source in process_nodes
|
||||
plant = source.location
|
||||
@@ -78,26 +102,25 @@ function build_graph(instance::Instance)::Graph
|
||||
push!(arcs, arc)
|
||||
end
|
||||
end
|
||||
|
||||
return Graph(
|
||||
process_nodes,
|
||||
plant_shipping_nodes,
|
||||
collection_shipping_nodes,
|
||||
arcs,
|
||||
name_to_process_node_map,
|
||||
collection_center_to_node,
|
||||
)
|
||||
|
||||
return Graph(process_nodes,
|
||||
plant_shipping_nodes,
|
||||
collection_shipping_nodes,
|
||||
arcs)
|
||||
end
|
||||
|
||||
|
||||
function print_graph_stats(instance::Instance, graph::Graph)::Nothing
|
||||
@info @sprintf(" %12d time periods", instance.time)
|
||||
@info @sprintf(" %12d process nodes", length(graph.process_nodes))
|
||||
@info @sprintf(" %12d shipping nodes (plant)", length(graph.plant_shipping_nodes))
|
||||
@info @sprintf(
|
||||
" %12d shipping nodes (collection)",
|
||||
length(graph.collection_shipping_nodes)
|
||||
)
|
||||
@info @sprintf(" %12d arcs", length(graph.arcs))
|
||||
return
|
||||
function to_csv(graph::Graph)
|
||||
result = ""
|
||||
for a in graph.arcs
|
||||
result *= "$(a.source.index),$(a.dest.index)\n"
|
||||
end
|
||||
return result
|
||||
end
|
||||
|
||||
|
||||
function calculate_distance(source_lat, source_lon, dest_lat, dest_lon)::Float64
|
||||
x = LLA(source_lat, source_lon, 0.0)
|
||||
y = LLA(dest_lat, dest_lon, 0.0)
|
||||
return round(distance(x, y) / 1000.0, digits=2)
|
||||
end
|
||||
@@ -1,11 +0,0 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
function to_csv(graph::Graph)
|
||||
result = ""
|
||||
for a in graph.arcs
|
||||
result *= "$(a.source.index),$(a.dest.index)\n"
|
||||
end
|
||||
return result
|
||||
end
|
||||
@@ -1,45 +0,0 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using Geodesy
|
||||
|
||||
abstract type Node end
|
||||
|
||||
mutable struct Arc
|
||||
source::Node
|
||||
dest::Node
|
||||
values::Dict{String,Float64}
|
||||
end
|
||||
|
||||
mutable struct ProcessNode <: Node
|
||||
index::Int
|
||||
location::Plant
|
||||
incoming_arcs::Vector{Arc}
|
||||
outgoing_arcs::Vector{Arc}
|
||||
end
|
||||
|
||||
mutable struct ShippingNode <: Node
|
||||
index::Int
|
||||
location::Union{Plant,CollectionCenter}
|
||||
product::Product
|
||||
incoming_arcs::Vector{Arc}
|
||||
outgoing_arcs::Vector{Arc}
|
||||
end
|
||||
|
||||
mutable struct Graph
|
||||
process_nodes::Vector{ProcessNode}
|
||||
plant_shipping_nodes::Vector{ShippingNode}
|
||||
collection_shipping_nodes::Vector{ShippingNode}
|
||||
arcs::Vector{Arc}
|
||||
name_to_process_node_map::Dict{Tuple{AbstractString,AbstractString},ProcessNode}
|
||||
collection_center_to_node::Dict{CollectionCenter,ShippingNode}
|
||||
end
|
||||
|
||||
function Base.show(io::IO, instance::Graph)
|
||||
print(io, "RELOG graph with ")
|
||||
print(io, "$(length(instance.process_nodes)) process nodes, ")
|
||||
print(io, "$(length(instance.plant_shipping_nodes)) plant shipping nodes, ")
|
||||
print(io, "$(length(instance.collection_shipping_nodes)) collection shipping nodes, ")
|
||||
print(io, "$(length(instance.arcs)) arcs")
|
||||
end
|
||||
281
src/instance.jl
Normal file
281
src/instance.jl
Normal file
@@ -0,0 +1,281 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using DataStructures
|
||||
using JSON
|
||||
using JSONSchema
|
||||
using Printf
|
||||
using Statistics
|
||||
|
||||
|
||||
mutable struct Product
|
||||
name::String
|
||||
transportation_cost::Array{Float64}
|
||||
transportation_energy::Array{Float64}
|
||||
transportation_emissions::Dict{String, Array{Float64}}
|
||||
end
|
||||
|
||||
|
||||
mutable struct CollectionCenter
|
||||
index::Int64
|
||||
name::String
|
||||
latitude::Float64
|
||||
longitude::Float64
|
||||
product::Product
|
||||
amount::Array{Float64}
|
||||
end
|
||||
|
||||
|
||||
mutable struct PlantSize
|
||||
capacity::Float64
|
||||
variable_operating_cost::Array{Float64}
|
||||
fixed_operating_cost::Array{Float64}
|
||||
opening_cost::Array{Float64}
|
||||
end
|
||||
|
||||
|
||||
mutable struct Plant
|
||||
index::Int64
|
||||
plant_name::String
|
||||
location_name::String
|
||||
input::Product
|
||||
output::Dict{Product, Float64}
|
||||
latitude::Float64
|
||||
longitude::Float64
|
||||
disposal_limit::Dict{Product, Array{Float64}}
|
||||
disposal_cost::Dict{Product, Array{Float64}}
|
||||
sizes::Array{PlantSize}
|
||||
energy::Array{Float64}
|
||||
emissions::Dict{String, Array{Float64}}
|
||||
storage_limit::Float64
|
||||
storage_cost::Array{Float64}
|
||||
end
|
||||
|
||||
|
||||
mutable struct Instance
|
||||
time::Int64
|
||||
products::Array{Product, 1}
|
||||
collection_centers::Array{CollectionCenter, 1}
|
||||
plants::Array{Plant, 1}
|
||||
building_period::Array{Int64}
|
||||
end
|
||||
|
||||
|
||||
function validate(json, schema)
|
||||
result = JSONSchema.validate(json, schema)
|
||||
if result !== nothing
|
||||
if result isa JSONSchema.SingleIssue
|
||||
path = join(result.path, " → ")
|
||||
if length(path) == 0
|
||||
path = "root"
|
||||
end
|
||||
msg = "$(result.msg) in $(path)"
|
||||
else
|
||||
msg = convert(String, result)
|
||||
end
|
||||
throw(msg)
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
function parsefile(path::String)::Instance
|
||||
return RELOG.parse(JSON.parsefile(path))
|
||||
end
|
||||
|
||||
|
||||
function parse(json)::Instance
|
||||
basedir = dirname(@__FILE__)
|
||||
json_schema = JSON.parsefile("$basedir/schemas/input.json")
|
||||
validate(json, Schema(json_schema))
|
||||
|
||||
T = json["parameters"]["time horizon (years)"]
|
||||
json_schema["definitions"]["TimeSeries"]["minItems"] = T
|
||||
json_schema["definitions"]["TimeSeries"]["maxItems"] = T
|
||||
validate(json, Schema(json_schema))
|
||||
|
||||
building_period = [1]
|
||||
if "building period (years)" in keys(json)
|
||||
building_period = json["building period (years)"]
|
||||
end
|
||||
|
||||
plants = Plant[]
|
||||
products = Product[]
|
||||
collection_centers = CollectionCenter[]
|
||||
prod_name_to_product = Dict{String, Product}()
|
||||
|
||||
# Create products
|
||||
for (product_name, product_dict) in json["products"]
|
||||
cost = product_dict["transportation cost (\$/km/tonne)"]
|
||||
energy = zeros(T)
|
||||
emissions = Dict()
|
||||
|
||||
if "transportation energy (J/km/tonne)" in keys(product_dict)
|
||||
energy = product_dict["transportation energy (J/km/tonne)"]
|
||||
end
|
||||
|
||||
if "transportation emissions (tonne/km/tonne)" in keys(product_dict)
|
||||
emissions = product_dict["transportation emissions (tonne/km/tonne)"]
|
||||
end
|
||||
|
||||
product = Product(product_name, cost, energy, emissions)
|
||||
push!(products, product)
|
||||
prod_name_to_product[product_name] = product
|
||||
|
||||
# Create collection centers
|
||||
if "initial amounts" in keys(product_dict)
|
||||
for (center_name, center_dict) in product_dict["initial amounts"]
|
||||
center = CollectionCenter(length(collection_centers) + 1,
|
||||
center_name,
|
||||
center_dict["latitude (deg)"],
|
||||
center_dict["longitude (deg)"],
|
||||
product,
|
||||
center_dict["amount (tonne)"])
|
||||
push!(collection_centers, center)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
# Create plants
|
||||
for (plant_name, plant_dict) in json["plants"]
|
||||
input = prod_name_to_product[plant_dict["input"]]
|
||||
output = Dict()
|
||||
|
||||
# Plant outputs
|
||||
if "outputs (tonne/tonne)" in keys(plant_dict)
|
||||
output = Dict(prod_name_to_product[key] => value
|
||||
for (key, value) in plant_dict["outputs (tonne/tonne)"]
|
||||
if value > 0)
|
||||
end
|
||||
|
||||
energy = zeros(T)
|
||||
emissions = Dict()
|
||||
|
||||
if "energy (GJ/tonne)" in keys(plant_dict)
|
||||
energy = plant_dict["energy (GJ/tonne)"]
|
||||
end
|
||||
|
||||
if "emissions (tonne/tonne)" in keys(plant_dict)
|
||||
emissions = plant_dict["emissions (tonne/tonne)"]
|
||||
end
|
||||
|
||||
for (location_name, location_dict) in plant_dict["locations"]
|
||||
sizes = PlantSize[]
|
||||
disposal_limit = Dict(p => [0.0 for t in 1:T] for p in keys(output))
|
||||
disposal_cost = Dict(p => [0.0 for t in 1:T] for p in keys(output))
|
||||
|
||||
# Disposal
|
||||
if "disposal" in keys(location_dict)
|
||||
for (product_name, disposal_dict) in location_dict["disposal"]
|
||||
limit = [1e8 for t in 1:T]
|
||||
if "limit (tonne)" in keys(disposal_dict)
|
||||
limit = disposal_dict["limit (tonne)"]
|
||||
end
|
||||
disposal_limit[prod_name_to_product[product_name]] = limit
|
||||
disposal_cost[prod_name_to_product[product_name]] = disposal_dict["cost (\$/tonne)"]
|
||||
end
|
||||
end
|
||||
|
||||
# Capacities
|
||||
for (capacity_name, capacity_dict) in location_dict["capacities (tonne)"]
|
||||
push!(sizes, PlantSize(Base.parse(Float64, capacity_name),
|
||||
capacity_dict["variable operating cost (\$/tonne)"],
|
||||
capacity_dict["fixed operating cost (\$)"],
|
||||
capacity_dict["opening cost (\$)"]))
|
||||
end
|
||||
length(sizes) > 1 || push!(sizes, sizes[1])
|
||||
sort!(sizes, by = x -> x.capacity)
|
||||
|
||||
# Storage
|
||||
storage_limit = 0
|
||||
storage_cost = zeros(T)
|
||||
if "storage" in keys(location_dict)
|
||||
storage_dict = location_dict["storage"]
|
||||
storage_limit = storage_dict["limit (tonne)"]
|
||||
storage_cost = storage_dict["cost (\$/tonne)"]
|
||||
end
|
||||
|
||||
# Validation: Capacities
|
||||
if length(sizes) != 2
|
||||
throw("At most two capacities are supported")
|
||||
end
|
||||
if sizes[1].variable_operating_cost != sizes[2].variable_operating_cost
|
||||
throw("Variable operating costs must be the same for all capacities")
|
||||
end
|
||||
|
||||
plant = Plant(length(plants) + 1,
|
||||
plant_name,
|
||||
location_name,
|
||||
input,
|
||||
output,
|
||||
location_dict["latitude (deg)"],
|
||||
location_dict["longitude (deg)"],
|
||||
disposal_limit,
|
||||
disposal_cost,
|
||||
sizes,
|
||||
energy,
|
||||
emissions,
|
||||
storage_limit,
|
||||
storage_cost)
|
||||
|
||||
push!(plants, plant)
|
||||
end
|
||||
end
|
||||
|
||||
@info @sprintf("%12d collection centers", length(collection_centers))
|
||||
@info @sprintf("%12d candidate plant locations", length(plants))
|
||||
|
||||
return Instance(T, products, collection_centers, plants, building_period)
|
||||
end
|
||||
|
||||
|
||||
"""
|
||||
_compress(instance::Instance)
|
||||
|
||||
Create a single-period instance from a multi-period one. Specifically,
|
||||
replaces every time-dependent attribute, such as initial_amounts,
|
||||
by a list with a single element, which is either a sum, an average,
|
||||
or something else that makes sense to that specific attribute.
|
||||
"""
|
||||
function _compress(instance::Instance)::Instance
|
||||
T = instance.time
|
||||
compressed = deepcopy(instance)
|
||||
compressed.time = 1
|
||||
compressed.building_period = [1]
|
||||
|
||||
# Compress products
|
||||
for p in compressed.products
|
||||
p.transportation_cost = [mean(p.transportation_cost)]
|
||||
p.transportation_energy = [mean(p.transportation_energy)]
|
||||
for (emission_name, emission_value) in p.transportation_emissions
|
||||
p.transportation_emissions[emission_name] = [mean(emission_value)]
|
||||
end
|
||||
end
|
||||
|
||||
# Compress collection centers
|
||||
for c in compressed.collection_centers
|
||||
c.amount = [maximum(c.amount) * T]
|
||||
end
|
||||
|
||||
# Compress plants
|
||||
for plant in compressed.plants
|
||||
plant.energy = [mean(plant.energy)]
|
||||
for (emission_name, emission_value) in plant.emissions
|
||||
plant.emissions[emission_name] = [mean(emission_value)]
|
||||
end
|
||||
for s in plant.sizes
|
||||
s.capacity *= T
|
||||
s.variable_operating_cost = [mean(s.variable_operating_cost)]
|
||||
s.opening_cost = [s.opening_cost[1]]
|
||||
s.fixed_operating_cost = [sum(s.fixed_operating_cost)]
|
||||
end
|
||||
for (prod_name, disp_limit) in plant.disposal_limit
|
||||
plant.disposal_limit[prod_name] = [sum(disp_limit)]
|
||||
end
|
||||
for (prod_name, disp_cost) in plant.disposal_cost
|
||||
plant.disposal_cost[prod_name] = [mean(disp_cost)]
|
||||
end
|
||||
end
|
||||
|
||||
return compressed
|
||||
end
|
||||
@@ -1,60 +0,0 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using DataStructures
|
||||
using JSON
|
||||
using JSONSchema
|
||||
using Printf
|
||||
using Statistics
|
||||
|
||||
"""
|
||||
_compress(instance::Instance)
|
||||
|
||||
Create a single-period instance from a multi-period one. Specifically,
|
||||
replaces every time-dependent attribute, such as initial_amounts,
|
||||
by a list with a single element, which is either a sum, an average,
|
||||
or something else that makes sense to that specific attribute.
