mirror of
https://github.com/ANL-CEEESA/UnitCommitment.jl.git
synced 2025-12-06 00:08:52 -06:00
Merge remote-tracking branch 'upstream/dev' into dev
This commit is contained in:
@@ -4,6 +4,8 @@
|
||||
|
||||
module UnitCommitment
|
||||
|
||||
using Base: String
|
||||
|
||||
include("instance/structs.jl")
|
||||
include("model/formulations/base/structs.jl")
|
||||
include("solution/structs.jl")
|
||||
|
||||
@@ -43,26 +43,76 @@ function read_benchmark(
|
||||
return UnitCommitment.read(filename)
|
||||
end
|
||||
|
||||
function _repair_scenario_names_and_probabilities!(
|
||||
scenarios::Vector{UnitCommitmentScenario},
|
||||
path::Vector{String},
|
||||
)::Nothing
|
||||
total_weight = sum([sc.probability for sc in scenarios])
|
||||
for (sc_path, sc) in zip(path, scenarios)
|
||||
sc.name !== "" ||
|
||||
(sc.name = first(split(last(split(sc_path, "/")), ".")))
|
||||
sc.probability = (sc.probability / total_weight)
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
"""
|
||||
read(path::AbstractString)::UnitCommitmentInstance
|
||||
|
||||
Read instance from a file. The file may be gzipped.
|
||||
Read a deterministic test case from the given file. The file may be gzipped.
|
||||
|
||||
# Example
|
||||
|
||||
```julia
|
||||
instance = UnitCommitment.read("/path/to/input.json.gz")
|
||||
instance = UnitCommitment.read("s1.json.gz")
|
||||
```
|
||||
"""
|
||||
function read(path::AbstractString)::UnitCommitmentInstance
|
||||
if endswith(path, ".gz")
|
||||
return _read(gzopen(path))
|
||||
else
|
||||
return _read(open(path))
|
||||
end
|
||||
function read(path::String)::UnitCommitmentInstance
|
||||
scenarios = Vector{UnitCommitmentScenario}()
|
||||
scenario = _read_scenario(path)
|
||||
scenario.name = "s1"
|
||||
scenario.probability = 1.0
|
||||
scenarios = [scenario]
|
||||
instance =
|
||||
UnitCommitmentInstance(time = scenario.time, scenarios = scenarios)
|
||||
return instance
|
||||
end
|
||||
|
||||
function _read(file::IO)::UnitCommitmentInstance
|
||||
"""
|
||||
read(path::Vector{String})::UnitCommitmentInstance
|
||||
|
||||
Read a stochastic unit commitment instance from the given files. Each file
|
||||
describes a scenario. The files may be gzipped.
|
||||
|
||||
# Example
|
||||
|
||||
```julia
|
||||
instance = UnitCommitment.read(["s1.json.gz", "s2.json.gz"])
|
||||
```
|
||||
"""
|
||||
function read(paths::Vector{String})::UnitCommitmentInstance
|
||||
scenarios = UnitCommitmentScenario[]
|
||||
for p in paths
|
||||
push!(scenarios, _read_scenario(p))
|
||||
end
|
||||
_repair_scenario_names_and_probabilities!(scenarios, paths)
|
||||
instance =
|
||||
UnitCommitmentInstance(time = scenarios[1].time, scenarios = scenarios)
|
||||
return instance
|
||||
end
|
||||
|
||||
function _read_scenario(path::String)::UnitCommitmentScenario
|
||||
if endswith(path, ".gz")
|
||||
scenario = _read(gzopen(path))
|
||||
elseif endswith(path, ".json")
|
||||
scenario = _read(open(path))
|
||||
else
|