|
||||
"""
|
||||
function _compress(instance::Instance)::Instance
|
||||
T = instance.time
|
||||
compressed = deepcopy(instance)
|
||||
compressed.time = 1
|
||||
compressed.building_period = [1]
|
||||
|
||||
# Compress products
|
||||
for p in compressed.products
|
||||
p.transportation_cost = [mean(p.transportation_cost)]
|
||||
p.transportation_energy = [mean(p.transportation_energy)]
|
||||
for (emission_name, emission_value) in p.transportation_emissions
|
||||
p.transportation_emissions[emission_name] = [mean(emission_value)]
|
||||
end
|
||||
end
|
||||
|
||||
# Compress collection centers
|
||||
for c in compressed.collection_centers
|
||||
c.amount = [maximum(c.amount) * T]
|
||||
end
|
||||
|
||||
# Compress plants
|
||||
for plant in compressed.plants
|
||||
plant.energy = [mean(plant.energy)]
|
||||
for (emission_name, emission_value) in plant.emissions
|
||||
plant.emissions[emission_name] = [mean(emission_value)]
|
||||
end
|
||||
for s in plant.sizes
|
||||
s.capacity *= T
|
||||
s.variable_operating_cost = [mean(s.variable_operating_cost)]
|
||||
s.opening_cost = [s.opening_cost[1]]
|
||||
s.fixed_operating_cost = [sum(s.fixed_operating_cost)]
|
||||
end
|
||||
for (prod_name, disp_limit) in plant.disposal_limit
|
||||
plant.disposal_limit[prod_name] = [sum(disp_limit)]
|
||||
end
|
||||
for (prod_name, disp_cost) in plant.disposal_cost
|
||||
plant.disposal_cost[prod_name] = [mean(disp_cost)]
|
||||
end
|
||||
end
|
||||
|
||||
return compressed
|
||||
end
|
||||
@@ -1,212 +0,0 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using CRC
|
||||
using CSV
|
||||
using DataFrames
|
||||
using Shapefile
|
||||
using Statistics
|
||||
using ZipFile
|
||||
using ProgressBars
|
||||
using OrderedCollections
|
||||
|
||||
import Downloads: download
|
||||
import Base: parse
|
||||
|
||||
crc32 = crc(CRC_32)
|
||||
|
||||
struct GeoPoint
|
||||
lat::Float64
|
||||
lon::Float64
|
||||
end
|
||||
|
||||
struct GeoRegion
|
||||
centroid::GeoPoint
|
||||
population::Int
|
||||
GeoRegion(; centroid, population) = new(centroid, population)
|
||||
end
|
||||
|
||||
DB_CACHE = Dict{String,Dict{String,GeoRegion}}()
|
||||
|
||||
function centroid(geom::Shapefile.Polygon)::GeoPoint
|
||||
x_max, x_min, y_max, y_min = -Inf, Inf, -Inf, Inf
|
||||
for p in geom.points
|
||||
x_max = max(x_max, p.x)
|
||||
x_min = min(x_min, p.x)
|
||||
y_max = max(y_max, p.y)
|
||||
y_min = min(y_min, p.y)
|
||||
end
|
||||
x_center = (x_max + x_min) / 2.0
|
||||
y_center = (y_max + y_min) / 2.0
|
||||
return GeoPoint(round(y_center, digits = 5), round(x_center, digits = 5))
|
||||
end
|
||||
|
||||
function _download_file(url, output, expected_crc32)::Nothing
|
||||
if isfile(output)
|
||||
return
|
||||
end
|
||||
mkpath(dirname(output))
|
||||
@info "Downloading: $url"
|
||||
fname = download(url)
|
||||
actual_crc32 = open(crc32, fname)
|
||||
expected_crc32 == actual_crc32 || error("CRC32 mismatch")
|
||||
cp(fname, output)
|
||||
return
|
||||
end
|
||||
|
||||
function _download_zip(url, outputdir, expected_output_file, expected_crc32)::Nothing
|
||||
if isfile(expected_output_file)
|
||||
return
|
||||
end
|
||||
mkpath(outputdir)
|
||||
@info "Downloading: $url"
|
||||
zip_filename = download(url)
|
||||
actual_crc32 = open(crc32, zip_filename)
|
||||
expected_crc32 == actual_crc32 || error("CRC32 mismatch")
|
||||
open(zip_filename) do zip_file
|
||||
zr = ZipFile.Reader(zip_file)
|
||||
for file in zr.files
|
||||
open(joinpath(outputdir, file.name), "w") do output_file
|
||||
write(output_file, read(file))
|
||||
end
|
||||
end
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
function _geodb_load_gov_census(;
|
||||
db_name,
|
||||
extract_cols,
|
||||
shp_crc32,
|
||||
shp_filename,
|
||||
shp_url,
|
||||
population_url,
|
||||
population_crc32,
|
||||
population_col,
|
||||
population_preprocess,
|
||||
population_join,
|
||||
)::Dict{String,GeoRegion}
|
||||
basedir = joinpath(dirname(@__FILE__), "..", "..", "data", db_name)
|
||||
csv_filename = "$basedir/locations.csv"
|
||||
if !isfile(csv_filename)
|
||||
# Download required files
|
||||
_download_zip(shp_url, basedir, joinpath(basedir, shp_filename), shp_crc32)
|
||||
_download_file(population_url, "$basedir/population.csv", population_crc32)
|
||||
|
||||
# Read shapefile
|
||||
@info "Processing: $shp_filename"
|
||||
table = Shapefile.Table(joinpath(basedir, shp_filename))
|
||||
geoms = Shapefile.shapes(table)
|
||||
|
||||
# Build empty dataframe
|
||||
df = DataFrame()
|
||||
cols = extract_cols(table, 1)
|
||||
for k in keys(cols)
|
||||
df[!, k] = []
|
||||
end
|
||||
df[!, "latitude"] = Float64[]
|
||||
df[!, "longitude"] = Float64[]
|
||||
|
||||
# Add regions to dataframe
|
||||
for (i, geom) in tqdm(enumerate(geoms))
|
||||
c = centroid(geom)
|
||||
cols = extract_cols(table, i)
|
||||
push!(df, [values(cols)..., c.lat, c.lon])
|
||||
end
|
||||
sort!(df)
|
||||
|
||||
# Join with population data
|
||||
population = DataFrame(CSV.File("$basedir/population.csv"))
|
||||
population_preprocess(population)
|
||||
population = population[:, [population_join, population_col]]
|
||||
rename!(population, population_col => "population")
|
||||
df = leftjoin(df, population, on = population_join)
|
||||
|
||||
# Write output
|
||||
CSV.write(csv_filename, df)
|
||||
end
|
||||
if db_name ∉ keys(DB_CACHE)
|
||||
csv = CSV.File(csv_filename)
|
||||
DB_CACHE[db_name] = Dict(
|
||||
string(row.id) => GeoRegion(
|
||||
centroid = GeoPoint(row.latitude, row.longitude),
|
||||
population = (row.population === missing ? 0 : row.population),
|
||||
) for row in csv
|
||||
)
|
||||
end
|
||||
return DB_CACHE[db_name]
|
||||
end
|
||||
|
||||
# 2018 US counties
|
||||
# -----------------------------------------------------------------------------
|
||||
function _extract_cols_2018_us_county(
|
||||
table::Shapefile.Table,
|
||||
i::Int,
|
||||
)::OrderedDict{String,Any}
|
||||
return OrderedDict(
|
||||
"id" => table.STATEFP[i] * table.COUNTYFP[i],
|
||||
"statefp" => table.STATEFP[i],
|
||||
"countyfp" => table.COUNTYFP[i],
|
||||
"name" => table.NAME[i],
|
||||
)
|
||||
end
|
||||
|
||||
function _population_preprocess_2018_us_county(df)
|
||||
df[!, "id"] = [@sprintf("%02d%03d", row.STATE, row.COUNTY) for row in eachrow(df)]
|
||||
end
|
||||
|
||||
function _geodb_load_2018_us_county()::Dict{String,GeoRegion}
|
||||
return _geodb_load_gov_census(
|
||||
db_name = "2018-us-county",
|
||||
extract_cols = _extract_cols_2018_us_county,
|
||||
shp_crc32 = 0x83eaec6d,
|
||||
shp_filename = "cb_2018_us_county_500k.shp",
|
||||
shp_url = "https://www2.census.gov/geo/tiger/GENZ2018/shp/cb_2018_us_county_500k.zip",
|
||||
population_url = "https://www2.census.gov/programs-surveys/popest/datasets/2010-2019/counties/totals/co-est2019-alldata.csv",
|
||||
population_crc32 = 0xf85b0405,
|
||||
population_col = "POPESTIMATE2019",
|
||||
population_join = "id",
|
||||
population_preprocess = _population_preprocess_2018_us_county,
|
||||
)
|
||||
end
|
||||
|
||||
# US States
|
||||
# -----------------------------------------------------------------------------
|
||||
function _extract_cols_us_state(table::Shapefile.Table, i::Int)::OrderedDict{String,Any}
|
||||
return OrderedDict(
|
||||
"id" => table.STUSPS[i],
|
||||
"statefp" => parse(Int, table.STATEFP[i]),
|
||||
"name" => table.NAME[i],
|
||||
)
|
||||
end
|
||||
|
||||
function _population_preprocess_us_state(df)
|
||||
rename!(df, "STATE" => "statefp")
|
||||
end
|
||||
|
||||
function _geodb_load_us_state()::Dict{String,GeoRegion}
|
||||
return _geodb_load_gov_census(
|
||||
db_name = "us-state",
|
||||
extract_cols = _extract_cols_us_state,
|
||||
shp_crc32 = 0x9469e5ca,
|
||||
shp_filename = "cb_2018_us_state_500k.shp",
|
||||
shp_url = "https://www2.census.gov/geo/tiger/GENZ2018/shp/cb_2018_us_state_500k.zip",
|
||||
population_url = "http://www2.census.gov/programs-surveys/popest/datasets/2010-2019/national/totals/nst-est2019-alldata.csv",
|
||||
population_crc32 = 0x191cc64c,
|
||||
population_col = "POPESTIMATE2019",
|
||||
population_join = "statefp",
|
||||
population_preprocess = _population_preprocess_us_state,
|
||||
)
|
||||
end
|
||||
|
||||
function geodb_load(db_name::AbstractString)::Dict{String,GeoRegion}
|
||||
db_name == "2018-us-county" && return _geodb_load_2018_us_county()
|
||||
db_name == "us-state" && return _geodb_load_us_state()
|
||||
error("Unknown database: $db_name")
|
||||
end
|
||||
|
||||
function geodb_query(name)::GeoRegion
|
||||
db_name, id = split(name, ":")
|
||||
return geodb_load(db_name)[id]
|
||||
end
|
||||
@@ -1,201 +0,0 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using DataStructures
|
||||
using JSON
|
||||
using JSONSchema
|
||||
using Printf
|
||||
using Statistics
|
||||
|
||||
function parsefile(path::String)::Instance
|
||||
return RELOG.parse(JSON.parsefile(path))
|
||||
end
|
||||
|
||||
function parse(json)::Instance
|
||||
basedir = dirname(@__FILE__)
|
||||
json_schema = JSON.parsefile("$basedir/../schemas/input.json")
|
||||
validate(json, Schema(json_schema))
|
||||
|
||||
T = json["parameters"]["time horizon (years)"]
|
||||
json_schema["definitions"]["TimeSeries"]["minItems"] = T
|
||||
json_schema["definitions"]["TimeSeries"]["maxItems"] = T
|
||||
validate(json, Schema(json_schema))
|
||||
|
||||
building_period = [1]
|
||||
if "building period (years)" in keys(json)
|
||||
building_period = json["building period (years)"]
|
||||
end
|
||||
|
||||
plants = Plant[]
|
||||
products = Product[]
|
||||
collection_centers = CollectionCenter[]
|
||||
prod_name_to_product = Dict{String,Product}()
|
||||
|
||||
# Create products
|
||||
for (product_name, product_dict) in json["products"]
|
||||
cost = product_dict["transportation cost (\$/km/tonne)"]
|
||||
energy = zeros(T)
|
||||
emissions = Dict()
|
||||
disposal_limit = zeros(T)
|
||||
disposal_cost = zeros(T)
|
||||
|
||||
if "transportation energy (J/km/tonne)" in keys(product_dict)
|
||||
energy = product_dict["transportation energy (J/km/tonne)"]
|
||||
end
|
||||
|
||||
if "transportation emissions (tonne/km/tonne)" in keys(product_dict)
|
||||
emissions = product_dict["transportation emissions (tonne/km/tonne)"]
|
||||
end
|
||||
|
||||
if "disposal limit (tonne)" in keys(product_dict)
|
||||
disposal_limit = product_dict["disposal limit (tonne)"]
|
||||
end
|
||||
|
||||
if "disposal cost (\$/tonne)" in keys(product_dict)
|
||||
disposal_cost = product_dict["disposal cost (\$/tonne)"]
|
||||
end
|
||||
|
||||
prod_centers = []
|
||||
|
||||
product = Product(
|
||||
product_name,
|
||||
cost,
|
||||
energy,
|
||||
emissions,
|
||||
disposal_limit,
|
||||
disposal_cost,
|
||||
prod_centers,
|
||||
)
|
||||
push!(products, product)
|
||||
prod_name_to_product[product_name] = product
|
||||
|
||||
# Create collection centers
|
||||
if "initial amounts" in keys(product_dict)
|
||||
for (center_name, center_dict) in product_dict["initial amounts"]
|
||||
if "location" in keys(center_dict)
|
||||
region = geodb_query(center_dict["location"])
|
||||
center_dict["latitude (deg)"] = region.centroid.lat
|
||||
center_dict["longitude (deg)"] = region.centroid.lon
|
||||
end
|
||||
center = CollectionCenter(
|
||||
length(collection_centers) + 1,
|
||||
center_name,
|
||||
center_dict["latitude (deg)"],
|
||||
center_dict["longitude (deg)"],
|
||||
product,
|
||||
center_dict["amount (tonne)"],
|
||||
)
|
||||
push!(prod_centers, center)
|
||||
push!(collection_centers, center)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
# Create plants
|
||||
for (plant_name, plant_dict) in json["plants"]
|
||||
input = prod_name_to_product[plant_dict["input"]]
|
||||
output = Dict()
|
||||
|
||||
# Plant outputs
|
||||
if "outputs (tonne/tonne)" in keys(plant_dict)
|
||||
output = Dict(
|
||||
prod_name_to_product[key] => value for
|
||||
(key, value) in plant_dict["outputs (tonne/tonne)"] if value > 0
|
||||
)
|
||||
end
|
||||
|
||||
energy = zeros(T)
|
||||
emissions = Dict()
|
||||
|
||||
if "energy (GJ/tonne)" in keys(plant_dict)
|
||||
energy = plant_dict["energy (GJ/tonne)"]
|
||||
end
|
||||
|
||||
if "emissions (tonne/tonne)" in keys(plant_dict)
|
||||
emissions = plant_dict["emissions (tonne/tonne)"]
|
||||
end
|
||||
|
||||
for (location_name, location_dict) in plant_dict["locations"]
|
||||
sizes = PlantSize[]
|
||||
disposal_limit = Dict(p => [0.0 for t = 1:T] for p in keys(output))
|
||||
disposal_cost = Dict(p => [0.0 for t = 1:T] for p in keys(output))
|
||||
|
||||
# GeoDB
|
||||
if "location" in keys(location_dict)
|
||||
region = geodb_query(location_dict["location"])
|
||||
location_dict["latitude (deg)"] = region.centroid.lat
|
||||
location_dict["longitude (deg)"] = region.centroid.lon
|
||||
end
|
||||
|
||||
# Disposal
|
||||
if "disposal" in keys(location_dict)
|
||||
for (product_name, disposal_dict) in location_dict["disposal"]
|
||||
limit = [1e8 for t = 1:T]
|
||||
if "limit (tonne)" in keys(disposal_dict)
|
||||
limit = disposal_dict["limit (tonne)"]
|
||||
end
|
||||
disposal_limit[prod_name_to_product[product_name]] = limit
|
||||
disposal_cost[prod_name_to_product[product_name]] =
|
||||
disposal_dict["cost (\$/tonne)"]
|
||||
end
|
||||
end
|
||||
|
||||
# Capacities
|
||||
for (capacity_name, capacity_dict) in location_dict["capacities (tonne)"]
|
||||
push!(
|
||||
sizes,
|
||||
PlantSize(
|
||||
Base.parse(Float64, capacity_name),
|
||||
capacity_dict["variable operating cost (\$/tonne)"],
|
||||
capacity_dict["fixed operating cost (\$)"],
|
||||
capacity_dict["opening cost (\$)"],
|
||||
),
|
||||
)
|
||||
end
|
||||
length(sizes) > 1 || push!(sizes, sizes[1])
|
||||
sort!(sizes, by = x -> x.capacity)
|
||||
|
||||
# Storage
|
||||
storage_limit = 0
|
||||
storage_cost = zeros(T)
|
||||
if "storage" in keys(location_dict)
|
||||
storage_dict = location_dict["storage"]
|
||||
storage_limit = storage_dict["limit (tonne)"]
|
||||
storage_cost = storage_dict["cost (\$/tonne)"]
|
||||
end
|
||||
|
||||
# Validation: Capacities
|
||||
if length(sizes) != 2
|
||||
throw("At most two capacities are supported")
|
||||
end
|
||||
if sizes[1].variable_operating_cost != sizes[2].variable_operating_cost
|
||||
throw("Variable operating costs must be the same for all capacities")
|
||||
end
|
||||
|
||||
plant = Plant(
|
||||
length(plants) + 1,
|
||||
plant_name,
|
||||
location_name,
|
||||
input,
|
||||
output,
|
||||
location_dict["latitude (deg)"],
|
||||
location_dict["longitude (deg)"],
|
||||
disposal_limit,
|
||||
disposal_cost,
|
||||
sizes,
|
||||
energy,
|
||||
emissions,
|
||||
storage_limit,
|
||||
storage_cost,
|
||||
)
|
||||
|
||||
push!(plants, plant)
|
||||
end
|
||||
end
|
||||
|
||||
@info @sprintf("%12d collection centers", length(collection_centers))
|
||||
@info @sprintf("%12d candidate plant locations", length(plants))
|
||||
|
||||
return Instance(T, products, collection_centers, plants, building_period)
|
||||
end
|
||||
@@ -1,60 +0,0 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using DataStructures
|
||||
using JSON
|
||||
using JSONSchema
|
||||
using Printf
|
||||
using Statistics
|
||||
|
||||
mutable struct Product
|
||||
name::String
|
||||
transportation_cost::Vector{Float64}
|
||||
transportation_energy::Vector{Float64}
|
||||
transportation_emissions::Dict{String,Vector{Float64}}
|
||||
disposal_limit::Vector{Float64}
|
||||
disposal_cost::Vector{Float64}
|
||||
collection_centers::Vector
|
||||
end
|
||||
|
||||
mutable struct CollectionCenter
|
||||
index::Int64
|
||||
name::String
|
||||
latitude::Float64
|
||||
longitude::Float64
|
||||
product::Product
|
||||
amount::Vector{Float64}
|
||||
end
|
||||
|
||||
mutable struct PlantSize
|
||||
capacity::Float64
|
||||
variable_operating_cost::Vector{Float64}
|
||||
fixed_operating_cost::Vector{Float64}
|
||||
opening_cost::Vector{Float64}
|
||||
end
|
||||
|
||||
mutable struct Plant
|
||||
index::Int64
|
||||
plant_name::String
|
||||
location_name::String
|
||||
input::Product
|
||||
output::Dict{Product,Float64}
|
||||
latitude::Float64
|
||||
longitude::Float64
|
||||
disposal_limit::Dict{Product,Vector{Float64}}
|
||||
disposal_cost::Dict{Product,Vector{Float64}}
|
||||
sizes::Vector{PlantSize}
|
||||
energy::Vector{Float64}
|
||||
emissions::Dict{String,Vector{Float64}}
|
||||
storage_limit::Float64
|
||||
storage_cost::Vector{Float64}
|
||||
end
|
||||
|
||||
mutable struct Instance
|
||||
time::Int64
|
||||
products::Vector{Product}
|
||||
collection_centers::Vector{CollectionCenter}
|
||||
plants::Vector{Plant}
|
||||
building_period::Vector{Int64}
|
||||
end
|
||||
@@ -1,21 +0,0 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using DataStructures
|
||||
using JSON
|
||||
using JSONSchema
|
||||
using Printf
|
||||
using Statistics
|
||||
|
||||
function validate(json, schema)
|
||||
result = JSONSchema.validate(json, schema)
|
||||
if result !== nothing
|
||||
if result isa JSONSchema.SingleIssue
|
||||
msg = "$(result.reason) in $(result.path)"
|
||||
else
|
||||
msg = convert(String, result)
|
||||
end
|
||||
throw("Error parsing input file: $(msg)")
|
||||
end
|
||||
end
|
||||
535
src/model.jl
Normal file
535
src/model.jl
Normal file
@@ -0,0 +1,535 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using JuMP, LinearAlgebra, Geodesy, Cbc, Clp, ProgressBars, Printf, DataStructures
|
||||
|
||||
|
||||
mutable struct ManufacturingModel
|
||||
mip::JuMP.Model
|
||||
vars::DotDict
|
||||
eqs::DotDict
|
||||
instance::Instance
|
||||
graph::Graph
|
||||
end
|
||||
|
||||
|
||||
function build_model(instance::Instance, graph::Graph, optimizer)::ManufacturingModel
|
||||
model = ManufacturingModel(Model(optimizer), DotDict(), DotDict(), instance, graph)
|
||||
create_vars!(model)
|
||||
create_objective_function!(model)
|
||||
create_shipping_node_constraints!(model)
|
||||
create_process_node_constraints!(model)
|
||||
return model
|
||||
end
|
||||
|
||||
|
||||
function create_vars!(model::ManufacturingModel)
|
||||
mip, vars, graph, T = model.mip, model.vars, model.graph, model.instance.time
|
||||
|
||||
vars.flow = Dict((a, t) => @variable(mip, lower_bound=0)
|
||||
for a in graph.arcs, t in 1:T)
|
||||
|
||||
vars.dispose = Dict((n, t) => @variable(mip,
|
||||
lower_bound=0,
|
||||
upper_bound=n.location.disposal_limit[n.product][t])
|
||||
for n in values(graph.plant_shipping_nodes), t in 1:T)
|
||||
|
||||
vars.store = Dict((n, t) => @variable(mip,
|
||||
lower_bound=0,
|
||||
upper_bound=n.location.storage_limit)
|
||||
for n in values(graph.process_nodes), t in 1:T)
|
||||
|
||||
vars.process = Dict((n, t) => @variable(mip,
|
||||
lower_bound = 0)
|
||||
for n in values(graph.process_nodes), t in 1:T)
|
||||
|
||||
vars.open_plant = Dict((n, t) => @variable(mip, binary=true)
|
||||
for n in values(graph.process_nodes), t in 1:T)
|
||||
|
||||
vars.is_open = Dict((n, t) => @variable(mip, binary=true)
|
||||
for n in values(graph.process_nodes), t in 1:T)
|
||||
|
||||
vars.capacity = Dict((n, t) => @variable(mip,
|
||||
lower_bound = 0,
|
||||
upper_bound = n.location.sizes[2].capacity)
|
||||
for n in values(graph.process_nodes), t in 1:T)
|
||||
|
||||
vars.expansion = Dict((n, t) => @variable(mip,
|
||||
lower_bound = 0,
|
||||
upper_bound = n.location.sizes[2].capacity -
|
||||
n.location.sizes[1].capacity)
|
||||
for n in values(graph.process_nodes), t in 1:T)
|
||||
end
|
||||
|
||||
|
||||
function slope_open(plant, t)
|
||||
if plant.sizes[2].capacity <= plant.sizes[1].capacity
|
||||
0.0
|
||||
else
|
||||
(plant.sizes[2].opening_cost[t] - plant.sizes[1].opening_cost[t]) /
|
||||
(plant.sizes[2].capacity - plant.sizes[1].capacity)
|
||||
end
|
||||
end
|
||||
|
||||
function slope_fix_oper_cost(plant, t)
|
||||
if plant.sizes[2].capacity <= plant.sizes[1].capacity
|
||||
0.0
|
||||
else
|
||||
(plant.sizes[2].fixed_operating_cost[t] - plant.sizes[1].fixed_operating_cost[t]) /
|
||||
(plant.sizes[2].capacity - plant.sizes[1].capacity)
|
||||
end
|
||||
end
|
||||
|
||||
function create_objective_function!(model::ManufacturingModel)
|
||||
mip, vars, graph, T = model.mip, model.vars, model.graph, model.instance.time
|
||||
obj = AffExpr(0.0)
|
||||
|
||||
# Process node costs
|
||||
for n in values(graph.process_nodes), t in 1:T
|
||||
|
||||
# Transportation and variable operating costs
|
||||
for a in n.incoming_arcs
|
||||
c = n.location.input.transportation_cost[t] * a.values["distance"]
|
||||
add_to_expression!(obj, c, vars.flow[a, t])
|
||||
end
|
||||
|
||||
# Opening costs
|
||||
add_to_expression!(obj,
|
||||
n.location.sizes[1].opening_cost[t],
|
||||
vars.open_plant[n, t])
|
||||
|
||||
# Fixed operating costs (base)
|
||||
add_to_expression!(obj,
|
||||
n.location.sizes[1].fixed_operating_cost[t],
|
||||
vars.is_open[n, t])
|
||||
|
||||
# Fixed operating costs (expansion)
|
||||
add_to_expression!(obj,
|
||||
slope_fix_oper_cost(n.location, t),
|
||||
vars.expansion[n, t])
|
||||
|
||||
# Processing costs
|
||||
add_to_expression!(obj,
|
||||
n.location.sizes[1].variable_operating_cost[t],
|
||||
vars.process[n, t])
|
||||
|
||||
# Storage costs
|
||||
add_to_expression!(obj,
|
||||
n.location.storage_cost[t],
|
||||
vars.store[n, t])
|
||||
|
||||
# Expansion costs
|
||||
if t < T
|
||||
add_to_expression!(obj,
|
||||
slope_open(n.location, t) - slope_open(n.location, t + 1),
|
||||
vars.expansion[n, t])
|
||||
else
|
||||
add_to_expression!(obj,
|
||||
slope_open(n.location, t),
|
||||
vars.expansion[n, t])
|
||||
end
|
||||
end
|
||||
|
||||
# Shipping node costs
|
||||
for n in values(graph.plant_shipping_nodes), t in 1:T
|
||||
|
||||
# Disposal costs
|
||||
add_to_expression!(obj,
|
||||
n.location.disposal_cost[n.product][t],
|
||||
vars.dispose[n, t])
|
||||
end
|
||||
|
||||
@objective(mip, Min, obj)
|
||||
end
|
||||
|
||||
|
||||
function create_shipping_node_constraints!(model::ManufacturingModel)
|
||||
mip, vars, graph, T = model.mip, model.vars, model.graph, model.instance.time
|
||||
eqs = model.eqs
|
||||
|
||||
eqs.balance = OrderedDict()
|
||||
|
||||
for t in 1:T
|
||||
# Collection centers
|
||||
for n in graph.collection_shipping_nodes
|
||||
eqs.balance[n, t] = @constraint(mip,
|
||||
sum(vars.flow[a, t] for a in n.outgoing_arcs)
|
||||
== n.location.amount[t])
|
||||
end
|
||||
|
||||
# Plants
|
||||
for n in graph.plant_shipping_nodes
|
||||
@constraint(mip,
|
||||
sum(vars.flow[a, t] for a in n.incoming_arcs) ==
|
||||
sum(vars.flow[a, t] for a in n.outgoing_arcs) + vars.dispose[n, t])
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
|
||||
function create_process_node_constraints!(model::ManufacturingModel)
|
||||
mip, vars, graph, T = model.mip, model.vars, model.graph, model.instance.time
|
||||
|
||||
for t in 1:T, n in graph.process_nodes
|
||||
input_sum = AffExpr(0.0)
|
||||
for a in n.incoming_arcs
|
||||
add_to_expression!(input_sum, 1.0, vars.flow[a, t])
|
||||
end
|
||||
|
||||
# Output amount is implied by amount processed
|
||||
for a in n.outgoing_arcs
|
||||
@constraint(mip, vars.flow[a, t] == a.values["weight"] * vars.process[n, t])
|
||||
end
|
||||
|
||||
# If plant is closed, capacity is zero
|
||||
@constraint(mip, vars.capacity[n, t] <= n.location.sizes[2].capacity * vars.is_open[n, t])
|
||||
|
||||
# If plant is open, capacity is greater than base
|
||||
@constraint(mip, vars.capacity[n, t] >= n.location.sizes[1].capacity * vars.is_open[n, t])
|
||||
|
||||
# Capacity is linked to expansion
|
||||
@constraint(mip, vars.capacity[n, t] <= n.location.sizes[1].capacity + vars.expansion[n, t])
|
||||
|
||||
# Can only process up to capacity
|
||||
@constraint(mip, vars.process[n, t] <= vars.capacity[n, t])
|
||||
|
||||
if t > 1
|
||||
# Plant capacity can only increase over time
|
||||
@constraint(mip, vars.capacity[n, t] >= vars.capacity[n, t-1])
|
||||
@constraint(mip, vars.expansion[n, t] >= vars.expansion[n, t-1])
|
||||
end
|
||||
|
||||
# Amount received equals amount processed plus stored
|
||||
store_in = 0
|
||||
if t > 1
|
||||
store_in = vars.store[n, t-1]
|
||||
end
|
||||
if t == T
|
||||
@constraint(mip, vars.store[n, t] == 0)
|
||||
end
|
||||
@constraint(mip,
|
||||
input_sum + store_in == vars.store[n, t] + vars.process[n, t])
|
||||
|
||||
|
||||
# Plant is currently open if it was already open in the previous time period or
|
||||
# if it was built just now
|
||||
if t > 1
|
||||
@constraint(mip, vars.is_open[n, t] == vars.is_open[n, t-1] + vars.open_plant[n, t])
|
||||
else
|
||||
@constraint(mip, vars.is_open[n, t] == vars.open_plant[n, t])
|
||||
end
|
||||
|
||||
# Plant can only be opened during building period
|
||||
if t ∉ model.instance.building_period
|
||||
@constraint(mip, vars.open_plant[n, t] == 0)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
default_milp_optimizer = optimizer_with_attributes(Cbc.Optimizer, "logLevel" => 0)
|
||||
default_lp_optimizer = optimizer_with_attributes(Clp.Optimizer, "LogLevel" => 0)
|
||||
|
||||
function solve(instance::Instance;
|
||||
optimizer=nothing,
|
||||
output=nothing,
|
||||
marginal_costs=true,
|
||||
)
|
||||
|
||||
milp_optimizer = lp_optimizer = optimizer
|
||||
if optimizer == nothing
|
||||
milp_optimizer = default_milp_optimizer
|
||||
lp_optimizer = default_lp_optimizer
|
||||
end
|
||||
|
||||
@info "Building graph..."