||||
error("Unsupported input format")
|
||||
end
|
||||
return scenario
|
||||
end
|
||||
|
||||
function _read(file::IO)::UnitCommitmentScenario
|
||||
return _from_json(
|
||||
JSON.parse(file, dicttype = () -> DefaultOrderedDict(nothing)),
|
||||
)
|
||||
@@ -77,7 +127,7 @@ function _read_json(path::String)::OrderedDict
|
||||
return JSON.parse(file, dicttype = () -> DefaultOrderedDict(nothing))
|
||||
end
|
||||
|
||||
function _from_json(json; repair = true)
|
||||
function _from_json(json; repair = true)::UnitCommitmentScenario
|
||||
_migrate(json)
|
||||
units = Unit[]
|
||||
buses = Bus[]
|
||||
@@ -102,6 +152,11 @@ function _from_json(json; repair = true)
|
||||
time_multiplier = 60 ÷ time_step
|
||||
T = time_horizon * time_multiplier
|
||||
|
||||
probability = json["Parameters"]["Scenario weight"]
|
||||
probability !== nothing || (probability = 1)
|
||||
scenario_name = json["Parameters"]["Scenario name"]
|
||||
scenario_name !== nothing || (scenario_name = "")
|
||||
|
||||
name_to_bus = Dict{String,Bus}()
|
||||
name_to_line = Dict{String,TransmissionLine}()
|
||||
name_to_unit = Dict{String,Unit}()
|
||||
@@ -118,15 +173,6 @@ function _from_json(json; repair = true)
|
||||
json["Parameters"]["Power balance penalty (\$/MW)"],
|
||||
default = [1000.0 for t in 1:T],
|
||||
)
|
||||
# Penalty price for shortage in meeting system-wide flexiramp requirements
|
||||
flexiramp_shortfall_penalty = timeseries(
|
||||
json["Parameters"]["Flexiramp penalty (\$/MW)"],
|
||||
default = [500.0 for t in 1:T],
|
||||
)
|
||||
shortfall_penalty = timeseries(
|
||||
json["Parameters"]["Reserve shortfall penalty (\$/MW)"],
|
||||
default = [-1.0 for t in 1:T],
|
||||
)
|
||||
|
||||
# Read buses
|
||||
for (bus_name, dict) in json["Buses"]
|
||||
@@ -308,7 +354,9 @@ function _from_json(json; repair = true)
|
||||
end
|
||||
end
|
||||
|
||||
instance = UnitCommitmentInstance(
|
||||
scenario = UnitCommitmentScenario(
|
||||
name = scenario_name,
|
||||
probability = probability,
|
||||
buses_by_name = Dict(b.name => b for b in buses),
|
||||
buses = buses,
|
||||
contingencies_by_name = Dict(c.name => c for c in contingencies),
|
||||
@@ -320,14 +368,14 @@ function _from_json(json; repair = true)
|
||||
price_sensitive_loads = loads,
|
||||
reserves = reserves,
|
||||
reserves_by_name = name_to_reserve,
|
||||
shortfall_penalty = shortfall_penalty,
|
||||
flexiramp_shortfall_penalty = flexiramp_shortfall_penalty,
|
||||
time = T,
|
||||
units_by_name = Dict(g.name => g for g in units),
|
||||
units = units,
|
||||
isf = spzeros(Float64, length(lines), length(buses) - 1),
|
||||
lodf = spzeros(Float64, length(lines), length(lines)),
|
||||
)
|
||||
if repair
|
||||
UnitCommitment.repair!(instance)
|
||||
UnitCommitment.repair!(scenario)
|
||||
end
|
||||
return instance
|
||||
return scenario
|
||||
end
|
||||
|
||||
@@ -73,35 +73,41 @@ mutable struct PriceSensitiveLoad
|
||||
revenue::Vector{Float64}
|
||||
end
|
||||
|
||||