|
||||
graph = RELOG.build_graph(instance)
|
||||
@info @sprintf(" %12d time periods", instance.time)
|
||||
@info @sprintf(" %12d process nodes", length(graph.process_nodes))
|
||||
@info @sprintf(" %12d shipping nodes (plant)", length(graph.plant_shipping_nodes))
|
||||
@info @sprintf(" %12d shipping nodes (collection)", length(graph.collection_shipping_nodes))
|
||||
@info @sprintf(" %12d arcs", length(graph.arcs))
|
||||
|
||||
@info "Building optimization model..."
|
||||
model = RELOG.build_model(instance, graph, milp_optimizer)
|
||||
|
||||
@info "Optimizing MILP..."
|
||||
JuMP.optimize!(model.mip)
|
||||
|
||||
if !has_values(model.mip)
|
||||
@warn "No solution available"
|
||||
return OrderedDict()
|
||||
end
|
||||
|
||||
if marginal_costs
|
||||
@info "Re-optimizing with integer variables fixed..."
|
||||
all_vars = JuMP.all_variables(model.mip)
|
||||
vals = OrderedDict(var => JuMP.value(var) for var in all_vars)
|
||||
JuMP.set_optimizer(model.mip, lp_optimizer)
|
||||
for var in all_vars
|
||||
if JuMP.is_binary(var)
|
||||
JuMP.unset_binary(var)
|
||||
JuMP.fix(var, vals[var])
|
||||
end
|
||||
end
|
||||
JuMP.optimize!(model.mip)
|
||||
end
|
||||
|
||||
@info "Extracting solution..."
|
||||
solution = get_solution(model, marginal_costs=marginal_costs)
|
||||
|
||||
if output != nothing
|
||||
write(solution, output)
|
||||
end
|
||||
|
||||
return solution
|
||||
end
|
||||
|
||||
function solve(filename::AbstractString;
|
||||
heuristic=false,
|
||||
kwargs...,
|
||||
)
|
||||
@info "Reading $filename..."
|
||||
instance = RELOG.parsefile(filename)
|
||||
if heuristic && instance.time > 1
|
||||
@info "Solving single-period version..."
|
||||
compressed = _compress(instance)
|
||||
csol = solve(compressed;
|
||||
output=nothing,
|
||||
marginal_costs=false,
|
||||
kwargs...)
|
||||
@info "Filtering candidate locations..."
|
||||
selected_pairs = []
|
||||
for (plant_name, plant_dict) in csol["Plants"]
|
||||
for (location_name, location_dict) in plant_dict
|
||||
push!(selected_pairs, (plant_name, location_name))
|
||||
end
|
||||
end
|
||||
filtered_plants = []
|
||||
for p in instance.plants
|
||||
if (p.plant_name, p.location_name) in selected_pairs
|
||||
push!(filtered_plants, p)
|
||||
end
|
||||
end
|
||||
instance.plants = filtered_plants
|
||||
@info "Solving original version..."
|
||||
end
|
||||
sol = solve(instance; kwargs...)
|
||||
return sol
|
||||
end
|
||||
|
||||
|
||||
function get_solution(model::ManufacturingModel;
|
||||
marginal_costs=true,
|
||||
)
|
||||
mip, vars, eqs, graph, instance = model.mip, model.vars, model.eqs, model.graph, model.instance
|
||||
T = instance.time
|
||||
|
||||
output = OrderedDict(
|
||||
"Plants" => OrderedDict(),
|
||||
"Products" => OrderedDict(),
|
||||
"Costs" => OrderedDict(
|
||||
"Fixed operating (\$)" => zeros(T),
|
||||
"Variable operating (\$)" => zeros(T),
|
||||
"Opening (\$)" => zeros(T),
|
||||
"Transportation (\$)" => zeros(T),
|
||||
"Disposal (\$)" => zeros(T),
|
||||
"Expansion (\$)" => zeros(T),
|
||||
"Storage (\$)" => zeros(T),
|
||||
"Total (\$)" => zeros(T),
|
||||
),
|
||||
"Energy" => OrderedDict(
|
||||
"Plants (GJ)" => zeros(T),
|
||||
"Transportation (GJ)" => zeros(T),
|
||||
),
|
||||
"Emissions" => OrderedDict(
|
||||
"Plants (tonne)" => OrderedDict(),
|
||||
"Transportation (tonne)" => OrderedDict(),
|
||||
),
|
||||
)
|
||||
|
||||
plant_to_process_node = OrderedDict(n.location => n for n in graph.process_nodes)
|
||||
plant_to_shipping_nodes = OrderedDict()
|
||||
for p in instance.plants
|
||||
plant_to_shipping_nodes[p] = []
|
||||
for a in plant_to_process_node[p].outgoing_arcs
|
||||
push!(plant_to_shipping_nodes[p], a.dest)
|
||||
end
|
||||
end
|
||||
|
||||
# Products
|
||||
if marginal_costs
|
||||
for n in graph.collection_shipping_nodes
|
||||
location_dict = OrderedDict{Any, Any}(
|
||||
"Marginal cost (\$/tonne)" => [round(abs(JuMP.shadow_price(eqs.balance[n, t])), digits=2)
|
||||
for t in 1:T]
|
||||
)
|
||||
if n.product.name ∉ keys(output["Products"])
|
||||
output["Products"][n.product.name] = OrderedDict()
|
||||
end
|
||||
output["Products"][n.product.name][n.location.name] = location_dict
|
||||
end
|
||||
end
|
||||
|
||||
# Plants
|
||||
for plant in instance.plants
|
||||
skip_plant = true
|
||||
process_node = plant_to_process_node[plant]
|
||||
plant_dict = OrderedDict{Any, Any}(
|
||||
"Input" => OrderedDict(),
|
||||
"Output" => OrderedDict(
|
||||
"Send" => OrderedDict(),
|
||||
"Dispose" => OrderedDict(),
|
||||
),
|
||||
"Input product" => plant.input.name,
|
||||
"Total input (tonne)" => [0.0 for t in 1:T],
|
||||
"Total output" => OrderedDict(),
|
||||
"Latitude (deg)" => plant.latitude,
|
||||
"Longitude (deg)" => plant.longitude,
|
||||
"Capacity (tonne)" => [JuMP.value(vars.capacity[process_node, t])
|
||||
for t in 1:T],
|
||||
"Opening cost (\$)" => [JuMP.value(vars.open_plant[process_node, t]) *
|
||||
plant.sizes[1].opening_cost[t]
|
||||
for t in 1:T],
|
||||
"Fixed operating cost (\$)" => [JuMP.value(vars.is_open[process_node, t]) *
|
||||
plant.sizes[1].fixed_operating_cost[t] +
|
||||
JuMP.value(vars.expansion[process_node, t]) *
|
||||
slope_fix_oper_cost(plant, t)
|
||||
for t in 1:T],
|
||||
"Expansion cost (\$)" => [(if t == 1
|
||||
slope_open(plant, t) * JuMP.value(vars.expansion[process_node, t])
|
||||
else
|
||||
slope_open(plant, t) * (
|
||||
JuMP.value(vars.expansion[process_node, t]) -
|
||||
JuMP.value(vars.expansion[process_node, t - 1])
|
||||
)
|
||||
end)
|
||||
for t in 1:T],
|
||||
"Process (tonne)" => [JuMP.value(vars.process[process_node, t])
|
||||
for t in 1:T],
|
||||
"Variable operating cost (\$)" => [JuMP.value(vars.process[process_node, t]) *
|
||||
plant.sizes[1].variable_operating_cost[t]
|
||||
for t in 1:T],
|
||||
"Storage (tonne)" => [JuMP.value(vars.store[process_node, t])
|
||||
for t in 1:T],
|
||||
"Storage cost (\$)" => [JuMP.value(vars.store[process_node, t]) *
|
||||
plant.storage_cost[t]
|
||||
for t in 1:T],
|
||||
)
|
||||
output["Costs"]["Fixed operating (\$)"] += plant_dict["Fixed operating cost (\$)"]
|
||||
output["Costs"]["Variable operating (\$)"] += plant_dict["Variable operating cost (\$)"]
|
||||
output["Costs"]["Opening (\$)"] += plant_dict["Opening cost (\$)"]
|
||||
output["Costs"]["Expansion (\$)"] += plant_dict["Expansion cost (\$)"]
|
||||
output["Costs"]["Storage (\$)"] += plant_dict["Storage cost (\$)"]
|
||||
|
||||
# Inputs
|
||||
for a in process_node.incoming_arcs
|
||||
vals = [JuMP.value(vars.flow[a, t]) for t in 1:T]
|
||||
if sum(vals) <= 1e-3
|
||||
continue
|
||||
end
|
||||
skip_plant = false
|
||||
dict = OrderedDict{Any, Any}(
|
||||
"Amount (tonne)" => vals,
|
||||
"Distance (km)" => a.values["distance"],
|
||||
"Latitude (deg)" => a.source.location.latitude,
|
||||
"Longitude (deg)" => a.source.location.longitude,
|
||||
"Transportation cost (\$)" => a.source.product.transportation_cost .*
|
||||
vals .*
|
||||
a.values["distance"],
|
||||
"Transportation energy (J)" => vals .*
|
||||
a.values["distance"] .*
|
||||
a.source.product.transportation_energy,
|
||||
"Emissions (tonne)" => OrderedDict(),
|
||||
)
|
||||
emissions_dict = output["Emissions"]["Transportation (tonne)"]
|
||||
for (em_name, em_values) in a.source.product.transportation_emissions
|
||||
dict["Emissions (tonne)"][em_name] = em_values .*
|
||||
dict["Amount (tonne)"] .*
|
||||
a.values["distance"]
|
||||
if em_name ∉ keys(emissions_dict)
|
||||
emissions_dict[em_name] = zeros(T)
|
||||
end
|
||||
emissions_dict[em_name] += dict["Emissions (tonne)"][em_name]
|
||||
end
|
||||
if a.source.location isa CollectionCenter
|
||||
plant_name = "Origin"
|
||||
location_name = a.source.location.name
|
||||
else
|
||||
plant_name = a.source.location.plant_name
|
||||
location_name = a.source.location.location_name
|
||||
end
|
||||
|
||||
if plant_name ∉ keys(plant_dict["Input"])
|
||||
plant_dict["Input"][plant_name] = OrderedDict()
|
||||
end
|
||||
plant_dict["Input"][plant_name][location_name] = dict
|
||||
plant_dict["Total input (tonne)"] += vals
|
||||
output["Costs"]["Transportation (\$)"] += dict["Transportation cost (\$)"]
|
||||
output["Energy"]["Transportation (GJ)"] += dict["Transportation energy (J)"] / 1e9
|
||||
end
|
||||
|
||||
plant_dict["Energy (GJ)"] = plant_dict["Total input (tonne)"] .* plant.energy
|
||||
output["Energy"]["Plants (GJ)"] += plant_dict["Energy (GJ)"]
|
||||
|
||||
plant_dict["Emissions (tonne)"] = OrderedDict()
|
||||
emissions_dict = output["Emissions"]["Plants (tonne)"]
|
||||
for (em_name, em_values) in plant.emissions
|
||||
plant_dict["Emissions (tonne)"][em_name] = em_values .* plant_dict["Total input (tonne)"]
|
||||
if em_name ∉ keys(emissions_dict)
|
||||
emissions_dict[em_name] = zeros(T)
|
||||
end
|
||||
emissions_dict[em_name] += plant_dict["Emissions (tonne)"][em_name]
|
||||
end
|
||||
|
||||
# Outputs
|
||||
for shipping_node in plant_to_shipping_nodes[plant]
|
||||
product_name = shipping_node.product.name
|
||||
plant_dict["Total output"][product_name] = zeros(T)
|
||||
plant_dict["Output"]["Send"][product_name] = product_dict = OrderedDict()
|
||||
|
||||
disposal_amount = [JuMP.value(vars.dispose[shipping_node, t]) for t in 1:T]
|
||||
if sum(disposal_amount) > 1e-5
|
||||
skip_plant = false
|
||||
plant_dict["Output"]["Dispose"][product_name] = disposal_dict = OrderedDict()
|
||||
disposal_dict["Amount (tonne)"] = [JuMP.value(model.vars.dispose[shipping_node, t])
|
||||
for t in 1:T]
|
||||
disposal_dict["Cost (\$)"] = [disposal_dict["Amount (tonne)"][t] *
|
||||
plant.disposal_cost[shipping_node.product][t]
|
||||
for t in 1:T]
|
||||
plant_dict["Total output"][product_name] += disposal_amount
|
||||
output["Costs"]["Disposal (\$)"] += disposal_dict["Cost (\$)"]
|
||||
end
|
||||
|
||||
for a in shipping_node.outgoing_arcs
|
||||
vals = [JuMP.value(vars.flow[a, t]) for t in 1:T]
|
||||
if sum(vals) <= 1e-3
|
||||
continue
|
||||
end
|
||||
skip_plant = false
|
||||
dict = OrderedDict(
|
||||
"Amount (tonne)" => vals,
|
||||
"Distance (km)" => a.values["distance"],
|
||||
"Latitude (deg)" => a.dest.location.latitude,
|
||||
"Longitude (deg)" => a.dest.location.longitude,
|
||||
)
|
||||
if a.dest.location.plant_name ∉ keys(product_dict)
|
||||
product_dict[a.dest.location.plant_name] = OrderedDict()
|
||||
end
|
||||
product_dict[a.dest.location.plant_name][a.dest.location.location_name] = dict
|
||||
plant_dict["Total output"][product_name] += vals
|
||||
end
|
||||
end
|
||||
|
||||
if !skip_plant
|
||||
if plant.plant_name ∉ keys(output["Plants"])
|
||||
output["Plants"][plant.plant_name] = OrderedDict()
|
||||
end
|
||||
output["Plants"][plant.plant_name][plant.location_name] = plant_dict
|
||||
end
|
||||
end
|
||||
|
||||
output["Costs"]["Total (\$)"] = sum(values(output["Costs"]))
|
||||
return output
|
||||
end
|
||||
@@ -1,277 +0,0 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using JuMP, LinearAlgebra, Geodesy, Cbc, Clp, ProgressBars, Printf, DataStructures
|
||||
|
||||
function build_model(instance::Instance, graph::Graph, optimizer)::JuMP.Model
|
||||
model = Model(optimizer)
|
||||
model[:instance] = instance
|
||||
model[:graph] = graph
|
||||
create_vars!(model)
|
||||
create_objective_function!(model)
|
||||
create_shipping_node_constraints!(model)
|
||||
create_process_node_constraints!(model)
|
||||
return model
|
||||
end
|
||||
|
||||
|
||||
function create_vars!(model::JuMP.Model)
|
||||
graph, T = model[:graph], model[:instance].time
|
||||
model[:flow] =
|
||||
Dict((a, t) => @variable(model, lower_bound = 0) for a in graph.arcs, t = 1:T)
|
||||
model[:plant_dispose] = Dict(
|
||||
(n, t) => @variable(
|
||||
model,
|
||||
lower_bound = 0,
|
||||
upper_bound = n.location.disposal_limit[n.product][t]
|
||||
) for n in values(graph.plant_shipping_nodes), t = 1:T
|
||||
)
|
||||
model[:collection_dispose] = Dict(
|
||||
(n, t) => @variable(model, lower_bound = 0,) for
|
||||
n in values(graph.collection_shipping_nodes), t = 1:T
|
||||
)
|
||||
model[:store] = Dict(
|
||||
(n, t) =>
|
||||
@variable(model, lower_bound = 0, upper_bound = n.location.storage_limit)
|
||||
for n in values(graph.process_nodes), t = 1:T
|
||||
)
|
||||
model[:process] = Dict(
|
||||
(n, t) => @variable(model, lower_bound = 0) for
|
||||
n in values(graph.process_nodes), t = 1:T
|
||||
)
|
||||
model[:open_plant] = Dict(
|
||||
(n, t) => @variable(model, binary = true) for n in values(graph.process_nodes),
|
||||
t = 1:T
|
||||
)
|
||||
model[:is_open] = Dict(
|
||||
(n, t) => @variable(model, binary = true) for n in values(graph.process_nodes),
|
||||
t = 1:T
|
||||
)
|
||||
model[:capacity] = Dict(
|
||||
(n, t) => @variable(
|
||||
model,
|
||||
lower_bound = 0,
|
||||
upper_bound = n.location.sizes[2].capacity
|
||||
) for n in values(graph.process_nodes), t = 1:T
|
||||
)
|
||||
model[:expansion] = Dict(
|
||||
(n, t) => @variable(
|
||||
model,
|
||||
lower_bound = 0,
|
||||
upper_bound = n.location.sizes[2].capacity - n.location.sizes[1].capacity
|
||||
) for n in values(graph.process_nodes), t = 1:T
|
||||
)
|
||||
end
|
||||
|
||||
|
||||
function slope_open(plant, t)
|
||||
if plant.sizes[2].capacity <= plant.sizes[1].capacity
|
||||
0.0
|
||||
else
|
||||
(plant.sizes[2].opening_cost[t] - plant.sizes[1].opening_cost[t]) /
|
||||
(plant.sizes[2].capacity - plant.sizes[1].capacity)
|
||||
end
|
||||
end
|
||||
|
||||
function slope_fix_oper_cost(plant, t)
|
||||
if plant.sizes[2].capacity <= plant.sizes[1].capacity
|
||||
0.0
|
||||
else
|
||||
(plant.sizes[2].fixed_operating_cost[t] - plant.sizes[1].fixed_operating_cost[t]) /
|
||||
(plant.sizes[2].capacity - plant.sizes[1].capacity)
|
||||
end
|
||||
end
|
||||
|
||||
function create_objective_function!(model::JuMP.Model)
|
||||
graph, T = model[:graph], model[:instance].time
|
||||
obj = AffExpr(0.0)
|
||||
|
||||
# Process node costs
|
||||
for n in values(graph.process_nodes), t = 1:T
|
||||
|
||||
# Transportation and variable operating costs
|
||||
for a in n.incoming_arcs
|
||||
c = n.location.input.transportation_cost[t] * a.values["distance"]
|
||||
add_to_expression!(obj, c, model[:flow][a, t])
|
||||
end
|
||||
|
||||
# Opening costs
|
||||
add_to_expression!(
|
||||
obj,
|
||||
n.location.sizes[1].opening_cost[t],
|
||||
model[:open_plant][n, t],
|
||||
)
|
||||
|
||||
# Fixed operating costs (base)
|
||||
add_to_expression!(
|
||||
obj,
|
||||
n.location.sizes[1].fixed_operating_cost[t],
|
||||
model[:is_open][n, t],
|
||||
)
|
||||
|
||||
# Fixed operating costs (expansion)
|
||||
add_to_expression!(obj, slope_fix_oper_cost(n.location, t), model[:expansion][n, t])
|
||||
|
||||
# Processing costs
|
||||
add_to_expression!(
|
||||
obj,
|
||||
n.location.sizes[1].variable_operating_cost[t],
|
||||
model[:process][n, t],
|
||||
)
|
||||
|
||||
# Storage costs
|
||||
add_to_expression!(obj, n.location.storage_cost[t], model[:store][n, t])
|
||||
|
||||
# Expansion costs
|
||||
if t < T
|
||||
add_to_expression!(
|
||||
obj,
|
||||
slope_open(n.location, t) - slope_open(n.location, t + 1),
|
||||
model[:expansion][n, t],
|
||||
)
|
||||
else
|
||||
add_to_expression!(obj, slope_open(n.location, t), model[:expansion][n, t])
|
||||
end
|
||||
end
|
||||
|
||||
# Plant shipping node costs
|
||||
for n in values(graph.plant_shipping_nodes), t = 1:T
|
||||
|
||||
# Disposal costs
|
||||
add_to_expression!(
|
||||
obj,
|
||||
n.location.disposal_cost[n.product][t],
|
||||
model[:plant_dispose][n, t],
|
||||
)
|
||||
end
|
||||
|
||||
# Collection shipping node costs
|
||||
for n in values(graph.collection_shipping_nodes), t = 1:T
|
||||
|
||||
# Disposal costs
|
||||
add_to_expression!(
|
||||
obj,
|
||||
n.location.product.disposal_cost[t],
|
||||
model[:collection_dispose][n, t],
|
||||
)
|
||||
end
|
||||
|
||||
@objective(model, Min, obj)
|
||||
end
|
||||
|
||||
|
||||
function create_shipping_node_constraints!(model::JuMP.Model)
|
||||
graph, T = model[:graph], model[:instance].time
|
||||
model[:eq_balance] = OrderedDict()
|
||||
for t = 1:T
|
||||
# Collection centers
|
||||
for n in graph.collection_shipping_nodes
|
||||
model[:eq_balance][n, t] = @constraint(
|
||||
model,
|
||||
sum(model[:flow][a, t] for a in n.outgoing_arcs) ==
|
||||
n.location.amount[t] + model[:collection_dispose][n, t]
|
||||
)
|
||||
end
|
||||
for prod in model[:instance].products
|
||||
if isempty(prod.collection_centers)
|
||||
continue
|
||||
end
|
||||
expr = AffExpr()
|
||||
for center in prod.collection_centers
|
||||
n = graph.collection_center_to_node[center]
|
||||
add_to_expression!(expr, model[:collection_dispose][n, t])
|
||||
end
|
||||
@constraint(model, expr <= prod.disposal_limit[t])
|
||||
end
|
||||
|
||||
# Plants
|
||||
for n in graph.plant_shipping_nodes
|
||||
@constraint(
|
||||
model,
|
||||
sum(model[:flow][a, t] for a in n.incoming_arcs) ==
|
||||
sum(model[:flow][a, t] for a in n.outgoing_arcs) +
|
||||
model[:plant_dispose][n, t]
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
|
||||
function create_process_node_constraints!(model::JuMP.Model)
|
||||
graph, T = model[:graph], model[:instance].time
|
||||
|
||||
for t = 1:T, n in graph.process_nodes
|
||||
input_sum = AffExpr(0.0)
|
||||
for a in n.incoming_arcs
|
||||
add_to_expression!(input_sum, 1.0, model[:flow][a, t])
|
||||
end
|
||||
|
||||
# Output amount is implied by amount processed
|
||||
for a in n.outgoing_arcs
|
||||
@constraint(
|
||||
model,
|
||||
model[:flow][a, t] == a.values["weight"] * model[:process][n, t]
|
||||
)
|
||||
end
|
||||
|
||||
# If plant is closed, capacity is zero
|
||||
@constraint(
|
||||
model,
|
||||
model[:capacity][n, t] <= n.location.sizes[2].capacity * model[:is_open][n, t]
|
||||
)
|
||||
|
||||
# If plant is open, capacity is greater than base
|
||||
@constraint(
|
||||
model,
|
||||
model[:capacity][n, t] >= n.location.sizes[1].capacity * model[:is_open][n, t]
|
||||
)
|
||||
|
||||
# Capacity is linked to expansion
|
||||
@constraint(
|
||||
model,
|
||||
model[:capacity][n, t] <=
|
||||
n.location.sizes[1].capacity + model[:expansion][n, t]
|
||||
)
|
||||
|
||||
# Can only process up to capacity
|
||||
@constraint(model, model[:process][n, t] <= model[:capacity][n, t])
|
||||
|
||||
if t > 1
|
||||
# Plant capacity can only increase over time
|
||||
@constraint(model, model[:capacity][n, t] >= model[:capacity][n, t-1])
|
||||
@constraint(model, model[:expansion][n, t] >= model[:expansion][n, t-1])
|
||||
end
|
||||
|
||||
# Amount received equals amount processed plus stored
|
||||
store_in = 0
|
||||
if t > 1
|
||||
store_in = model[:store][n, t-1]
|
||||
end
|
||||
if t == T
|
||||
@constraint(model, model[:store][n, t] == 0)
|
||||
end
|
||||
@constraint(
|
||||
model,
|
||||
input_sum + store_in == model[:store][n, t] + model[:process][n, t]
|
||||
)
|
||||
|
||||
|
||||
# Plant is currently open if it was already open in the previous time period or
|
||||
# if it was built just now
|
||||
if t > 1
|
||||
@constraint(
|
||||
model,
|
||||
model[:is_open][n, t] == model[:is_open][n, t-1] + model[:open_plant][n, t]
|
||||
)
|
||||
else
|
||||
@constraint(model, model[:is_open][n, t] == model[:open_plant][n, t])
|
||||
end
|
||||
|
||||
# Plant can only be opened during building period
|
||||
if t ∉ model[:instance].building_period
|
||||
@constraint(model, model[:open_plant][n, t] == 0)
|
||||
end
|
||||
end
|
||||
end
|
||||
@@ -1,231 +0,0 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using JuMP, LinearAlgebra, Geodesy, Cbc, Clp, ProgressBars, Printf, DataStructures
|
||||
|
||||
function get_solution(model::JuMP.Model; marginal_costs = true)
|
||||
graph, instance = model[:graph], model[:instance]
|
||||
T = instance.time
|
||||
|
||||
output = OrderedDict(
|
||||
"Plants" => OrderedDict(),
|
||||
"Products" => OrderedDict(),
|
||||
"Costs" => OrderedDict(
|
||||
"Fixed operating (\$)" => zeros(T),
|
||||
"Variable operating (\$)" => zeros(T),
|
||||
"Opening (\$)" => zeros(T),
|
||||
"Transportation (\$)" => zeros(T),
|
||||
"Disposal (\$)" => zeros(T),
|
||||
"Expansion (\$)" => zeros(T),
|
||||
"Storage (\$)" => zeros(T),
|
||||
"Total (\$)" => zeros(T),
|
||||
),
|
||||
"Energy" =>
|
||||
OrderedDict("Plants (GJ)" => zeros(T), "Transportation (GJ)" => zeros(T)),
|
||||
"Emissions" => OrderedDict(
|
||||
"Plants (tonne)" => OrderedDict(),
|
||||
"Transportation (tonne)" => OrderedDict(),
|
||||
),
|
||||
)
|
||||
|
||||
plant_to_process_node = OrderedDict(n.location => n for n in graph.process_nodes)
|
||||
plant_to_shipping_nodes = OrderedDict()
|
||||
for p in instance.plants
|
||||
plant_to_shipping_nodes[p] = []
|
||||
for a in plant_to_process_node[p].outgoing_arcs
|
||||
push!(plant_to_shipping_nodes[p], a.dest)
|
||||
end
|
||||
end
|
||||
|
||||
# Products
|
||||
for n in graph.collection_shipping_nodes
|
||||
location_dict = OrderedDict{Any,Any}(
|
||||
"Latitude (deg)" => n.location.latitude,
|
||||
"Longitude (deg)" => n.location.longitude,
|
||||
"Amount (tonne)" => n.location.amount,
|
||||
"Dispose (tonne)" =>
|
||||
[JuMP.value(model[:collection_dispose][n, t]) for t = 1:T],
|
||||
)
|
||||
if marginal_costs
|
||||
location_dict["Marginal cost (\$/tonne)"] = [
|
||||
round(abs(JuMP.shadow_price(model[:eq_balance][n, t])), digits = 2) for
|
||||
t = 1:T
|
||||
]
|
||||
end
|
||||
if n.product.name ∉ keys(output["Products"])
|
||||
output["Products"][n.product.name] = OrderedDict()
|
||||
end
|
||||
output["Products"][n.product.name][n.location.name] = location_dict
|
||||
end
|
||||
|
||||
# Plants
|
||||
for plant in instance.plants
|
||||
skip_plant = true
|
||||
process_node = plant_to_process_node[plant]
|
||||
plant_dict = OrderedDict{Any,Any}(
|
||||
"Input" => OrderedDict(),
|
||||
"Output" =>
|
||||
OrderedDict("Send" => OrderedDict(), "Dispose" => OrderedDict()),
|
||||
"Input product" => plant.input.name,
|
||||
"Total input (tonne)" => [0.0 for t = 1:T],
|
||||
"Total output" => OrderedDict(),
|
||||
"Latitude (deg)" => plant.latitude,
|
||||
"Longitude (deg)" => plant.longitude,
|
||||
"Capacity (tonne)" =>
|
||||
[JuMP.value(model[:capacity][process_node, t]) for t = 1:T],
|
||||
"Opening cost (\$)" => [
|
||||
JuMP.value(model[:open_plant][process_node, t]) *
|
||||
plant.sizes[1].opening_cost[t] for t = 1:T
|
||||
],
|
||||
"Fixed operating cost (\$)" => [
|
||||
JuMP.value(model[:is_open][process_node, t]) *
|
||||
plant.sizes[1].fixed_operating_cost[t] +
|
||||
JuMP.value(model[:expansion][process_node, t]) *
|
||||
slope_fix_oper_cost(plant, t) for t = 1:T
|
||||
],
|
||||
"Expansion cost (\$)" => [
|
||||
(
|
||||
if t == 1
|
||||
slope_open(plant, t) * JuMP.value(model[:expansion][process_node, t])
|
||||
else
|
||||
slope_open(plant, t) * (
|
||||
JuMP.value(model[:expansion][process_node, t]) -
|
||||
JuMP.value(model[:expansion][process_node, t-1])
|
||||
)
|
||||
end
|
||||
) for t = 1:T
|
||||
],
|
||||
"Process (tonne)" =>
|
||||
[JuMP.value(model[:process][process_node, t]) for t = 1:T],
|
||||
"Variable operating cost (\$)" => [
|
||||
JuMP.value(model[:process][process_node, t]) *
|
||||
plant.sizes[1].variable_operating_cost[t] for t = 1:T
|
||||
],
|
||||
"Storage (tonne)" =>
|
||||
[JuMP.value(model[:store][process_node, t]) for t = 1:T],
|
||||
"Storage cost (\$)" => [
|
||||
JuMP.value(model[:store][process_node, t]) * plant.storage_cost[t]
|
||||
for t = 1:T
|
||||
],
|
||||
)
|
||||
output["Costs"]["Fixed operating (\$)"] += plant_dict["Fixed operating cost (\$)"]
|
||||
output["Costs"]["Variable operating (\$)"] +=
|
||||
plant_dict["Variable operating cost (\$)"]
|
||||
output["Costs"]["Opening (\$)"] += plant_dict["Opening cost (\$)"]
|
||||
output["Costs"]["Expansion (\$)"] += plant_dict["Expansion cost (\$)"]
|
||||
output["Costs"]["Storage (\$)"] += plant_dict["Storage cost (\$)"]
|
||||
|
||||
# Inputs
|
||||
for a in process_node.incoming_arcs
|
||||
vals = [JuMP.value(model[:flow][a, t]) for t = 1:T]
|
||||
if sum(vals) <= 1e-3
|
||||
continue
|
||||
end
|
||||
skip_plant = false
|
||||
dict = OrderedDict{Any,Any}(
|
||||
"Amount (tonne)" => vals,
|
||||
"Distance (km)" => a.values["distance"],
|
||||
"Latitude (deg)" => a.source.location.latitude,
|
||||
"Longitude (deg)" => a.source.location.longitude,
|
||||
"Transportation cost (\$)" =>
|
||||
a.source.product.transportation_cost .* vals .* a.values["distance"],
|
||||
"Transportation energy (J)" =>
|
||||
vals .* a.values["distance"] .* a.source.product.transportation_energy,
|
||||
"Emissions (tonne)" => OrderedDict(),
|
||||
)
|
||||
emissions_dict = output["Emissions"]["Transportation (tonne)"]
|
||||
for (em_name, em_values) in a.source.product.transportation_emissions
|
||||
dict["Emissions (tonne)"][em_name] =
|
||||
em_values .* dict["Amount (tonne)"] .* a.values["distance"]
|
||||
if em_name ∉ keys(emissions_dict)
|
||||
emissions_dict[em_name] = zeros(T)
|
||||
end
|
||||
emissions_dict[em_name] += dict["Emissions (tonne)"][em_name]
|
||||
end
|
||||
if a.source.location isa CollectionCenter
|
||||
plant_name = "Origin"
|
||||
location_name = a.source.location.name
|
||||
else
|
||||
plant_name = a.source.location.plant_name
|
||||
location_name = a.source.location.location_name
|
||||
end
|
||||
|
||||
if plant_name ∉ keys(plant_dict["Input"])
|
||||
plant_dict["Input"][plant_name] = OrderedDict()
|
||||
end
|
||||
plant_dict["Input"][plant_name][location_name] = dict
|
||||
plant_dict["Total input (tonne)"] += vals
|
||||
output["Costs"]["Transportation (\$)"] += dict["Transportation cost (\$)"]
|
||||
output["Energy"]["Transportation (GJ)"] +=
|
||||
dict["Transportation energy (J)"] / 1e9
|
||||
end
|
||||
|
||||
plant_dict["Energy (GJ)"] = plant_dict["Total input (tonne)"] .* plant.energy
|
||||
output["Energy"]["Plants (GJ)"] += plant_dict["Energy (GJ)"]
|
||||
|
||||
plant_dict["Emissions (tonne)"] = OrderedDict()
|
||||
emissions_dict = output["Emissions"]["Plants (tonne)"]
|
||||
for (em_name, em_values) in plant.emissions
|
||||
plant_dict["Emissions (tonne)"][em_name] =
|
||||
em_values .* plant_dict["Total input (tonne)"]
|
||||
if em_name ∉ keys(emissions_dict)
|
||||
emissions_dict[em_name] = zeros(T)
|
||||
end
|
||||
emissions_dict[em_name] += plant_dict["Emissions (tonne)"][em_name]
|
||||
end
|
||||
|
||||
# Outputs
|
||||
for shipping_node in plant_to_shipping_nodes[plant]
|
||||
product_name = shipping_node.product.name
|
||||
plant_dict["Total output"][product_name] = zeros(T)
|
||||
plant_dict["Output"]["Send"][product_name] = product_dict = OrderedDict()
|
||||
|
||||
disposal_amount =
|
||||
[JuMP.value(model[:plant_dispose][shipping_node, t]) for t = 1:T]
|
||||
if sum(disposal_amount) > 1e-5
|
||||
skip_plant = false
|
||||
plant_dict["Output"]["Dispose"][product_name] =
|
||||
disposal_dict = OrderedDict()
|
||||
disposal_dict["Amount (tonne)"] =
|
||||
[JuMP.value(model[:plant_dispose][shipping_node, t]) for t = 1:T]
|
||||
disposal_dict["Cost (\$)"] = [
|
||||
disposal_dict["Amount (tonne)"][t] *
|
||||
plant.disposal_cost[shipping_node.product][t] for t = 1:T
|
||||
]
|
||||
plant_dict["Total output"][product_name] += disposal_amount
|
||||
output["Costs"]["Disposal (\$)"] += disposal_dict["Cost (\$)"]
|
||||
end
|
||||
|
||||
for a in shipping_node.outgoing_arcs
|
||||
vals = [JuMP.value(model[:flow][a, t]) for t = 1:T]
|
||||
if sum(vals) <= 1e-3
|
||||
continue
|
||||
end
|
||||
skip_plant = false
|
||||
dict = OrderedDict(
|
||||
"Amount (tonne)" => vals,
|
||||
"Distance (km)" => a.values["distance"],
|
||||
"Latitude (deg)" => a.dest.location.latitude,
|
||||
"Longitude (deg)" => a.dest.location.longitude,
|
||||
)
|
||||
if a.dest.location.plant_name ∉ keys(product_dict)
|
||||
product_dict[a.dest.location.plant_name] = OrderedDict()
|
||||
end
|
||||
product_dict[a.dest.location.plant_name][a.dest.location.location_name] =
|
||||
dict
|
||||
plant_dict["Total output"][product_name] += vals
|
||||
end
|
||||
end
|
||||
|
||||
if !skip_plant
|
||||
if plant.plant_name ∉ keys(output["Plants"])
|
||||
output["Plants"][plant.plant_name] = OrderedDict()
|
||||
end
|
||||
output["Plants"][plant.plant_name][plant.location_name] = plant_dict
|
||||
end
|
||||
end
|
||||
|
||||
output["Costs"]["Total (\$)"] = sum(values(output["Costs"]))
|
||||
return output
|
||||
end
|
||||
@@ -1,97 +0,0 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using JuMP
|
||||
|
||||
function resolve(model_old, filename::AbstractString; kwargs...)::OrderedDict
|
||||
@info "Reading $filename..."
|
||||
instance = RELOG.parsefile(filename)
|
||||
return resolve(model_old, instance; kwargs...)
|
||||
end
|
||||
|
||||
function resolve(model_old, instance::Instance; optimizer = nothing)::OrderedDict
|
||||
milp_optimizer = lp_optimizer = optimizer
|
||||
if optimizer === nothing
|
||||
milp_optimizer = _get_default_milp_optimizer()
|
||||
lp_optimizer = _get_default_lp_optimizer()
|
||||
end
|
||||
|
||||
@info "Building new graph..."
|
||||
graph = build_graph(instance)
|
||||
_print_graph_stats(instance, graph)
|
||||
|
||||
@info "Building new optimization model..."
|
||||
model_new = RELOG.build_model(instance, graph, milp_optimizer)
|
||||
|
||||
@info "Fixing decision variables..."
|
||||
_fix_plants!(model_old, model_new)
|
||||
JuMP.set_optimizer(model_new, lp_optimizer)
|
||||
|
||||
@info "Optimizing MILP..."
|
||||
JuMP.optimize!(model_new)
|
||||
|
||||
if !has_values(model_new)
|
||||
@warn("No solution available")
|
||||
return OrderedDict()
|
||||
end
|
||||
|
||||
@info "Extracting solution..."