Base.@kwdef mutable struct UnitCommitmentInstance
|
||||
Base.@kwdef mutable struct UnitCommitmentScenario
|
||||
buses_by_name::Dict{AbstractString,Bus}
|
||||
buses::Vector{Bus}
|
||||
contingencies_by_name::Dict{AbstractString,Contingency}
|
||||
contingencies::Vector{Contingency}
|
||||
isf::Array{Float64,2}
|
||||
lines_by_name::Dict{AbstractString,TransmissionLine}
|
||||
lines::Vector{TransmissionLine}
|
||||
lodf::Array{Float64,2}
|
||||
name::String
|
||||
power_balance_penalty::Vector{Float64}
|
||||
price_sensitive_loads_by_name::Dict{AbstractString,PriceSensitiveLoad}
|
||||
price_sensitive_loads::Vector{PriceSensitiveLoad}
|
||||
reserves::Vector{Reserve}
|
||||
probability::Float64
|
||||
reserves_by_name::Dict{AbstractString,Reserve}
|
||||
shortfall_penalty::Vector{Float64}
|
||||
flexiramp_shortfall_penalty::Vector{Float64}
|
||||
reserves::Vector{Reserve}
|
||||
time::Int
|
||||
units_by_name::Dict{AbstractString,Unit}
|
||||
units::Vector{Unit}
|
||||
end
|
||||
|
||||
Base.@kwdef mutable struct UnitCommitmentInstance
|
||||
time::Int
|
||||
scenarios::Vector{UnitCommitmentScenario}
|
||||
end
|
||||
|
||||
function Base.show(io::IO, instance::UnitCommitmentInstance)
|
||||
sc = instance.scenarios[1]
|
||||
print(io, "UnitCommitmentInstance(")
|
||||
print(io, "$(length(instance.units)) units, ")
|
||||
print(io, "$(length(instance.buses)) buses, ")
|
||||
print(io, "$(length(instance.lines)) lines, ")
|
||||
print(io, "$(length(instance.contingencies)) contingencies, ")
|
||||
print(
|
||||
io,
|
||||
"$(length(instance.price_sensitive_loads)) price sensitive loads, ",
|
||||
)
|
||||
print(io, "$(length(instance.scenarios)) scenarios, ")
|
||||
print(io, "$(length(sc.units)) units, ")
|
||||
print(io, "$(length(sc.buses)) buses, ")
|
||||
print(io, "$(length(sc.lines)) lines, ")
|
||||
print(io, "$(length(sc.contingencies)) contingencies, ")
|
||||
print(io, "$(length(sc.price_sensitive_loads)) price sensitive loads, ")
|
||||
print(io, "$(instance.time) time steps")
|
||||
print(io, ")")
|
||||
return
|
||||
|
||||
@@ -77,20 +77,27 @@ function build_model(;
|
||||
end
|
||||
model[:obj] = AffExpr()
|
||||
model[:instance] = instance
|
||||
_setup_transmission(model, formulation.transmission)
|
||||
for l in instance.lines
|
||||
_add_transmission_line!(model, l, formulation.transmission)
|
||||
for g in instance.scenarios[1].units
|
||||
_add_unit_commitment!(model, g, formulation)
|
||||
end
|
||||
for b in instance.buses
|
||||
_add_bus!(model, b)
|
||||
for sc in instance.scenarios
|
||||
@info "Building scenario $(sc.name) with " *
|
||||
"probability $(sc.probability)"
|
||||
_setup_transmission(formulation.transmission, sc)
|
||||
for l in sc.lines
|
||||
_add_transmission_line!(model, l, formulation.transmission, sc)
|
||||
end
|
||||
for g in instance.units
|
||||
_add_unit!(model, g, formulation)
|
||||
for b in sc.buses
|
||||
_add_bus!(model, b, sc)
|
||||
end
|
||||
for ps in instance.price_sensitive_loads
|
||||
_add_price_sensitive_load!(model, ps)
|
||||
for ps in sc.price_sensitive_loads
|
||||
_add_price_sensitive_load!(model, ps, sc)
|
||||
end
|
||||
for g in sc.units
|
||||
_add_unit_dispatch!(model, g, formulation, sc)
|
||||
end
|
||||
_add_system_wide_eqs!(model, sc)
|
||||
end
|
||||
_add_system_wide_eqs!(model)
|
||||
@objective(model, Min, model[:obj])
|
||||
end
|
||||
@info @sprintf("Built model in %.2f seconds", time_model)
|
||||
|
||||
@@ -8,6 +8,7 @@ function _add_ramp_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_ramping::ArrCon2000.Ramping,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
# TODO: Move upper case constants to model[:instance]
|
||||
RESERVES_WHEN_START_UP = true
|
||||
@@ -22,7 +23,7 @@ function _add_ramp_eqs!(
|
||||
eq_ramp_down = _init(model, :eq_ramp_down)
|
||||
eq_ramp_up = _init(model, :eq_ramp_up)
|
||||
is_initially_on = (g.initial_status > 0)
|
||||
reserve = _total_reserves(model, g)
|
||||
reserve = _total_reserves(model, g, sc)
|
||||
|
||||
# Gar1962.ProdVars
|
||||
prod_above = model[:prod_above]
|
||||
@@ -37,10 +38,10 @@ function _add_ramp_eqs!(
|
||||
if t == 1
|
||||
if is_initially_on
|
||||
# min power is _not_ multiplied by is_on because if !is_on, then ramp up is irrelevant
|
||||
eq_ramp_up[gn, t] = @constraint(
|
||||
eq_ramp_up[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
g.min_power[t] +
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
(RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0) <=
|
||||
g.initial_power + RU
|
||||
)
|
||||
@@ -48,16 +49,16 @@ function _add_ramp_eqs!(
|
||||
else
|
||||
max_prod_this_period =
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
(
|
||||
RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ?
|
||||
reserve[t] : 0.0
|
||||
)
|
||||
min_prod_last_period =
|
||||
g.min_power[t-1] * is_on[gn, t-1] + prod_above[gn, t-1]
|
||||
g.min_power[t-1] * is_on[gn, t-1] + prod_above[sc.name, gn, t-1]
|
||||
|
||||
# Equation (24) in Kneuven et al. (2020)
|
||||
eq_ramp_up[gn, t] = @constraint(
|
||||
eq_ramp_up[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_this_period - min_prod_last_period <=
|
||||
RU * is_on[gn, t-1] + SU * switch_on[gn, t]
|
||||
@@ -71,24 +72,25 @@ function _add_ramp_eqs!(
|
||||
# min_power + RD < initial_power < SD
|
||||
# then the generator should be able to shut down at time t = 1,
|
||||
# but the constraint below will force the unit to produce power
|
||||
eq_ramp_down[gn, t] = @constraint(
|
||||
eq_ramp_down[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
g.initial_power - (g.min_power[t] + prod_above[gn, t]) <= RD
|
||||
g.initial_power -
|
||||
(g.min_power[t] + prod_above[sc.name, gn, t]) <= RD
|
||||
)
|
||||
end
|
||||
else
|
||||
max_prod_last_period =
|
||||
g.min_power[t-1] * is_on[gn, t-1] +
|
||||
prod_above[gn, t-1] +
|
||||
prod_above[sc.name, gn, t-1] +
|
||||
(
|
||||
RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN ?