|
||||
solution = get_solution(model_new, marginal_costs = true)
|
||||
|
||||
return solution
|
||||
end
|
||||
|
||||
function _fix_plants!(model_old, model_new)::Nothing
|
||||
T = model_new[:instance].time
|
||||
|
||||
# Fix open_plant variables
|
||||
for ((node_old, t), var_old) in model_old[:open_plant]
|
||||
value_old = JuMP.value(var_old)
|
||||
node_new = model_new[:graph].name_to_process_node_map[(
|
||||
node_old.location.plant_name,
|
||||
node_old.location.location_name,
|
||||
)]
|
||||
var_new = model_new[:open_plant][node_new, t]
|
||||
JuMP.unset_binary(var_new)
|
||||
JuMP.fix(var_new, value_old)
|
||||
end
|
||||
|
||||
# Fix is_open variables
|
||||
for ((node_old, t), var_old) in model_old[:is_open]
|
||||
value_old = JuMP.value(var_old)
|
||||
node_new = model_new[:graph].name_to_process_node_map[(
|
||||
node_old.location.plant_name,
|
||||
node_old.location.location_name,
|
||||
)]
|
||||
var_new = model_new[:is_open][node_new, t]
|
||||
JuMP.unset_binary(var_new)
|
||||
JuMP.fix(var_new, value_old)
|
||||
end
|
||||
|
||||
# Fix plant capacities
|
||||
for ((node_old, t), var_old) in model_old[:capacity]
|
||||
value_old = JuMP.value(var_old)
|
||||
node_new = model_new[:graph].name_to_process_node_map[(
|
||||
node_old.location.plant_name,
|
||||
node_old.location.location_name,
|
||||
)]
|
||||
var_new = model_new[:capacity][node_new, t]
|
||||
JuMP.delete_lower_bound(var_new)
|
||||
JuMP.delete_upper_bound(var_new)
|
||||
JuMP.fix(var_new, value_old)
|
||||
end
|
||||
|
||||
# Fix plant expansion
|
||||
for ((node_old, t), var_old) in model_old[:expansion]
|
||||
value_old = JuMP.value(var_old)
|
||||
node_new = model_new[:graph].name_to_process_node_map[(
|
||||
node_old.location.plant_name,
|
||||
node_old.location.location_name,
|
||||
)]
|
||||
var_new = model_new[:expansion][node_new, t]
|
||||
JuMP.delete_lower_bound(var_new)
|
||||
JuMP.delete_upper_bound(var_new)
|
||||
JuMP.fix(var_new, value_old)
|
||||
end
|
||||
end
|
||||
@@ -1,109 +0,0 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using JuMP, LinearAlgebra, Geodesy, Cbc, Clp, ProgressBars, Printf, DataStructures
|
||||
|
||||
function _get_default_milp_optimizer()
|
||||
return optimizer_with_attributes(Cbc.Optimizer, "logLevel" => 0)
|
||||
end
|
||||
|
||||
function _get_default_lp_optimizer()
|
||||
return optimizer_with_attributes(Clp.Optimizer, "LogLevel" => 0)
|
||||
end
|
||||
|
||||
|
||||
function _print_graph_stats(instance::Instance, graph::Graph)::Nothing
|
||||
@info @sprintf(" %12d time periods", instance.time)
|
||||
@info @sprintf(" %12d process nodes", length(graph.process_nodes))
|
||||
@info @sprintf(" %12d shipping nodes (plant)", length(graph.plant_shipping_nodes))
|
||||
@info @sprintf(
|
||||
" %12d shipping nodes (collection)",
|
||||
length(graph.collection_shipping_nodes)
|
||||
)
|
||||
@info @sprintf(" %12d arcs", length(graph.arcs))
|
||||
return
|
||||
end
|
||||
|
||||
function solve(
|
||||
instance::Instance;
|
||||
optimizer = nothing,
|
||||
output = nothing,
|
||||
marginal_costs = true,
|
||||
return_model = false,
|
||||
)
|
||||
|
||||
milp_optimizer = lp_optimizer = optimizer
|
||||
if optimizer == nothing
|
||||
milp_optimizer = _get_default_milp_optimizer()
|
||||
lp_optimizer = _get_default_lp_optimizer()
|
||||
end
|
||||
|
||||
@info "Building graph..."
|
||||
graph = RELOG.build_graph(instance)
|
||||
_print_graph_stats(instance, graph)
|
||||
|
||||
@info "Building optimization model..."
|
||||
model = RELOG.build_model(instance, graph, milp_optimizer)
|
||||
|
||||
@info "Optimizing MILP..."
|
||||
JuMP.optimize!(model)
|
||||
|
||||
if !has_values(model)
|
||||
error("No solution available")
|
||||
end
|
||||
|
||||
if marginal_costs
|
||||
@info "Re-optimizing with integer variables fixed..."
|
||||
all_vars = JuMP.all_variables(model)
|
||||
vals = OrderedDict(var => JuMP.value(var) for var in all_vars)
|
||||
JuMP.set_optimizer(model, lp_optimizer)
|
||||
for var in all_vars
|
||||
if JuMP.is_binary(var)
|
||||
JuMP.unset_binary(var)
|
||||
JuMP.fix(var, vals[var])
|
||||
end
|
||||
end
|
||||
JuMP.optimize!(model)
|
||||
end
|
||||
|
||||
@info "Extracting solution..."
|
||||
solution = get_solution(model, marginal_costs = marginal_costs)
|
||||
|
||||
if output != nothing
|
||||
write(solution, output)
|
||||
end
|
||||
|
||||
if return_model
|
||||
return solution, model
|
||||
else
|
||||
return solution
|
||||
end
|
||||
end
|
||||
|
||||
function solve(filename::AbstractString; heuristic = false, kwargs...)
|
||||
@info "Reading $filename..."
|
||||
instance = RELOG.parsefile(filename)
|
||||
if heuristic && instance.time > 1
|
||||
@info "Solving single-period version..."
|
||||
compressed = _compress(instance)
|
||||
csol = solve(compressed; output = nothing, marginal_costs = false, kwargs...)
|
||||
@info "Filtering candidate locations..."
|
||||
selected_pairs = []
|
||||
for (plant_name, plant_dict) in csol["Plants"]
|
||||
for (location_name, location_dict) in plant_dict
|
||||
push!(selected_pairs, (plant_name, location_name))
|
||||
end
|
||||
end
|
||||
filtered_plants = []
|
||||
for p in instance.plants
|
||||
if (p.plant_name, p.location_name) in selected_pairs
|
||||
push!(filtered_plants, p)
|
||||
end
|
||||
end
|
||||
instance.plants = filtered_plants
|
||||
@info "Solving original version..."
|
||||
end
|
||||
sol = solve(instance; kwargs...)
|
||||
return sol
|
||||
end
|
||||
278
src/reports.jl
Normal file
278
src/reports.jl
Normal file
@@ -0,0 +1,278 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using DataFrames
|
||||
using CSV
|
||||
|
||||
function plants_report(solution)::DataFrame
|
||||
df = DataFrame()
|
||||
df."plant type" = String[]
|
||||
df."location name" = String[]
|
||||
df."year" = Int[]
|
||||
df."latitude (deg)" = Float64[]
|
||||
df."longitude (deg)" = Float64[]
|
||||
df."capacity (tonne)" = Float64[]
|
||||
df."amount processed (tonne)" = Float64[]
|
||||
df."amount received (tonne)" = Float64[]
|
||||
df."amount in storage (tonne)" = Float64[]
|
||||
df."utilization factor (%)" = Float64[]
|
||||
df."energy (GJ)" = Float64[]
|
||||
df."opening cost (\$)" = Float64[]
|
||||
df."expansion cost (\$)" = Float64[]
|
||||
df."fixed operating cost (\$)" = Float64[]
|
||||
df."variable operating cost (\$)" = Float64[]
|
||||
df."storage cost (\$)" = Float64[]
|
||||
df."total cost (\$)" = Float64[]
|
||||
T = length(solution["Energy"]["Plants (GJ)"])
|
||||
for (plant_name, plant_dict) in solution["Plants"]
|
||||
for (location_name, location_dict) in plant_dict
|
||||
for year in 1:T
|
||||
capacity = round(location_dict["Capacity (tonne)"][year], digits=2)
|
||||
received = round(location_dict["Total input (tonne)"][year], digits=2)
|
||||
processed = round(location_dict["Process (tonne)"][year], digits=2)
|
||||
in_storage = round(location_dict["Storage (tonne)"][year], digits=2)
|
||||
utilization_factor = round(processed / capacity * 100.0, digits=2)
|
||||
energy = round(location_dict["Energy (GJ)"][year], digits=2)
|
||||
latitude = round(location_dict["Latitude (deg)"], digits=6)
|
||||
longitude = round(location_dict["Longitude (deg)"], digits=6)
|
||||
opening_cost = round(location_dict["Opening cost (\$)"][year], digits=2)
|
||||
expansion_cost = round(location_dict["Expansion cost (\$)"][year], digits=2)
|
||||
fixed_cost = round(location_dict["Fixed operating cost (\$)"][year], digits=2)
|
||||
var_cost = round(location_dict["Variable operating cost (\$)"][year], digits=2)
|
||||
storage_cost = round(location_dict["Storage cost (\$)"][year], digits=2)
|
||||
total_cost = round(opening_cost + expansion_cost + fixed_cost +
|
||||
var_cost + storage_cost, digits=2)
|
||||
push!(df, [
|
||||
plant_name,
|
||||
location_name,
|
||||
year,
|
||||
latitude,
|
||||
longitude,
|
||||
capacity,
|
||||
processed,
|
||||
received,
|
||||
in_storage,
|
||||
utilization_factor,
|
||||
energy,
|
||||
opening_cost,
|
||||
expansion_cost,
|
||||
fixed_cost,
|
||||
var_cost,
|
||||
storage_cost,
|
||||
total_cost,
|
||||
])
|
||||
end
|
||||
end
|
||||
end
|
||||
return df
|
||||
end
|
||||
|
||||
function plant_outputs_report(solution)::DataFrame
|
||||
df = DataFrame()
|
||||
df."plant type" = String[]
|
||||
df."location name" = String[]
|
||||
df."year" = Int[]
|
||||
df."product name" = String[]
|
||||
df."amount produced (tonne)" = Float64[]
|
||||
df."amount sent (tonne)" = Float64[]
|
||||
df."amount disposed (tonne)" = Float64[]
|
||||
df."disposal cost (\$)" = Float64[]
|
||||
T = length(solution["Energy"]["Plants (GJ)"])
|
||||
for (plant_name, plant_dict) in solution["Plants"]
|
||||
for (location_name, location_dict) in plant_dict
|
||||
for (product_name, amount_produced) in location_dict["Total output"]
|
||||
send_dict = location_dict["Output"]["Send"]
|
||||
disposal_dict = location_dict["Output"]["Dispose"]
|
||||
|
||||
sent = zeros(T)
|
||||
if product_name in keys(send_dict)
|
||||
for (dst_plant_name, dst_plant_dict) in send_dict[product_name]
|
||||
for (dst_location_name, dst_location_dict) in dst_plant_dict
|
||||
sent += dst_location_dict["Amount (tonne)"]
|
||||
end
|
||||
end
|
||||
end
|
||||
sent = round.(sent, digits=2)
|
||||
|
||||
disposal_amount = zeros(T)
|
||||
disposal_cost = zeros(T)
|
||||
if product_name in keys(disposal_dict)
|
||||
disposal_amount += disposal_dict[product_name]["Amount (tonne)"]
|
||||
disposal_cost += disposal_dict[product_name]["Cost (\$)"]
|
||||
end
|
||||
disposal_amount = round.(disposal_amount, digits=2)
|
||||
disposal_cost = round.(disposal_cost, digits=2)
|
||||
|
||||
for year in 1:T
|
||||
push!(df, [
|
||||
plant_name,
|
||||
location_name,
|
||||
year,
|
||||
product_name,
|
||||
round(amount_produced[year], digits=2),
|
||||
sent[year],
|
||||
disposal_amount[year],
|
||||
disposal_cost[year],
|
||||
])
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
return df
|
||||
end
|
||||
|
||||
|
||||
function plant_emissions_report(solution)::DataFrame
|
||||
df = DataFrame()
|
||||
df."plant type" = String[]
|
||||
df."location name" = String[]
|
||||
df."year" = Int[]
|
||||
df."emission type" = String[]
|
||||
df."emission amount (tonne)" = Float64[]
|
||||
T = length(solution["Energy"]["Plants (GJ)"])
|
||||
for (plant_name, plant_dict) in solution["Plants"]
|
||||
for (location_name, location_dict) in plant_dict
|
||||
for (emission_name, emission_amount) in location_dict["Emissions (tonne)"]
|
||||
for year in 1:T
|
||||
push!(df, [
|
||||
plant_name,
|
||||
location_name,
|
||||
year,
|
||||
emission_name,
|
||||
round(emission_amount[year], digits=2),
|
||||
])
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
return df
|
||||
end
|
||||
|
||||
|
||||
function transportation_report(solution)::DataFrame
|
||||
df = DataFrame()
|
||||
df."source type" = String[]
|
||||
df."source location name" = String[]
|
||||
df."source latitude (deg)" = Float64[]
|
||||
df."source longitude (deg)" = Float64[]
|
||||
df."destination type" = String[]
|
||||
df."destination location name" = String[]
|
||||
df."destination latitude (deg)" = Float64[]
|
||||
df."destination longitude (deg)" = Float64[]
|
||||
df."product" = String[]
|
||||
df."year" = Int[]
|
||||
df."distance (km)" = Float64[]
|
||||
df."amount (tonne)" = Float64[]
|
||||
df."amount-distance (tonne-km)" = Float64[]
|
||||
df."transportation cost (\$)" = Float64[]
|
||||
df."transportation energy (GJ)" = Float64[]
|
||||
|
||||
T = length(solution["Energy"]["Plants (GJ)"])
|
||||
for (dst_plant_name, dst_plant_dict) in solution["Plants"]
|
||||
for (dst_location_name, dst_location_dict) in dst_plant_dict
|
||||
for (src_plant_name, src_plant_dict) in dst_location_dict["Input"]
|
||||
for (src_location_name, src_location_dict) in src_plant_dict
|
||||
for year in 1:T
|
||||
push!(df, [
|
||||
src_plant_name,
|
||||
src_location_name,
|
||||
round(src_location_dict["Latitude (deg)"], digits=6),
|
||||
round(src_location_dict["Longitude (deg)"], digits=6),
|
||||
dst_plant_name,
|
||||
dst_location_name,
|
||||
round(dst_location_dict["Latitude (deg)"], digits=6),
|
||||
round(dst_location_dict["Longitude (deg)"], digits=6),
|
||||
dst_location_dict["Input product"],
|
||||
year,
|
||||
round(src_location_dict["Distance (km)"], digits=2),
|
||||
round(src_location_dict["Amount (tonne)"][year], digits=2),
|
||||
round(src_location_dict["Amount (tonne)"][year] *
|
||||
src_location_dict["Distance (km)"],
|
||||
digits=2),
|
||||
round(src_location_dict["Transportation cost (\$)"][year], digits=2),
|
||||
round(src_location_dict["Transportation energy (J)"][year] / 1e9, digits=2),
|
||||
])
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
return df
|
||||
end
|
||||
|
||||
|
||||
function transportation_emissions_report(solution)::DataFrame
|
||||
df = DataFrame()
|
||||
df."source type" = String[]
|
||||
df."source location name" = String[]
|
||||
df."source latitude (deg)" = Float64[]
|
||||
df."source longitude (deg)" = Float64[]
|
||||
df."destination type" = String[]
|
||||
df."destination location name" = String[]
|
||||
df."destination latitude (deg)" = Float64[]
|
||||
df."destination longitude (deg)" = Float64[]
|
||||
df."product" = String[]
|
||||
df."year" = Int[]
|
||||
df."distance (km)" = Float64[]
|
||||
df."shipped amount (tonne)" = Float64[]
|
||||
df."shipped amount-distance (tonne-km)" = Float64[]
|
||||
df."emission type" = String[]
|
||||
df."emission amount (tonne)" = Float64[]
|
||||
|
||||
T = length(solution["Energy"]["Plants (GJ)"])
|
||||
for (dst_plant_name, dst_plant_dict) in solution["Plants"]
|
||||
for (dst_location_name, dst_location_dict) in dst_plant_dict
|
||||
for (src_plant_name, src_plant_dict) in dst_location_dict["Input"]
|
||||
for (src_location_name, src_location_dict) in src_plant_dict
|
||||
for (emission_name, emission_amount) in src_location_dict["Emissions (tonne)"]
|
||||
for year in 1:T
|
||||
push!(df, [
|
||||
src_plant_name,
|
||||
src_location_name,
|
||||
round(src_location_dict["Latitude (deg)"], digits=6),
|
||||
round(src_location_dict["Longitude (deg)"], digits=6),
|
||||
dst_plant_name,
|
||||
dst_location_name,
|
||||
round(dst_location_dict["Latitude (deg)"], digits=6),
|
||||
round(dst_location_dict["Longitude (deg)"], digits=6),
|
||||
dst_location_dict["Input product"],
|
||||
year,
|
||||
round(src_location_dict["Distance (km)"], digits=2),
|
||||
round(src_location_dict["Amount (tonne)"][year], digits=2),
|
||||
round(src_location_dict["Amount (tonne)"][year] *
|
||||
src_location_dict["Distance (km)"],
|
||||
digits=2),
|
||||
emission_name,
|
||||
round(emission_amount[year], digits=2),
|
||||
])
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
return df
|
||||
end
|
||||
|
||||
function write(solution::AbstractDict, filename::AbstractString)
|
||||
@info "Writing solution: $filename"
|
||||
open(filename, "w") do file
|
||||
JSON.print(file, solution, 2)
|
||||
end
|
||||
end
|
||||
|
||||
write_plants_report(solution, filename) =
|
||||
CSV.write(filename, plants_report(solution))
|
||||
|
||||
write_plant_outputs_report(solution, filename) =
|
||||
CSV.write(filename, plant_outputs_report(solution))
|
||||
|
||||
write_plant_emissions_report(solution, filename) =
|
||||
CSV.write(filename, plant_emissions_report(solution))
|
||||
|
||||
write_transportation_report(solution, filename) =
|
||||
CSV.write(filename, transportation_report(solution))
|
||||
|
||||
write_transportation_emissions_report(solution, filename) =
|
||||
CSV.write(filename, transportation_emissions_report(solution))
|
||||
@@ -1,38 +0,0 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using DataFrames
|
||||
using CSV
|
||||
|
||||
function plant_emissions_report(solution)::DataFrame
|
||||
df = DataFrame()
|
||||
df."plant type" = String[]
|
||||
df."location name" = String[]
|
||||
df."year" = Int[]
|
||||
df."emission type" = String[]
|
||||
df."emission amount (tonne)" = Float64[]
|
||||
T = length(solution["Energy"]["Plants (GJ)"])
|
||||
for (plant_name, plant_dict) in solution["Plants"]
|
||||
for (location_name, location_dict) in plant_dict
|
||||
for (emission_name, emission_amount) in location_dict["Emissions (tonne)"]
|
||||
for year = 1:T
|
||||
push!(
|
||||
df,
|
||||
[
|
||||
plant_name,
|
||||
location_name,
|
||||
year,
|
||||
emission_name,
|
||||
round(emission_amount[year], digits = 2),
|
||||
],
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
return df
|
||||
end
|
||||
|
||||
write_plant_emissions_report(solution, filename) =
|
||||
CSV.write(filename, plant_emissions_report(solution))
|
||||
@@ -1,66 +0,0 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using DataFrames
|
||||
using CSV
|
||||
|
||||
function plant_outputs_report(solution)::DataFrame
|
||||
df = DataFrame()
|
||||
df."plant type" = String[]
|
||||
df."location name" = String[]
|
||||
df."year" = Int[]
|
||||
df."product name" = String[]
|
||||
df."amount produced (tonne)" = Float64[]
|
||||
df."amount sent (tonne)" = Float64[]
|
||||
df."amount disposed (tonne)" = Float64[]
|
||||
df."disposal cost (\$)" = Float64[]
|
||||
T = length(solution["Energy"]["Plants (GJ)"])
|
||||
for (plant_name, plant_dict) in solution["Plants"]
|
||||
for (location_name, location_dict) in plant_dict
|
||||
for (product_name, amount_produced) in location_dict["Total output"]
|
||||
send_dict = location_dict["Output"]["Send"]
|
||||