|
||||
reserve[t-1] : 0.0
|
||||
)
|
||||
min_prod_this_period =
|
||||
g.min_power[t] * is_on[gn, t] + prod_above[gn, t]
|
||||
g.min_power[t] * is_on[gn, t] + prod_above[sc.name, gn, t]
|
||||
|
||||
# Equation (25) in Kneuven et al. (2020)
|
||||
eq_ramp_down[gn, t] = @constraint(
|
||||
eq_ramp_down[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_last_period - min_prod_this_period <=
|
||||
RD * is_on[gn, t] + SD * switch_off[gn, t]
|
||||
|
||||
@@ -8,6 +8,7 @@ function _add_production_piecewise_linear_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_pwl_costs::CarArr2006.PwlCosts,
|
||||
formulation_status_vars::StatusVarsFormulation,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
eq_prod_above_def = _init(model, :eq_prod_above_def)
|
||||
eq_segprod_limit = _init(model, :eq_segprod_limit)
|
||||
@@ -26,28 +27,32 @@ function _add_production_piecewise_linear_eqs!(
|
||||
# difference between max power for segments k and k-1 so the
|
||||
# value of cost_segments[k].mw[t] is the max production *for
|
||||
# that segment*
|
||||
eq_segprod_limit[gn, t, k] = @constraint(
|
||||
eq_segprod_limit[sc.name, gn, t, k] = @constraint(
|
||||
model,
|
||||
segprod[gn, t, k] <= g.cost_segments[k].mw[t]
|
||||
segprod[sc.name, gn, t, k] <= g.cost_segments[k].mw[t]
|
||||
)
|
||||
|
||||
# Also add this as an explicit upper bound on segprod to make the
|
||||
# solver's work a bit easier
|
||||
set_upper_bound(segprod[gn, t, k], g.cost_segments[k].mw[t])
|
||||
set_upper_bound(
|
||||
segprod[sc.name, gn, t, k],
|
||||
g.cost_segments[k].mw[t],
|
||||
)
|
||||
|
||||
# Definition of production
|
||||
# Equation (43) in Kneuven et al. (2020)
|
||||
eq_prod_above_def[gn, t] = @constraint(
|
||||
eq_prod_above_def[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] == sum(segprod[gn, t, k] for k in 1:K)
|
||||
prod_above[sc.name, gn, t] ==
|
||||
sum(segprod[sc.name, gn, t, k] for k in 1:K)
|
||||
)
|
||||
|
||||
# Objective function
|
||||
# Equation (44) in Kneuven et al. (2020)
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
segprod[gn, t, k],
|
||||
g.cost_segments[k].cost[t],
|
||||
segprod[sc.name, gn, t, k],
|
||||
sc.probability * g.cost_segments[k].cost[t],
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
@@ -8,6 +8,7 @@ function _add_ramp_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_ramping::DamKucRajAta2016.Ramping,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
# TODO: Move upper case constants to model[:instance]
|
||||
RESERVES_WHEN_START_UP = true
|
||||
@@ -23,7 +24,7 @@ function _add_ramp_eqs!(
|
||||
gn = g.name
|
||||
eq_str_ramp_down = _init(model, :eq_str_ramp_down)
|
||||
eq_str_ramp_up = _init(model, :eq_str_ramp_up)
|
||||
reserve = _total_reserves(model, g)
|
||||
reserve = _total_reserves(model, g, sc)
|
||||
|
||||
# Gar1962.ProdVars
|
||||
prod_above = model[:prod_above]
|
||||
@@ -48,15 +49,15 @@ function _add_ramp_eqs!(
|
||||
# end
|
||||
|
||||
max_prod_this_period =
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
(RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0)
|
||||
min_prod_last_period = 0.0
|
||||
if t > 1 && time_invariant
|
||||
min_prod_last_period = prod_above[gn, t-1]
|
||||
min_prod_last_period = prod_above[sc.name, gn, t-1]
|
||||
|
||||
# Equation (35) in Kneuven et al. (2020)
|
||||
# Sparser version of (24)
|
||||
eq_str_ramp_up[gn, t] = @constraint(
|
||||
eq_str_ramp_up[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_this_period - min_prod_last_period <=
|
||||
(SU - g.min_power[t] - RU) * switch_on[gn, t] +
|
||||
@@ -65,7 +66,8 @@ function _add_ramp_eqs!(
|
||||
elseif (t == 1 && is_initially_on) || (t > 1 && !time_invariant)
|
||||
if t > 1
|
||||
min_prod_last_period =
|
||||
prod_above[gn, t-1] + g.min_power[t-1] * is_on[gn, t-1]
|
||||
prod_above[sc.name, gn, t-1] +
|
||||
g.min_power[t-1] * is_on[gn, t-1]
|
||||
else
|
||||
min_prod_last_period = max(g.initial_power, 0.0)
|
||||
end
|
||||
@@ -76,7 +78,7 @@ function _add_ramp_eqs!(
|
||||
|
||||
# Modified version of equation (35) in Kneuven et al. (2020)
|
||||
# Equivalent to (24)
|
||||
eq_str_ramp_up[gn, t] = @constraint(
|
||||
eq_str_ramp_up[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_this_period - min_prod_last_period <=
|
||||
(SU - RU) * switch_on[gn, t] + RU * is_on[gn, t]
|
||||
@@ -88,7 +90,7 @@ function _add_ramp_eqs!(
|
||||
t > 1 && (RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN) ?
|
||||
reserve[t-1] : 0.0
|
||||
)
|
||||
min_prod_this_period = prod_above[gn, t]
|
||||
min_prod_this_period = prod_above[sc.name, gn, t]
|
||||
on_last_period = 0.0
|
||||
if t > 1
|
||||
on_last_period = is_on[gn, t-1]
|
||||
@@ -98,7 +100,7 @@ function _add_ramp_eqs!(
|
||||
|
||||
if t > 1 && time_invariant
|
||||
# Equation (36) in Kneuven et al. (2020)
|
||||
eq_str_ramp_down[gn, t] = @constraint(
|
||||
eq_str_ramp_down[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_last_period - min_prod_this_period <=
|
||||
(SD - g.min_power[t] - RD) * switch_off[gn, t] +
|
||||
@@ -110,7 +112,7 @@ function _add_ramp_eqs!(
|
||||
|
||||
# Modified version of equation (36) in Kneuven et al. (2020)
|
||||
# Equivalent to (25)
|
||||
eq_str_ramp_down[gn, t] = @constraint(
|
||||
eq_str_ramp_down[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_last_period - min_prod_this_period <=
|
||||
(SD - RD) * switch_off[gn, t] + RD * on_last_period
|
||||
|
||||
@@ -6,14 +6,15 @@ function _add_production_vars!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
prod_above = _init(model, :prod_above)
|
||||
segprod = _init(model, :segprod)
|
||||
for t in 1:model[:instance].time
|
||||
for k in 1:length(g.cost_segments)
|
||||
segprod[g.name, t, k] = @variable(model, lower_bound = 0)
|
||||
segprod[sc.name, g.name, t, k] = @variable(model, lower_bound = 0)
|
||||
end
|
||||
prod_above[g.name, t] = @variable(model, lower_bound = 0)
|
||||
prod_above[sc.name, g.name, t] = @variable(model, lower_bound = 0)
|
||||
end
|
||||
return
|
||||
end
|
||||
@@ -22,16 +23,16 @@ function _add_production_limit_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
eq_prod_limit = _init(model, :eq_prod_limit)
|
||||
is_on = model[:is_on]
|
||||
prod_above = model[:prod_above]
|
||||
reserve = _total_reserves(model, g)
|
||||
reserve = _total_reserves(model, g, sc)
|
||||
gn = g.name
|
||||
for t in 1:model[:instance].time
|
||||
# Objective function terms for production costs
|
||||
# Part of (69) of Kneuven et al. (2020) as C^R_g * u_g(t) term
|
||||
add_to_expression!(model[:obj], is_on[gn, t], g.min_power_cost[t])
|
||||
|
||||
# Production limit
|
||||
# Equation (18) in Kneuven et al. (2020)
|
||||
@@ -42,9 +43,10 @@ function _add_production_limit_eqs!(
|
||||
if power_diff < 1e-7
|
||||
power_diff = 0.0
|
||||
end
|
||||
eq_prod_limit[gn, t] = @constraint(
|
||||
eq_prod_limit[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] + reserve[t] <= power_diff * is_on[gn, t]
|
||||
prod_above[sc.name, gn, t] + reserve[t] <=
|
||||
power_diff * is_on[gn, t]
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
@@ -8,6 +8,7 @@ function _add_production_piecewise_linear_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_pwl_costs::Gar1962.PwlCosts,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
eq_prod_above_def = _init(model, :eq_prod_above_def)
|
||||
eq_segprod_limit = _init(model, :eq_segprod_limit)
|
||||
@@ -24,9 +25,10 @@ function _add_production_piecewise_linear_eqs!(
|
||||
for t in 1:model[:instance].time
|
||||