disposal_dict = location_dict["Output"]["Dispose"]
|
||||
|
||||
sent = zeros(T)
|
||||
if product_name in keys(send_dict)
|
||||
for (dst_plant_name, dst_plant_dict) in send_dict[product_name]
|
||||
for (dst_location_name, dst_location_dict) in dst_plant_dict
|
||||
sent += dst_location_dict["Amount (tonne)"]
|
||||
end
|
||||
end
|
||||
end
|
||||
sent = round.(sent, digits = 2)
|
||||
|
||||
disposal_amount = zeros(T)
|
||||
disposal_cost = zeros(T)
|
||||
if product_name in keys(disposal_dict)
|
||||
disposal_amount += disposal_dict[product_name]["Amount (tonne)"]
|
||||
disposal_cost += disposal_dict[product_name]["Cost (\$)"]
|
||||
end
|
||||
disposal_amount = round.(disposal_amount, digits = 2)
|
||||
disposal_cost = round.(disposal_cost, digits = 2)
|
||||
|
||||
for year = 1:T
|
||||
push!(
|
||||
df,
|
||||
[
|
||||
plant_name,
|
||||
location_name,
|
||||
year,
|
||||
product_name,
|
||||
round(amount_produced[year], digits = 2),
|
||||
sent[year],
|
||||
disposal_amount[year],
|
||||
disposal_cost[year],
|
||||
],
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
return df
|
||||
end
|
||||
|
||||
write_plant_outputs_report(solution, filename) =
|
||||
CSV.write(filename, plant_outputs_report(solution))
|
||||
@@ -1,79 +0,0 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using DataFrames
|
||||
using CSV
|
||||
|
||||
function plants_report(solution)::DataFrame
|
||||
df = DataFrame()
|
||||
df."plant type" = String[]
|
||||
df."location name" = String[]
|
||||
df."year" = Int[]
|
||||
df."latitude (deg)" = Float64[]
|
||||
df."longitude (deg)" = Float64[]
|
||||
df."capacity (tonne)" = Float64[]
|
||||
df."amount processed (tonne)" = Float64[]
|
||||
df."amount received (tonne)" = Float64[]
|
||||
df."amount in storage (tonne)" = Float64[]
|
||||
df."utilization factor (%)" = Float64[]
|
||||
df."energy (GJ)" = Float64[]
|
||||
df."opening cost (\$)" = Float64[]
|
||||
df."expansion cost (\$)" = Float64[]
|
||||
df."fixed operating cost (\$)" = Float64[]
|
||||
df."variable operating cost (\$)" = Float64[]
|
||||
df."storage cost (\$)" = Float64[]
|
||||
df."total cost (\$)" = Float64[]
|
||||
T = length(solution["Energy"]["Plants (GJ)"])
|
||||
for (plant_name, plant_dict) in solution["Plants"]
|
||||
for (location_name, location_dict) in plant_dict
|
||||
for year = 1:T
|
||||
capacity = round(location_dict["Capacity (tonne)"][year], digits = 2)
|
||||
received = round(location_dict["Total input (tonne)"][year], digits = 2)
|
||||
processed = round(location_dict["Process (tonne)"][year], digits = 2)
|
||||
in_storage = round(location_dict["Storage (tonne)"][year], digits = 2)
|
||||
utilization_factor = round(processed / capacity * 100.0, digits = 2)
|
||||
energy = round(location_dict["Energy (GJ)"][year], digits = 2)
|
||||
latitude = round(location_dict["Latitude (deg)"], digits = 6)
|
||||
longitude = round(location_dict["Longitude (deg)"], digits = 6)
|
||||
opening_cost = round(location_dict["Opening cost (\$)"][year], digits = 2)
|
||||
expansion_cost =
|
||||
round(location_dict["Expansion cost (\$)"][year], digits = 2)
|
||||
fixed_cost =
|
||||
round(location_dict["Fixed operating cost (\$)"][year], digits = 2)
|
||||
var_cost =
|
||||
round(location_dict["Variable operating cost (\$)"][year], digits = 2)
|
||||
storage_cost = round(location_dict["Storage cost (\$)"][year], digits = 2)
|
||||
total_cost = round(
|
||||
opening_cost + expansion_cost + fixed_cost + var_cost + storage_cost,
|
||||
digits = 2,
|
||||
)
|
||||
push!(
|
||||
df,
|
||||
[
|
||||
plant_name,
|
||||
location_name,
|
||||
year,
|
||||
latitude,
|
||||
longitude,
|
||||
capacity,
|
||||
processed,
|
||||
received,
|
||||
in_storage,
|
||||
utilization_factor,
|
||||
energy,
|
||||
opening_cost,
|
||||
expansion_cost,
|
||||
fixed_cost,
|
||||
var_cost,
|
||||
storage_cost,
|
||||
total_cost,
|
||||
],
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
return df
|
||||
end
|
||||
|
||||
write_plants_report(solution, filename) = CSV.write(filename, plants_report(solution))
|
||||
@@ -1,46 +0,0 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using DataFrames
|
||||
using CSV
|
||||
|
||||
function products_report(solution; marginal_costs = true)::DataFrame
|
||||
df = DataFrame()
|
||||
df."product name" = String[]
|
||||
df."location name" = String[]
|
||||
df."latitude (deg)" = Float64[]
|
||||
df."longitude (deg)" = Float64[]
|
||||
df."year" = Int[]
|
||||
df."amount (tonne)" = Float64[]
|
||||
df."amount disposed (tonne)" = Float64[]
|
||||
df."marginal cost (\$/tonne)" = Float64[]
|
||||
T = length(solution["Energy"]["Plants (GJ)"])
|
||||
for (prod_name, prod_dict) in solution["Products"]
|
||||
for (location_name, location_dict) in prod_dict
|
||||
for year = 1:T
|
||||
marginal_cost = location_dict["Marginal cost (\$/tonne)"][year]
|
||||
latitude = round(location_dict["Latitude (deg)"], digits = 6)
|
||||
longitude = round(location_dict["Longitude (deg)"], digits = 6)
|
||||
amount = location_dict["Amount (tonne)"][year]
|
||||
amount_disposed = location_dict["Dispose (tonne)"][year]
|
||||
push!(
|
||||
df,
|
||||
[
|
||||
prod_name,
|
||||
location_name,
|
||||
latitude,
|
||||
longitude,
|
||||
year,
|
||||
amount,
|
||||
marginal_cost,
|
||||
amount_disposed,
|
||||
],
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
return df
|
||||
end
|
||||
|
||||
write_products_report(solution, filename) = CSV.write(filename, products_report(solution))
|
||||
@@ -1,75 +0,0 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using DataFrames
|
||||
using CSV
|
||||
|
||||
function transportation_report(solution)::DataFrame
|
||||
df = DataFrame()
|
||||
df."source type" = String[]
|
||||
df."source location name" = String[]
|
||||
df."source latitude (deg)" = Float64[]
|
||||
df."source longitude (deg)" = Float64[]
|
||||
df."destination type" = String[]
|
||||
df."destination location name" = String[]
|
||||
df."destination latitude (deg)" = Float64[]
|
||||
df."destination longitude (deg)" = Float64[]
|
||||
df."product" = String[]
|
||||
df."year" = Int[]
|
||||
df."distance (km)" = Float64[]
|
||||
df."amount (tonne)" = Float64[]
|
||||
df."amount-distance (tonne-km)" = Float64[]
|
||||
df."transportation cost (\$)" = Float64[]
|
||||
df."transportation energy (GJ)" = Float64[]
|
||||
|
||||
T = length(solution["Energy"]["Plants (GJ)"])
|
||||
for (dst_plant_name, dst_plant_dict) in solution["Plants"]
|
||||
for (dst_location_name, dst_location_dict) in dst_plant_dict
|
||||
for (src_plant_name, src_plant_dict) in dst_location_dict["Input"]
|
||||
for (src_location_name, src_location_dict) in src_plant_dict
|
||||
for year = 1:T
|
||||
push!(
|
||||
df,
|
||||
[
|
||||
src_plant_name,
|
||||
src_location_name,
|
||||
round(src_location_dict["Latitude (deg)"], digits = 6),
|
||||
round(src_location_dict["Longitude (deg)"], digits = 6),
|
||||
dst_plant_name,
|
||||
dst_location_name,
|
||||
round(dst_location_dict["Latitude (deg)"], digits = 6),
|
||||
round(dst_location_dict["Longitude (deg)"], digits = 6),
|
||||
dst_location_dict["Input product"],
|
||||
year,
|
||||
round(src_location_dict["Distance (km)"], digits = 2),
|
||||
round(
|
||||
src_location_dict["Amount (tonne)"][year],
|
||||
digits = 2,
|
||||
),
|
||||
round(
|
||||
src_location_dict["Amount (tonne)"][year] *
|
||||
src_location_dict["Distance (km)"],
|
||||
digits = 2,
|
||||
),
|
||||
round(
|
||||
src_location_dict["Transportation cost (\$)"][year],
|
||||
digits = 2,
|
||||
),
|
||||
round(
|
||||
src_location_dict["Transportation energy (J)"][year] /
|
||||
1e9,
|
||||
digits = 2,
|
||||
),
|
||||
],
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
return df
|
||||
end
|
||||
|
||||
write_transportation_report(solution, filename) =
|
||||
CSV.write(filename, transportation_report(solution))
|
||||
@@ -1,71 +0,0 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using DataFrames
|
||||
using CSV
|
||||
|
||||
function transportation_emissions_report(solution)::DataFrame
|
||||
df = DataFrame()
|
||||
df."source type" = String[]
|
||||
df."source location name" = String[]
|
||||
df."source latitude (deg)" = Float64[]
|
||||
df."source longitude (deg)" = Float64[]
|
||||
df."destination type" = String[]
|
||||
df."destination location name" = String[]
|
||||
df."destination latitude (deg)" = Float64[]
|
||||
df."destination longitude (deg)" = Float64[]
|
||||
df."product" = String[]
|
||||
df."year" = Int[]
|
||||
df."distance (km)" = Float64[]
|
||||
df."shipped amount (tonne)" = Float64[]
|
||||
df."shipped amount-distance (tonne-km)" = Float64[]
|
||||
df."emission type" = String[]
|
||||
df."emission amount (tonne)" = Float64[]
|
||||
|
||||
T = length(solution["Energy"]["Plants (GJ)"])
|
||||
for (dst_plant_name, dst_plant_dict) in solution["Plants"]
|
||||
for (dst_location_name, dst_location_dict) in dst_plant_dict
|
||||
for (src_plant_name, src_plant_dict) in dst_location_dict["Input"]
|
||||
for (src_location_name, src_location_dict) in src_plant_dict
|
||||
for (emission_name, emission_amount) in
|
||||
src_location_dict["Emissions (tonne)"]
|
||||
for year = 1:T
|
||||
push!(
|
||||
df,
|
||||
[
|
||||
src_plant_name,
|
||||
src_location_name,
|
||||
round(src_location_dict["Latitude (deg)"], digits = 6),
|
||||
round(src_location_dict["Longitude (deg)"], digits = 6),
|
||||
dst_plant_name,
|
||||
dst_location_name,
|
||||
round(dst_location_dict["Latitude (deg)"], digits = 6),
|
||||
round(dst_location_dict["Longitude (deg)"], digits = 6),
|
||||
dst_location_dict["Input product"],
|
||||
year,
|
||||
round(src_location_dict["Distance (km)"], digits = 2),
|
||||
round(
|
||||
src_location_dict["Amount (tonne)"][year],
|
||||
digits = 2,
|
||||
),
|
||||
round(
|
||||
src_location_dict["Amount (tonne)"][year] *
|
||||
src_location_dict["Distance (km)"],
|
||||
digits = 2,
|
||||
),
|
||||
emission_name,
|
||||
round(emission_amount[year], digits = 2),
|
||||
],
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
return df
|
||||
end
|
||||
|
||||
write_transportation_emissions_report(solution, filename) =
|
||||
CSV.write(filename, transportation_emissions_report(solution))
|
||||
@@ -1,14 +0,0 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using DataFrames
|
||||
using CSV
|
||||
import Base: write
|
||||
|
||||
function write(solution::AbstractDict, filename::AbstractString)
|
||||
@info "Writing solution: $filename"
|
||||
open(filename, "w") do file
|
||||
JSON.print(file, solution, 2)
|
||||
end
|
||||
end
|
||||
@@ -12,9 +12,7 @@
|
||||
"Parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"time horizon (years)": {
|
||||
"type": "number"
|
||||
}
|
||||
"time horizon (years)": { "type": "number" }
|
||||
},
|
||||
"required": [
|
||||
"time horizon (years)"
|
||||
@@ -25,27 +23,17 @@
|
||||
"additionalProperties": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"input": {
|
||||
"type": "string"
|
||||
},
|
||||
"input": { "type": "string" },
|
||||
"outputs (tonne/tonne)": {
|
||||
"type": "object",
|
||||
"additionalProperties": {
|
||||
"type": "number"
|
||||
}
|
||||
},
|
||||
"energy (GJ/tonne)": {
|
||||
"$ref": "#/definitions/TimeSeries"
|
||||
"additionalProperties": { "type": "number" }
|
||||
},
|
||||
"energy (GJ/tonne)": { "$ref": "#/definitions/TimeSeries" },
|
||||
"emissions (tonne/tonne)": {
|
||||
"type": "object",
|
||||
"additionalProperties": {
|
||||
"$ref": "#/definitions/TimeSeries"
|
||||
}
|
||||
"additionalProperties": { "$ref": "#/definitions/TimeSeries" }
|
||||
},
|
||||
"locations": {
|
||||
"$ref": "#/definitions/PlantLocation"
|
||||
}
|
||||
"locations": { "$ref": "#/definitions/PlantLocation" }
|
||||
},
|
||||
"required": [
|
||||
"input",
|
||||
@@ -58,26 +46,15 @@
|
||||
"additionalProperties": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string"
|
||||
},
|
||||
"latitude (deg)": {
|
||||
"type": "number"
|
||||
},
|
||||
"longitude (deg)": {
|
||||
"type": "number"
|
||||
},
|
||||
"latitude (deg)": { "type": "number" },
|
||||
"longitude (deg)": { "type": "number" },
|
||||
"disposal": {
|
||||
"type": "object",
|
||||
"additionalProperties": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"cost ($/tonne)": {
|
||||
"$ref": "#/definitions/TimeSeries"
|
||||
},
|
||||
"limit (tonne)": {
|
||||
"$ref": "#/definitions/TimeSeries"
|
||||
}
|
||||
"cost ($/tonne)": { "$ref": "#/definitions/TimeSeries" },
|
||||
"limit (tonne)": { "$ref": "#/definitions/TimeSeries" }
|
||||
},
|
||||
"required": [
|
||||
"cost ($/tonne)"
|
||||
@@ -87,32 +64,22 @@
|
||||
"storage": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"cost ($/tonne)": {
|
||||
"$ref": "#/definitions/TimeSeries"
|
||||
},
|
||||
"limit (tonne)": {
|
||||
"type": "number"
|
||||
}
|
||||
"cost ($/tonne)": { "$ref": "#/definitions/TimeSeries" },
|
||||
"limit (tonne)": { "type": "number" }
|
||||
},
|
||||
"required": [
|
||||
"cost ($/tonne)",
|
||||
"limit (tonne)"
|
||||
]
|
||||
},
|
||||
},
|
||||
"capacities (tonne)": {
|
||||
"type": "object",
|
||||
"additionalProperties": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"variable operating cost ($/tonne)": {
|
||||
"$ref": "#/definitions/TimeSeries"
|
||||
},
|
||||
"fixed operating cost ($)": {
|
||||
"$ref": "#/definitions/TimeSeries"
|
||||
},
|
||||
"opening cost ($)": {
|
||||
"$ref": "#/definitions/TimeSeries"
|
||||
}
|
||||
"variable operating cost ($/tonne)": { "$ref": "#/definitions/TimeSeries" },
|
||||
"fixed operating cost ($)": { "$ref": "#/definitions/TimeSeries" },
|
||||
"opening cost ($)": { "$ref": "#/definitions/TimeSeries" }
|
||||
},
|
||||
"required": [
|
||||
"variable operating cost ($/tonne)",
|
||||
@@ -120,9 +87,11 @@
|
||||
"opening cost ($)"
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"latitude (deg)",
|
||||
"longitude (deg)",
|
||||
"capacities (tonne)"
|
||||
]
|
||||
}
|
||||
@@ -132,20 +101,13 @@
|
||||
"additionalProperties": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string"
|
||||
},
|
||||
"latitude (deg)": {
|
||||
"type": "number"
|
||||
},
|
||||
"longitude (deg)": {
|
||||
"type": "number"
|
||||
},
|
||||
"amount (tonne)": {
|
||||
"$ref": "#/definitions/TimeSeries"
|
||||
}
|
||||
"latitude (deg)": { "type": "number" },
|
||||
"longitude (deg)": { "type": "number" },
|
||||
"amount (tonne)": { "$ref": "#/definitions/TimeSeries" }
|
||||
},
|
||||
"required": [
|
||||
"latitude (deg)",
|
||||
"longitude (deg)",
|
||||
"amount (tonne)"
|
||||
]
|
||||
}
|
||||
@@ -155,45 +117,25 @@
|
||||
"additionalProperties": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"transportation cost ($/km/tonne)": {
|
||||
"$ref": "#/definitions/TimeSeries"
|
||||
},
|
||||
"transportation energy (J/km/tonne)": {
|
||||
"$ref": "#/definitions/TimeSeries"
|
||||
},
|
||||
"transportation cost ($/km/tonne)": { "$ref": "#/definitions/TimeSeries" },
|
||||
"transportation energy (J/km/tonne)": { "$ref": "#/definitions/TimeSeries" },
|
||||
"transportation emissions (tonne/km/tonne)": {
|
||||
"type": "object",
|
||||
"additionalProperties": {
|
||||
"$ref": "#/definitions/TimeSeries"
|
||||
}
|
||||
"additionalProperties": { "$ref": "#/definitions/TimeSeries" }
|
||||
},
|
||||
"initial amounts": {
|
||||
"$ref": "#/definitions/InitialAmount"
|
||||
},
|
||||
"disposal limit (tonne)": {
|
||||
"$ref": "#/definitions/TimeSeries"
|
||||
},
|
||||
"disposal cost ($/tonne)": {
|
||||
"$ref": "#/definitions/TimeSeries"
|
||||
}
|
||||
"initial amounts": { "$ref": "#/definitions/InitialAmount" }
|
||||
},
|
||||
"required": [
|
||||
"transportation cost ($/km/tonne)"
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"parameters": {
|
||||
"$ref": "#/definitions/Parameters"
|
||||
},
|
||||
"plants": {
|
||||
"$ref": "#/definitions/Plant"
|
||||
},
|
||||
"products": {
|
||||
"$ref": "#/definitions/Product"
|
||||
}
|
||||
"parameters": { "$ref": "#/definitions/Parameters" },
|
||||
"plants": { "$ref": "#/definitions/Plant" },
|
||||
"products": { "$ref": "#/definitions/Product" }
|
||||
},
|
||||
"required": [
|
||||
"parameters",
|
||||
|
||||
@@ -1,30 +1,22 @@
|
||||
using PackageCompiler
|
||||
using TOML
|
||||
using Logging
|
||||
|
||||
Logging.disable_logging(Logging.Info)
|
||||
using Cbc
|
||||
using Clp
|
||||
using Geodesy
|
||||
using JSON
|
||||
using JSONSchema
|
||||
using JuMP
|
||||
using MathOptInterface
|
||||
using ProgressBars
|
||||
|
||||
mkpath("build")
|
||||
pkg = [:Cbc,
|
||||
:Clp,
|
||||
:Geodesy,
|
||||
:JSON,
|
||||
:JSONSchema,
|
||||
:JuMP,
|
||||
:MathOptInterface,
|
||||
:ProgressBars]
|
||||
|
||||
printstyled("Generating precompilation statements...\n", color = :light_green)
|
||||
run(`julia --project=. --trace-compile=build/precompile.jl $ARGS`)
|
||||
|
||||
printstyled("Finding dependencies...\n", color = :light_green)
|
||||
project = TOML.parsefile("Project.toml")
|
||||
manifest = TOML.parsefile("Manifest.toml")
|
||||
deps = Symbol[]
|
||||
for dep in keys(project["deps"])
|
||||
if "path" in keys(manifest[dep][1])
|
||||
printstyled(" skip $(dep)\n", color = :light_black)
|
||||
else
|
||||
println(" add $(dep)")
|
||||
push!(deps, Symbol(dep))
|
||||
end
|
||||
end
|
||||
|
||||
printstyled("Building system image...\n", color = :light_green)
|
||||
create_sysimage(
|
||||
deps,
|
||||
precompile_statements_file = "build/precompile.jl",
|
||||
sysimage_path = "build/sysimage.so",
|
||||
)
|
||||
@info "Building system image..."