# Definition of production
|
||||
# Equation (43) in Kneuven et al. (2020)
|
||||
eq_prod_above_def[gn, t] = @constraint(
|
||||
eq_prod_above_def[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] == sum(segprod[gn, t, k] for k in 1:K)
|
||||
prod_above[sc.name, gn, t] ==
|
||||
sum(segprod[sc.name, gn, t, k] for k in 1:K)
|
||||
)
|
||||
|
||||
for k in 1:K
|
||||
@@ -37,21 +39,25 @@ function _add_production_piecewise_linear_eqs!(
|
||||
# difference between max power for segments k and k-1 so the
|
||||
# value of cost_segments[k].mw[t] is the max production *for
|
||||
# that segment*
|
||||
eq_segprod_limit[gn, t, k] = @constraint(
|
||||
eq_segprod_limit[sc.name, gn, t, k] = @constraint(
|
||||
model,
|
||||
segprod[gn, t, k] <= g.cost_segments[k].mw[t] * is_on[gn, t]
|
||||
segprod[sc.name, gn, t, k] <=
|
||||
g.cost_segments[k].mw[t] * is_on[gn, t]
|
||||
)
|
||||
|
||||
# Also add this as an explicit upper bound on segprod to make the
|
||||
# solver's work a bit easier
|
||||
set_upper_bound(segprod[gn, t, k], g.cost_segments[k].mw[t])
|
||||
set_upper_bound(
|
||||
segprod[sc.name, gn, t, k],
|
||||
g.cost_segments[k].mw[t],
|
||||
)
|
||||
|
||||
# Objective function
|
||||
# Equation (44) in Kneuven et al. (2020)
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
segprod[gn, t, k],
|
||||
g.cost_segments[k].cost[t],
|
||||
segprod[sc.name, gn, t, k],
|
||||
sc.probability * g.cost_segments[k].cost[t],
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
@@ -20,6 +20,7 @@ function _add_status_vars!(
|
||||
switch_on[g.name, t] = @variable(model, binary = true)
|
||||
switch_off[g.name, t] = @variable(model, binary = true)
|
||||
end
|
||||
add_to_expression!(model[:obj], is_on[g.name, t], g.min_power_cost[t])
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
@@ -8,6 +8,7 @@ function _add_production_piecewise_linear_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_pwl_costs::KnuOstWat2018.PwlCosts,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
eq_prod_above_def = _init(model, :eq_prod_above_def)
|
||||
eq_segprod_limit_a = _init(model, :eq_segprod_limit_a)
|
||||
@@ -58,27 +59,27 @@ function _add_production_piecewise_linear_eqs!(
|
||||
|
||||
if g.min_uptime > 1
|
||||
# Equation (46) in Kneuven et al. (2020)
|
||||
eq_segprod_limit_a[gn, t, k] = @constraint(
|
||||
eq_segprod_limit_a[sc.name, gn, t, k] = @constraint(
|
||||
model,
|
||||
segprod[gn, t, k] <=
|
||||
segprod[sc.name, gn, t, k] <=
|
||||
g.cost_segments[k].mw[t] * is_on[gn, t] -
|
||||
Cv * switch_on[gn, t] -
|
||||
(t < T ? Cw * switch_off[gn, t+1] : 0.0)
|
||||
)
|
||||
else
|
||||
# Equation (47a)/(48a) in Kneuven et al. (2020)
|
||||
eq_segprod_limit_b[gn, t, k] = @constraint(
|
||||
eq_segprod_limit_b[sc.name, gn, t, k] = @constraint(
|
||||
model,
|
||||
segprod[gn, t, k] <=
|
||||
segprod[sc.name, gn, t, k] <=
|
||||
g.cost_segments[k].mw[t] * is_on[gn, t] -
|
||||
Cv * switch_on[gn, t] -
|
||||
(t < T ? max(0, Cv - Cw) * switch_off[gn, t+1] : 0.0)
|
||||
)
|
||||
|
||||
# Equation (47b)/(48b) in Kneuven et al. (2020)
|