|
||||
create_sysimage(pkg, sysimage_path="build/sysimage.so")
|
||||
7
test/fixtures/nimh_plant_emissions.csv
vendored
Normal file
7
test/fixtures/nimh_plant_emissions.csv
vendored
Normal file
@@ -0,0 +1,7 @@
|
||||
plant type,location name,year,emission type,emission amount (tonne)
|
||||
Rare Earth Recycling Plant,"Sebastian, Arkansas",1,CO2,40711.3
|
||||
Rare Earth Recycling Plant,"Stanly, North Carolina",1,CO2,23336.47
|
||||
Rare Earth Recycling Plant,"Lynn, Texas",1,CO2,52927.44
|
||||
Mega Plant,"Sebastian, Arkansas",1,CO2,110818.84
|
||||
Mega Plant,"District of Columbia, District of Columbia",1,CO2,63523.43
|
||||
Mega Plant,"Maricopa, Arizona",1,CO2,144072.0
|
||||
|
37
test/fixtures/nimh_plant_outputs.csv
vendored
Normal file
37
test/fixtures/nimh_plant_outputs.csv
vendored
Normal file
@@ -0,0 +1,37 @@
|
||||
plant type,location name,year,product name,amount produced (tonne),amount sent (tonne),amount disposed (tonne),disposal cost ($)
|
||||
Rare Earth Recycling Plant,"Sebastian, Arkansas",1,rare earth cela,18045.12,0.0,18045.12,0.0
|
||||
Rare Earth Recycling Plant,"Sebastian, Arkansas",1,rare earth diddy,7624.02,0.0,7624.02,0.0
|
||||
Rare Earth Recycling Plant,"Sebastian, Arkansas",1,salt,6434.8,0.0,6434.8,324314.03
|
||||
Rare Earth Recycling Plant,"Sebastian, Arkansas",1,rare earth misch,2188.78,0.0,2188.78,0.0
|
||||
Rare Earth Recycling Plant,"Stanly, North Carolina",1,rare earth cela,10343.8,0.0,10343.8,0.0
|
||||
Rare Earth Recycling Plant,"Stanly, North Carolina",1,rare earth diddy,4370.23,0.0,4370.23,0.0
|
||||
Rare Earth Recycling Plant,"Stanly, North Carolina",1,salt,3688.55,0.0,3688.55,185902.85
|
||||
Rare Earth Recycling Plant,"Stanly, North Carolina",1,rare earth misch,1254.65,0.0,1254.65,0.0
|
||||
Rare Earth Recycling Plant,"Lynn, Texas",1,rare earth cela,23459.88,0.0,23459.88,0.0
|
||||
Rare Earth Recycling Plant,"Lynn, Texas",1,rare earth diddy,9911.74,0.0,9911.74,0.0
|
||||
Rare Earth Recycling Plant,"Lynn, Texas",1,salt,8365.68,0.0,8365.68,421630.2
|
||||
Rare Earth Recycling Plant,"Lynn, Texas",1,rare earth misch,2845.56,0.0,2845.56,0.0
|
||||
Mega Plant,"Sebastian, Arkansas",1,iron-nickel scrap,35656.28,0.0,35656.28,0.0
|
||||
Mega Plant,"Sebastian, Arkansas",1,mixed-hydroxides,73141.86,0.0,73141.86,0.0
|
||||
Mega Plant,"Sebastian, Arkansas",1,leach residue,31470.35,0.0,31470.35,6.38848022e6
|
||||
Mega Plant,"Sebastian, Arkansas",1,plastic pack,96503.37,0.0,96503.37,4.86376966e6
|
||||
Mega Plant,"Sebastian, Arkansas",1,salt,285304.6,0.0,285304.6,1.437935192e7
|
||||
Mega Plant,"Sebastian, Arkansas",1,rare earth mix,44145.84,44145.84,0.0,0.0
|
||||
Mega Plant,"Sebastian, Arkansas",1,nickel-iron scrap,178655.26,0.0,178655.26,0.0
|
||||
Mega Plant,"Sebastian, Arkansas",1,nickel,37931.36,0.0,37931.36,0.0
|
||||
Mega Plant,"District of Columbia, District of Columbia",1,iron-nickel scrap,20438.84,0.0,20438.84,0.0
|
||||
Mega Plant,"District of Columbia, District of Columbia",1,mixed-hydroxides,41926.28,0.0,41926.28,0.0
|
||||
Mega Plant,"District of Columbia, District of Columbia",1,leach residue,18039.39,0.0,18039.39,3.66199595e6
|
||||
Mega Plant,"District of Columbia, District of Columbia",1,plastic pack,55317.53,0.0,55317.53,2.78800343e6
|
||||
Mega Plant,"District of Columbia, District of Columbia",1,salt,163541.92,0.0,163541.92,8.24251257e6
|
||||
Mega Plant,"District of Columbia, District of Columbia",1,rare earth mix,25305.22,25305.22,0.0,0.0
|
||||
Mega Plant,"District of Columbia, District of Columbia",1,nickel-iron scrap,102408.52,0.0,102408.52,0.0
|
||||
Mega Plant,"District of Columbia, District of Columbia",1,nickel,21742.96,0.0,21742.96,0.0
|
||||
Mega Plant,"Maricopa, Arizona",1,iron-nickel scrap,46355.57,0.0,46355.57,0.0
|
||||
Mega Plant,"Maricopa, Arizona",1,mixed-hydroxides,95089.37,0.0,95089.37,0.0
|
||||
Mega Plant,"Maricopa, Arizona",1,leach residue,40913.58,0.0,40913.58,8.30545698e6
|
||||
Mega Plant,"Maricopa, Arizona",1,plastic pack,125460.91,0.0,125460.91,6.32322998e6
|
||||
Mega Plant,"Maricopa, Arizona",1,salt,370915.31,0.0,370915.31,1.869413141e7
|
||||
Mega Plant,"Maricopa, Arizona",1,rare earth mix,57392.58,57392.58,0.0,0.0
|
||||
Mega Plant,"Maricopa, Arizona",1,nickel-iron scrap,232263.93,0.0,232263.93,0.0
|
||||
Mega Plant,"Maricopa, Arizona",1,nickel,49313.34,0.0,49313.34,0.0
|
||||
|
7
test/fixtures/nimh_plants.csv
vendored
Normal file
7
test/fixtures/nimh_plants.csv
vendored
Normal file
@@ -0,0 +1,7 @@
|
||||
plant type,location name,year,latitude (deg),longitude (deg),capacity (tonne),amount processed (tonne),utilization factor (%),energy (GJ),opening cost ($),expansion cost ($),fixed operating cost ($),variable operating cost ($),total cost ($)
|
||||
Rare Earth Recycling Plant,"Sebastian, Arkansas",1,35.23416,-94.212943,44145.84,44145.84,100.0,1.13360359e6,6.9926855e6,1.793555439e7,1.677420707e7,1.0080261442e8,1.4250506138e8
|
||||
Rare Earth Recycling Plant,"Stanly, North Carolina",1,35.334445,-80.223231,25305.22,25305.22,100.0,649802.71,7.1653444e6,9.98954108e6,1.126536154e7,5.778193764e7,8.620218466e7
|
||||
Rare Earth Recycling Plant,"Lynn, Texas",1,33.166444,-101.793455,57392.58,57392.58,100.0,1.47376145e6,7.4243328e6,2.5154042e7,2.06474474e7,1.310502261e8,1.842760483e8
|
||||
Mega Plant,"Sebastian, Arkansas",1,35.23416,-94.212943,553817.3,553817.3,100.0,3.08574408e6,1.6858178e7,4.012879371e7,3.834652057e7,4.2898688058e8,5.2432037286e8
|
||||
Mega Plant,"District of Columbia, District of Columbia",1,38.930028,-76.974164,317458.4,317458.4,100.0,1.76880602e6,2.12288167e7,2.746685387e7,2.602109584e7,2.4590327664e8,3.2062004305e8
|
||||
Mega Plant,"Maricopa, Arizona",1,33.647365,-111.893669,720000.0,720000.0,100.0,4.0116763e6,2.10206911e7,6.60955172e7,4.70124619e7,5.57712e8,6.918406702e8
|
||||
|
BIN
test/fixtures/nimh_solution.json.gz
vendored
Normal file
BIN
test/fixtures/nimh_solution.json.gz
vendored
Normal file
Binary file not shown.
3618
test/fixtures/nimh_transportation.csv
vendored
Normal file
3618
test/fixtures/nimh_transportation.csv
vendored
Normal file
File diff suppressed because it is too large
Load Diff
3618
test/fixtures/nimh_transportation_emissions.csv
vendored
Normal file
3618
test/fixtures/nimh_transportation_emissions.csv
vendored
Normal file
File diff suppressed because it is too large
Load Diff
@@ -1,39 +0,0 @@
|
||||
# Copyright (C) 2020 Argonne National Laboratory
|
||||
# Written by Alinson Santos Xavier <axavier@anl.gov>
|
||||
|
||||
using RELOG
|
||||
|
||||
@testset "build_graph" begin
|
||||
basedir = dirname(@__FILE__)
|
||||
instance = RELOG.parsefile("$basedir/../../instances/s1.json")
|
||||
graph = RELOG.build_graph(instance)
|
||||
process_node_by_location_name =
|
||||
Dict(n.location.location_name => n for n in graph.process_nodes)
|
||||
|
||||
@test length(graph.plant_shipping_nodes) == 8
|
||||
@test length(graph.collection_shipping_nodes) == 10
|
||||
@test length(graph.process_nodes) == 6
|
||||
|
||||
node = graph.collection_shipping_nodes[1]
|
||||
@test node.location.name == "C1"
|
||||
@test length(node.incoming_arcs) == 0
|
||||
@test length(node.outgoing_arcs) == 2
|
||||
@test node.outgoing_arcs[1].source.location.name == "C1"
|
||||
@test node.outgoing_arcs[1].dest.location.plant_name == "F1"
|
||||
@test node.outgoing_arcs[1].dest.location.location_name == "L1"
|
||||
@test node.outgoing_arcs[1].values["distance"] == 1095.62
|
||||
|
||||
node = process_node_by_location_name["L1"]
|
||||
@test node.location.plant_name == "F1"
|
||||
@test node.location.location_name == "L1"
|
||||
@test length(node.incoming_arcs) == 10
|
||||
@test length(node.outgoing_arcs) == 2
|
||||
|
||||
node = process_node_by_location_name["L3"]
|
||||
@test node.location.plant_name == "F2"
|
||||
@test node.location.location_name == "L3"
|
||||
@test length(node.incoming_arcs) == 2
|
||||
@test length(node.outgoing_arcs) == 2
|
||||
|
||||
@test length(graph.arcs) == 38
|
||||
end
|
||||
42
test/graph_test.jl
Normal file
42
test/graph_test.jl
Normal file
@@ -0,0 +1,42 @@
|
||||
# Copyright (C) 2020 Argonne National Laboratory
|
||||
# Written by Alinson Santos Xavier <axavier@anl.gov>
|
||||
|
||||
using RELOG
|
||||
|
||||
@testset "Graph" begin
|
||||
@testset "build_graph" begin
|
||||
basedir = dirname(@__FILE__)
|
||||
instance = RELOG.parsefile("$basedir/../instances/s1.json")
|
||||
graph = RELOG.build_graph(instance)
|
||||
process_node_by_location_name = Dict(n.location.location_name => n
|
||||
for n in graph.process_nodes)
|
||||
|
||||
@test length(graph.plant_shipping_nodes) == 8
|
||||
@test length(graph.collection_shipping_nodes) == 10
|
||||
@test length(graph.process_nodes) == 6
|
||||
|
||||
node = graph.collection_shipping_nodes[1]
|
||||
@test node.location.name == "C1"
|
||||
@test length(node.incoming_arcs) == 0
|
||||
@test length(node.outgoing_arcs) == 2
|
||||
@test node.outgoing_arcs[1].source.location.name == "C1"
|
||||
@test node.outgoing_arcs[1].dest.location.plant_name == "F1"
|
||||
@test node.outgoing_arcs[1].dest.location.location_name == "L1"
|
||||
@test node.outgoing_arcs[1].values["distance"] == 1095.62
|
||||
|
||||
node = process_node_by_location_name["L1"]
|
||||
@test node.location.plant_name == "F1"
|
||||
@test node.location.location_name == "L1"
|
||||
@test length(node.incoming_arcs) == 10
|
||||
@test length(node.outgoing_arcs) == 2
|
||||
|
||||
node = process_node_by_location_name["L3"]
|
||||
@test node.location.plant_name == "F2"
|
||||
@test node.location.location_name == "L3"
|
||||
@test length(node.incoming_arcs) == 2
|
||||
@test length(node.outgoing_arcs) == 2
|
||||
|
||||
@test length(graph.arcs) == 38
|
||||
end
|
||||
end
|
||||
|
||||
@@ -1,53 +0,0 @@
|
||||
# Copyright (C) 2020 Argonne National Laboratory
|
||||
# Written by Alinson Santos Xavier <axavier@anl.gov>
|
||||
|
||||
using RELOG
|
||||
|
||||
@testset "compress" begin
|
||||
basedir = dirname(@__FILE__)
|
||||
instance = RELOG.parsefile("$basedir/../../instances/s1.json")
|
||||
compressed = RELOG._compress(instance)
|
||||
|
||||
product_name_to_product = Dict(p.name => p for p in compressed.products)
|
||||
location_name_to_facility = Dict()
|
||||
for p in compressed.plants
|
||||
location_name_to_facility[p.location_name] = p
|
||||
end
|
||||
for c in compressed.collection_centers
|
||||
location_name_to_facility[c.name] = c
|
||||
end
|
||||
|
||||
p1 = product_name_to_product["P1"]
|
||||
p2 = product_name_to_product["P2"]
|
||||
p3 = product_name_to_product["P3"]
|
||||
c1 = location_name_to_facility["C1"]
|
||||
l1 = location_name_to_facility["L1"]
|
||||
|
||||
@test compressed.time == 1
|
||||
@test compressed.building_period == [1]
|
||||
|
||||
@test p1.name == "P1"
|
||||
@test p1.transportation_cost ≈ [0.015]
|
||||
@test p1.transportation_energy ≈ [0.115]
|
||||
@test p1.transportation_emissions["CO2"] ≈ [0.051]
|
||||
@test p1.transportation_emissions["CH4"] ≈ [0.0025]
|
||||
|
||||
@test c1.name == "C1"
|
||||
@test c1.amount ≈ [1869.12]
|
||||
|
||||
@test l1.plant_name == "F1"
|
||||
@test l1.location_name == "L1"
|
||||
@test l1.energy ≈ [0.115]
|
||||
@test l1.emissions["CO2"] ≈ [0.051]
|
||||
@test l1.emissions["CH4"] ≈ [0.0025]
|
||||
@test l1.sizes[1].opening_cost ≈ [500]
|
||||
@test l1.sizes[2].opening_cost ≈ [1250]
|
||||
@test l1.sizes[1].fixed_operating_cost ≈ [60]
|
||||
@test l1.sizes[2].fixed_operating_cost ≈ [60]
|
||||
@test l1.sizes[1].variable_operating_cost ≈ [30]
|
||||
@test l1.sizes[2].variable_operating_cost ≈ [30]
|
||||
@test l1.disposal_limit[p2] ≈ [2.0]
|
||||
@test l1.disposal_limit[p3] ≈ [2.0]
|
||||
@test l1.disposal_cost[p2] ≈ [-10.0]
|
||||
@test l1.disposal_cost[p3] ≈ [-10.0]
|
||||
end
|
||||
@@ -1,25 +0,0 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using RELOG
|
||||
|
||||
@testset "geodb_query (2018-us-county)" begin
|
||||
region = RELOG.geodb_query("2018-us-county:17043")
|
||||
@test region.centroid.lat == 41.83956
|
||||
@test region.centroid.lon == -88.08857
|
||||
@test region.population == 922_921
|
||||
end
|
||||
|
||||
# @testset "geodb_query (2018-us-zcta)" begin
|
||||
# region = RELOG.geodb_query("2018-us-zcta:60439")
|
||||
# @test region.centroid.lat == 41.68241
|
||||
# @test region.centroid.lon == -87.98954
|
||||
# end
|
||||
|
||||
@testset "geodb_query (us-state)" begin
|
||||
region = RELOG.geodb_query("us-state:IL")
|
||||
@test region.centroid.lat == 39.73939
|
||||
@test region.centroid.lon == -89.50414
|
||||
@test region.population == 12_671_821
|
||||
end
|
||||
@@ -1,93 +0,0 @@
|
||||
# Copyright (C) 2020 Argonne National Laboratory
|
||||
# Written by Alinson Santos Xavier <axavier@anl.gov>
|
||||
|
||||
using RELOG
|
||||
|
||||
@testset "parse" begin
|
||||
basedir = dirname(@__FILE__)
|
||||
instance = RELOG.parsefile("$basedir/../../instances/s1.json")
|
||||
|
||||
centers = instance.collection_centers
|
||||
plants = instance.plants
|
||||
products = instance.products
|
||||
location_name_to_plant = Dict(p.location_name => p for p in plants)
|
||||
product_name_to_product = Dict(p.name => p for p in products)
|
||||
|
||||
@test length(centers) == 10
|
||||
@test centers[1].name == "C1"
|
||||
@test centers[1].latitude == 7
|
||||
@test centers[1].latitude == 7
|
||||
@test centers[1].longitude == 7
|
||||
@test centers[1].amount == [934.56, 934.56]
|
||||
@test centers[1].product.name == "P1"
|
||||
|
||||
@test length(plants) == 6
|
||||
|
||||
plant = location_name_to_plant["L1"]
|
||||
@test plant.plant_name == "F1"
|
||||
@test plant.location_name == "L1"
|
||||
@test plant.input.name == "P1"
|
||||
@test plant.latitude == 0
|
||||
@test plant.longitude == 0
|
||||
|
||||
@test length(plant.sizes) == 2
|
||||
@test plant.sizes[1].capacity == 250
|
||||
@test plant.sizes[1].opening_cost == [500, 500]
|
||||
@test plant.sizes[1].fixed_operating_cost == [30, 30]
|
||||
@test plant.sizes[1].variable_operating_cost == [30, 30]
|
||||
@test plant.sizes[2].capacity == 1000
|
||||
@test plant.sizes[2].opening_cost == [1250, 1250]
|
||||
@test plant.sizes[2].fixed_operating_cost == [30, 30]
|
||||
@test plant.sizes[2].variable_operating_cost == [30, 30]
|
||||
|
||||
p1 = product_name_to_product["P1"]
|
||||
@test p1.disposal_limit == [1.0, 1.0]
|
||||
@test p1.disposal_cost == [-1000.0, -1000.0]
|
||||
|
||||
p2 = product_name_to_product["P2"]
|
||||
@test p2.disposal_limit == [0.0, 0.0]
|
||||
@test p2.disposal_cost == [0.0, 0.0]
|
||||
|
||||
p3 = product_name_to_product["P3"]
|
||||
@test length(plant.output) == 2
|
||||
@test plant.output[p2] == 0.2
|
||||
@test plant.output[p3] == 0.5
|
||||
@test plant.disposal_limit[p2] == [1, 1]
|
||||
@test plant.disposal_limit[p3] == [1, 1]
|
||||
@test plant.disposal_cost[p2] == [-10, -10]
|
||||
@test plant.disposal_cost[p3] == [-10, -10]
|
||||
|
||||
plant = location_name_to_plant["L3"]
|
||||
@test plant.location_name == "L3"
|
||||
@test plant.input.name == "P2"
|
||||
@test plant.latitude == 25
|
||||
@test plant.longitude == 65
|
||||
|
||||
@test length(plant.sizes) == 2
|
||||
@test plant.sizes[1].capacity == 1000.0
|
||||
@test plant.sizes[1].opening_cost == [3000, 3000]
|
||||
@test plant.sizes[1].fixed_operating_cost == [50, 50]
|
||||
@test plant.sizes[1].variable_operating_cost == [50, 50]
|
||||
@test plant.sizes[1] == plant.sizes[2]
|
||||
|
||||
p4 = product_name_to_product["P4"]
|
||||
@test plant.output[p3] == 0.05
|
||||
@test plant.output[p4] == 0.8
|
||||
@test plant.disposal_limit[p3] == [1e8, 1e8]
|
||||
@test plant.disposal_limit[p4] == [0, 0]
|
||||
end
|
||||
|
||||
@testset "parse (geodb)" begin
|
||||
basedir = dirname(@__FILE__)
|
||||
instance = RELOG.parsefile("$basedir/../../instances/s2.json")
|
||||
|
||||
centers = instance.collection_centers
|
||||
@test centers[1].name == "C1"
|
||||
@test centers[1].latitude == 41.83956
|
||||
@test centers[1].longitude == -88.08857
|
||||
end
|
||||
|
||||
# @testset "parse (invalid)" begin
|
||||
# basedir = dirname(@__FILE__)
|
||||
# @test_throws ErrorException RELOG.parsefile("$basedir/../fixtures/s1-wrong-length.json")
|
||||
# end
|
||||
127
test/instance_test.jl
Normal file
127
test/instance_test.jl
Normal file
@@ -0,0 +1,127 @@
|
||||
# Copyright (C) 2020 Argonne National Laboratory
|
||||
# Written by Alinson Santos Xavier <axavier@anl.gov>
|
||||
|
||||
using RELOG
|
||||
|
||||
@testset "Instance" begin
|
||||
@testset "load" begin
|
||||
basedir = dirname(@__FILE__)
|
||||
instance = RELOG.parsefile("$basedir/../instances/s1.json")
|
||||
|
||||
centers = instance.collection_centers
|
||||
plants = instance.plants
|
||||
products = instance.products
|
||||
location_name_to_plant = Dict(p.location_name => p for p in plants)
|
||||
product_name_to_product = Dict(p.name => p for p in products)
|
||||
|
||||
@test length(centers) == 10
|
||||
@test centers[1].name == "C1"
|
||||
@test centers[1].latitude == 7
|
||||
@test centers[1].latitude == 7
|
||||
@test centers[1].longitude == 7
|
||||
@test centers[1].amount == [934.56, 934.56]
|
||||
@test centers[1].product.name == "P1"
|
||||
|
||||
@test length(plants) == 6
|
||||
|
||||
plant = location_name_to_plant["L1"]
|
||||
@test plant.plant_name == "F1"
|
||||
@test plant.location_name == "L1"
|
||||
@test plant.input.name == "P1"
|
||||
@test plant.latitude == 0
|
||||
@test plant.longitude == 0
|
||||
|
||||
@test length(plant.sizes) == 2
|
||||
@test plant.sizes[1].capacity == 250
|
||||
@test plant.sizes[1].opening_cost == [500, 500]
|
||||
@test plant.sizes[1].fixed_operating_cost == [30, 30]
|
||||
@test plant.sizes[1].variable_operating_cost == [30, 30]
|
||||
@test plant.sizes[2].capacity == 1000
|
||||
@test plant.sizes[2].opening_cost == [1250, 1250]
|
||||
@test plant.sizes[2].fixed_operating_cost == [30, 30]
|
||||
@test plant.sizes[2].variable_operating_cost == [30, 30]
|
||||
|
||||
p2 = product_name_to_product["P2"]
|
||||
p3 = product_name_to_product["P3"]
|
||||
@test length(plant.output) == 2
|
||||
@test plant.output[p2] == 0.2
|
||||
@test plant.output[p3] == 0.5
|
||||
@test plant.disposal_limit[p2] == [1, 1]
|
||||
@test plant.disposal_limit[p3] == [1, 1]
|
||||
@test plant.disposal_cost[p2] == [-10, -10]
|
||||
@test plant.disposal_cost[p3] == [-10, -10]
|
||||
|
||||
plant = location_name_to_plant["L3"]
|
||||
@test plant.location_name == "L3"
|
||||
@test plant.input.name == "P2"
|
||||
@test plant.latitude == 25
|
||||
@test plant.longitude == 65
|
||||
|
||||
@test length(plant.sizes) == 2
|
||||
@test plant.sizes[1].capacity == 1000.0
|
||||
@test plant.sizes[1].opening_cost == [3000, 3000]
|
||||
@test plant.sizes[1].fixed_operating_cost == [50, 50]
|
||||
@test plant.sizes[1].variable_operating_cost == [50, 50]
|
||||
@test plant.sizes[1] == plant.sizes[2]
|
||||
|
||||
p4 = product_name_to_product["P4"]
|
||||
@test plant.output[p3] == 0.05
|
||||
@test plant.output[p4] == 0.8
|
||||
@test plant.disposal_limit[p3] == [1e8, 1e8]
|
||||
@test plant.disposal_limit[p4] == [0, 0]
|
||||
end
|
||||
|
||||
@testset "validate timeseries" begin
|
||||
@test_throws String RELOG.parsefile("fixtures/s1-wrong-length.json")
|
||||
end
|
||||
|
||||
@testset "compress" begin
|
||||
basedir = dirname(@__FILE__)
|
||||
instance = RELOG.parsefile("$basedir/../instances/s1.json")
|
||||
compressed = RELOG._compress(instance)
|
||||
|
||||
product_name_to_product = Dict(p.name => p for p in compressed.products)
|
||||
location_name_to_facility = Dict()
|
||||
for p in compressed.plants
|
||||
location_name_to_facility[p.location_name] = p
|
||||
end
|
||||
for c in compressed.collection_centers
|
||||
location_name_to_facility[c.name] = c
|
||||
end
|
||||
|
||||
p1 = product_name_to_product["P1"]
|
||||
p2 = product_name_to_product["P2"]
|
||||
p3 = product_name_to_product["P3"]
|
||||
c1 = location_name_to_facility["C1"]
|
||||
l1 = location_name_to_facility["L1"]
|
||||
|
||||
@test compressed.time == 1
|
||||
@test compressed.building_period == [1]
|
||||
|
||||
@test p1.name == "P1"
|
||||
@test p1.transportation_cost ≈ [0.015]
|
||||
@test p1.transportation_energy ≈ [0.115]
|
||||
@test p1.transportation_emissions["CO2"] ≈ [0.051]
|
||||
@test p1.transportation_emissions["CH4"] ≈ [0.0025]
|
||||
|
||||
@test c1.name == "C1"
|
||||
@test c1.amount ≈ [1869.12]
|
||||
|
||||
@test l1.plant_name == "F1"
|
||||
@test l1.location_name == "L1"
|
||||
@test l1.energy ≈ [0.115]
|
||||
@test l1.emissions["CO2"] ≈ [0.051]
|
||||
@test l1.emissions["CH4"] ≈ [0.0025]
|
||||
@test l1.sizes[1].opening_cost ≈ [500]
|
||||
@test l1.sizes[2].opening_cost ≈ [1250]
|
||||
@test l1.sizes[1].fixed_operating_cost ≈ [60]
|
||||
@test l1.sizes[2].fixed_operating_cost ≈ [60]
|
||||
@test l1.sizes[1].variable_operating_cost ≈ [30]
|
||||
@test l1.sizes[2].variable_operating_cost ≈ [30]
|
||||
@test l1.disposal_limit[p2] ≈ [2.0]
|
||||
@test l1.disposal_limit[p3] ≈ [2.0]
|
||||
@test l1.disposal_cost[p2] ≈ [-10.0]
|
||||
@test l1.disposal_cost[p3] ≈ [-10.0]
|
||||
end
|
||||
end
|
||||
|
||||
@@ -1,38 +0,0 @@
|
||||
# Copyright (C) 2020 Argonne National Laboratory
|
||||
# Written by Alinson Santos Xavier <axavier@anl.gov>
|
||||
|
||||
using RELOG, Cbc, JuMP, Printf, JSON, MathOptInterface.FileFormats
|
||||
|
||||
@testset "build" begin
|
||||
basedir = dirname(@__FILE__)
|
||||
instance = RELOG.parsefile("$basedir/../../instances/s1.json")
|
||||
graph = RELOG.build_graph(instance)
|
||||
model = RELOG.build_model(instance, graph, Cbc.Optimizer)
|
||||
set_optimizer_attribute(model, "logLevel", 0)
|
||||
|
||||
process_node_by_location_name =
|
||||
Dict(n.location.location_name => n for n in graph.process_nodes)
|
||||
|
||||
shipping_node_by_loc_and_prod_names = Dict(
|
||||
(n.location.location_name, n.product.name) => n for n in graph.plant_shipping_nodes
|
||||
)
|
||||
|
||||
@test length(model[:flow]) == 76
|
||||
@test length(model[:plant_dispose]) == 16
|
||||
@test length(model[:open_plant]) == 12
|
||||
@test length(model[:capacity]) == 12
|
||||
@test length(model[:expansion]) == 12
|
||||
|
||||
l1 = process_node_by_location_name["L1"]
|
||||
v = model[:capacity][l1, 1]
|
||||
@test lower_bound(v) == 0.0
|
||||
@test upper_bound(v) == 1000.0
|
||||
|
||||
v = model[:expansion][l1, 1]
|
||||
@test lower_bound(v) == 0.0
|
||||
@test upper_bound(v) == 750.0
|
||||
|
||||
v = model[:plant_dispose][shipping_node_by_loc_and_prod_names["L1", "P2"], 1]
|
||||
@test lower_bound(v) == 0.0
|
||||
@test upper_bound(v) == 1.0
|
||||
end
|
||||
@@ -1,13 +0,0 @@
|
||||
# Copyright (C) 2020 Argonne National Laboratory
|
||||
# Written by Alinson Santos Xavier <axavier@anl.gov>
|
||||
|
||||
using RELOG
|
||||
|
||||
basedir = @__DIR__
|
||||
|
||||
@testset "Resolve" begin
|
||||
# Shoud not crash
|
||||
filename = "$basedir/../../instances/s1.json"
|
||||
solution_old, model_old = RELOG.solve(filename, return_model = true)
|
||||
solution_new = RELOG.resolve(model_old, filename)
|
||||
end
|
||||
@@ -1,70 +0,0 @@
|
||||
# Copyright (C) 2020 Argonne National Laboratory
|
||||
# Written by Alinson Santos Xavier <axavier@anl.gov>
|
||||
|
||||
using RELOG, Cbc, JuMP, Printf, JSON, MathOptInterface.FileFormats
|
||||
|
||||
basedir = dirname(@__FILE__)
|
||||
|
||||
@testset "solve (exact)" begin
|
||||
solution_filename_a = tempname()
|
||||
solution_filename_b = tempname()
|
||||
solution = RELOG.solve("$basedir/../../instances/s1.json", output = solution_filename_a)
|
||||
|
||||
@test isfile(solution_filename_a)
|
||||
|
||||
RELOG.write(solution, solution_filename_b)
|
||||
@test isfile(solution_filename_b)
|
||||
|
||||
@test "Costs" in keys(solution)
|
||||
@test "Fixed operating (\$)" in keys(solution["Costs"])
|
||||
@test "Transportation (\$)" in keys(solution["Costs"])
|
||||
@test "Variable operating (\$)" in keys(solution["Costs"])
|
||||
@test "Total (\$)" in keys(solution["Costs"])
|
||||
|
||||
@test "Plants" in keys(solution)
|
||||
@test "F1" in keys(solution["Plants"])
|
||||
@test "F2" in keys(solution["Plants"])
|
||||
@test "F3" in keys(solution["Plants"])
|
||||
@test "F4" in keys(solution["Plants"])
|
||||
|
||||
@test "Products" in keys(solution)
|
||||
@test "P1" in keys(solution["Products"])
|
||||
@test "C1" in keys(solution["Products"]["P1"])
|
||||
@test "Dispose (tonne)" in keys(solution["Products"]["P1"]["C1"])
|
||||
|
||||
total_disposal =
|
||||
sum([loc["Dispose (tonne)"] for loc in values(solution["Products"]["P1"])])
|
||||
@test total_disposal == [1.0, 1.0]
|
||||
end
|
||||
|
||||
@testset "solve (heuristic)" begin
|
||||
# Should not crash
|
||||
solution = RELOG.solve("$basedir/../../instances/s1.json", heuristic = true)
|
||||
end
|
||||
|
||||
@testset "solve (infeasible)" begin
|
||||
json = JSON.parsefile("$basedir/../../instances/s1.json")
|
||||
for (location_name, location_dict) in json["products"]["P1"]["initial amounts"]
|
||||
location_dict["amount (tonne)"] *= 1000
|
||||
end
|
||||
@test_throws ErrorException("No solution available") RELOG.solve(RELOG.parse(json))
|
||||
end
|
||||
|
||||
@testset "solve (with storage)" begin
|
||||
basedir = dirname(@__FILE__)
|
||||
filename = "$basedir/../fixtures/storage.json"
|
||||
instance = RELOG.parsefile(filename)
|
||||
@test instance.plants[1].storage_limit == 50.0
|
||||
@test instance.plants[1].storage_cost == [2.0, 1.5, 1.0]
|
||||
|
||||
solution = RELOG.solve(filename)
|
||||
plant_dict = solution["Plants"]["mega plant"]["Chicago"]
|
||||
@test plant_dict["Variable operating cost (\$)"] == [500.0, 0.0, 100.0]
|
||||
@test plant_dict["Process (tonne)"] == [50.0, 0.0, 50.0]
|
||||
@test plant_dict["Storage (tonne)"] == [50.0, 50.0, 0.0]
|
||||
@test plant_dict["Storage cost (\$)"] == [100.0, 75.0, 0.0]
|
||||
|
||||
@test solution["Costs"]["Variable operating (\$)"] == [500.0, 0.0, 100.0]
|
||||
@test solution["Costs"]["Storage (\$)"] == [100.0, 75.0, 0.0]
|
||||
@test solution["Costs"]["Total (\$)"] == [600.0, 75.0, 100.0]
|
||||
end
|
||||
100
test/model_test.jl
Normal file
100
test/model_test.jl
Normal file
@@ -0,0 +1,100 @@
|
||||
# Copyright (C) 2020 Argonne National Laboratory
|
||||
# Written by Alinson Santos Xavier <axavier@anl.gov>
|
||||
|
||||
using RELOG, Cbc, JuMP, Printf, JSON, MathOptInterface.FileFormats
|
||||
|
||||
@testset "Model" begin
|
||||
@testset "build" begin
|
||||
basedir = dirname(@__FILE__)
|
||||
instance = RELOG.parsefile("$basedir/../instances/s1.json")
|
||||
graph = RELOG.build_graph(instance)
|
||||
model = RELOG.build_model(instance, graph, Cbc.Optimizer)
|
||||
set_optimizer_attribute(model.mip, "logLevel", 0)
|
||||
|
||||
process_node_by_location_name = Dict(n.location.location_name => n
|
||||
for n in graph.process_nodes)
|
||||
|
||||
shipping_node_by_location_and_product_names = Dict((n.location.location_name, n.product.name) => n
|
||||
for n in graph.plant_shipping_nodes)
|
||||
|
||||
@test length(model.vars.flow) == 76
|
||||
@test length(model.vars.dispose) == 16
|
||||
@test length(model.vars.open_plant) == 12
|
||||
@test length(model.vars.capacity) == 12
|
||||
@test length(model.vars.expansion) == 12
|
||||
|
||||
l1 = process_node_by_location_name["L1"]
|
||||
v = model.vars.capacity[l1, 1]
|
||||
@test lower_bound(v) == 0.0
|
||||
@test upper_bound(v) == 1000.0
|
||||
|
||||
v = model.vars.expansion[l1, 1]
|
||||
@test lower_bound(v) == 0.0
|
||||
@test upper_bound(v) == 750.0
|
||||
|
||||
v = model.vars.dispose[shipping_node_by_location_and_product_names["L1", "P2"], 1]
|
||||
@test lower_bound(v) == 0.0
|
||||
@test upper_bound(v) == 1.0
|
||||
|
||||
# dest = FileFormats.Model(format = FileFormats.FORMAT_LP)
|
||||
# MOI.copy_to(dest, model.mip)
|
||||
# MOI.write_to_file(dest, "model.lp")
|
||||
end
|
||||
|
||||
@testset "solve (exact)" begin
|
||||
solution_filename_a = tempname()
|
||||
solution_filename_b = tempname()
|
||||
solution = RELOG.solve("$(pwd())/../instances/s1.json",
|
||||
output=solution_filename_a)
|
||||
|
||||
@test isfile(solution_filename_a)
|
||||
|
||||
RELOG.write(solution, solution_filename_b)
|
||||
@test isfile(solution_filename_b)
|
||||
|
||||
@test "Costs" in keys(solution)
|
||||
@test "Fixed operating (\$)" in keys(solution["Costs"])
|
||||
@test "Transportation (\$)" in keys(solution["Costs"])
|
||||
@test "Variable operating (\$)" in keys(solution["Costs"])
|
||||
@test "Total (\$)" in keys(solution["Costs"])
|
||||
|
||||
@test "Plants" in keys(solution)
|
||||
@test "F1" in keys(solution["Plants"])
|
||||
@test "F2" in keys(solution["Plants"])
|
||||
@test "F3" in keys(solution["Plants"])
|
||||
@test "F4" in keys(solution["Plants"])
|
||||
end
|
||||
|
||||
|
||||
@testset "solve (heuristic)" begin
|
||||
# Should not crash
|
||||
solution = RELOG.solve("$(pwd())/../instances/s1.json", heuristic=true)
|
||||
end
|
||||
|
||||
@testset "infeasible solve" begin
|
||||
json = JSON.parsefile("$(pwd())/../instances/s1.json")
|
||||
for (location_name, location_dict) in json["products"]["P1"]["initial amounts"]
|
||||
location_dict["amount (tonne)"] *= 1000
|
||||
end
|
||||
RELOG.solve(RELOG.parse(json))
|
||||
end
|
||||
|
||||
@testset "storage" begin
|
||||
basedir = dirname(@__FILE__)
|
||||
filename = "$basedir/fixtures/storage.json"
|
||||
instance = RELOG.parsefile(filename)
|
||||
@test instance.plants[1].storage_limit == 50.0
|
||||
@test instance.plants[1].storage_cost == [2.0, 1.5, 1.0]
|
||||
|
||||
solution = RELOG.solve(filename)
|
||||
plant_dict = solution["Plants"]["mega plant"]["Chicago"]
|
||||
@test plant_dict["Variable operating cost (\$)"] == [500.0, 0.0, 100.0]
|
||||
@test plant_dict["Process (tonne)"] == [50.0, 0.0, 50.0]
|
||||
@test plant_dict["Storage (tonne)"] == [50.0, 50.0, 0.0]
|
||||
@test plant_dict["Storage cost (\$)"] == [100.0, 75.0, 0.0]
|
||||
|
||||
@test solution["Costs"]["Variable operating (\$)"] == [500.0, 0.0, 100.0]
|
||||
@test solution["Costs"]["Storage (\$)"] == [100.0, 75.0, 0.0]
|
||||
@test solution["Costs"]["Total (\$)"] == [600.0, 75.0, 100.0]
|
||||
end
|
||||
end
|
||||
@@ -4,18 +4,38 @@
|
||||
|
||||
using RELOG, JSON, GZip
|
||||
|
||||
basedir = @__DIR__
|
||||
load_json_gz(filename) = JSON.parse(GZip.gzopen(filename))
|
||||
|
||||
# function check(func, expected_csv_filename::String)
|
||||
# solution = load_json_gz("fixtures/nimh_solution.json.gz")
|
||||
# actual_csv_filename = tempname()
|
||||
# func(solution, actual_csv_filename)
|
||||
# @test isfile(actual_csv_filename)
|
||||
# if readlines(actual_csv_filename) != readlines(expected_csv_filename)
|
||||
# out_filename = replace(expected_csv_filename, ".csv" => "_actual.csv")
|
||||
# @error "$func: Unexpected CSV contents: $out_filename"
|
||||
# write(out_filename, read(actual_csv_filename))
|
||||
# @test false
|
||||
# end
|
||||
# end
|
||||
|
||||
@testset "Reports" begin
|
||||
# @testset "from fixture" begin
|
||||
# check(RELOG.write_plants_report, "fixtures/nimh_plants.csv")
|
||||
# check(RELOG.write_plant_outputs_report, "fixtures/nimh_plant_outputs.csv")
|
||||
# check(RELOG.write_plant_emissions_report, "fixtures/nimh_plant_emissions.csv")
|
||||
# check(RELOG.write_transportation_report, "fixtures/nimh_transportation.csv")
|
||||
# check(RELOG.write_transportation_emissions_report, "fixtures/nimh_transportation_emissions.csv")
|
||||
# end
|
||||
|
||||
@testset "from solve" begin
|
||||
solution = RELOG.solve("$basedir/../instances/s1.json")
|
||||
solution = RELOG.solve("$(pwd())/../instances/s1.json")
|
||||
tmp_filename = tempname()
|
||||
# The following should not crash
|
||||
RELOG.write_plant_emissions_report(solution, tmp_filename)
|
||||
RELOG.write_plant_outputs_report(solution, tmp_filename)
|
||||
RELOG.write_plants_report(solution, tmp_filename)
|
||||
RELOG.write_products_report(solution, tmp_filename)
|
||||
RELOG.write_transportation_emissions_report(solution, tmp_filename)
|
||||
RELOG.write_plant_outputs_report(solution, tmp_filename)
|
||||
RELOG.write_plant_emissions_report(solution, tmp_filename)
|
||||
RELOG.write_transportation_report(solution, tmp_filename)
|
||||
RELOG.write_transportation_emissions_report(solution, tmp_filename)
|
||||
end
|
||||
end
|
||||
|
||||
@@ -4,18 +4,8 @@
|
||||
using Test
|
||||
|
||||
@testset "RELOG" begin
|
||||
@testset "Instance" begin
|
||||
include("instance/compress_test.jl")
|
||||
include("instance/geodb_test.jl")
|
||||
include("instance/parse_test.jl")
|
||||
end
|
||||
@testset "Graph" begin
|
||||
include("graph/build_test.jl")
|
||||
end
|
||||
@testset "Model" begin
|
||||
include("model/build_test.jl")
|
||||
include("model/solve_test.jl")
|
||||
include("model/resolve_test.jl")
|
||||
end
|
||||
include("instance_test.jl")
|
||||
include("graph_test.jl")
|
||||
include("model_test.jl")
|
||||
include("reports_test.jl")
|
||||
end
|
||||
end
|
||||
Reference in New Issue
Block a user