||||
eq_segprod_limit_c[gn, t, k] = @constraint(
|
||||
eq_segprod_limit_c[sc.name, gn, t, k] = @constraint(
|
||||
model,
|
||||
segprod[gn, t, k] <=
|
||||
segprod[sc.name, gn, t, k] <=
|
||||
g.cost_segments[k].mw[t] * is_on[gn, t] -
|
||||
max(0, Cw - Cv) * switch_on[gn, t] -
|
||||
(t < T ? Cw * switch_off[gn, t+1] : 0.0)
|
||||
@@ -87,22 +88,26 @@ function _add_production_piecewise_linear_eqs!(
|
||||
|
||||
# Definition of production
|
||||
# Equation (43) in Kneuven et al. (2020)
|
||||
eq_prod_above_def[gn, t] = @constraint(
|
||||
eq_prod_above_def[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] == sum(segprod[gn, t, k] for k in 1:K)
|
||||
prod_above[sc.name, gn, t] ==
|
||||
sum(segprod[sc.name, gn, t, k] for k in 1:K)
|
||||
)
|
||||
|
||||
# Objective function
|
||||
# Equation (44) in Kneuven et al. (2020)
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
segprod[gn, t, k],
|
||||
segprod[sc.name, gn, t, k],
|
||||
g.cost_segments[k].cost[t],
|
||||
)
|
||||
|
||||
# Also add an explicit upper bound on segprod to make the solver's
|
||||
# work a bit easier
|
||||
set_upper_bound(segprod[gn, t, k], g.cost_segments[k].mw[t])
|
||||
set_upper_bound(
|
||||
segprod[sc.name, gn, t, k],
|
||||
g.cost_segments[k].mw[t],
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
@@ -8,6 +8,7 @@ function _add_ramp_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_ramping::MorLatRam2013.Ramping,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
# TODO: Move upper case constants to model[:instance]
|
||||
RESERVES_WHEN_START_UP = true
|
||||
@@ -22,7 +23,7 @@ function _add_ramp_eqs!(
|
||||
gn = g.name
|
||||
eq_ramp_down = _init(model, :eq_ramp_down)
|
||||
eq_ramp_up = _init(model, :eq_str_ramp_up)
|
||||
reserve = _total_reserves(model, g)
|
||||
reserve = _total_reserves(model, g, sc)
|
||||
|
||||
# Gar1962.ProdVars
|
||||
prod_above = model[:prod_above]
|
||||
@@ -39,10 +40,10 @@ function _add_ramp_eqs!(
|
||||
# Ramp up limit
|
||||
if t == 1
|
||||
if is_initially_on
|
||||
eq_ramp_up[gn, t] = @constraint(
|
||||
eq_ramp_up[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
g.min_power[t] +
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
(RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0) <=
|
||||
g.initial_power + RU
|
||||
)
|
||||
@@ -58,13 +59,14 @@ function _add_ramp_eqs!(
|
||||
SU = g.startup_limit
|
||||
max_prod_this_period =
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
(
|
||||
RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ?
|
||||
reserve[t] : 0.0
|
||||
)
|
||||
min_prod_last_period =
|
||||
g.min_power[t-1] * is_on[gn, t-1] + prod_above[gn, t-1]
|
||||
g.min_power[t-1] * is_on[gn, t-1] +
|
||||
prod_above[sc.name, gn, t-1]
|
||||
eq_ramp_up[gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_this_period - min_prod_last_period <=
|
||||
@@ -74,11 +76,11 @@ function _add_ramp_eqs!(
|
||||
# Equation (26) in Kneuven et al. (2020)
|
||||
# TODO: what if RU < SU? places too stringent upper bound
|
||||
# prod_above[gn, t] when starting up, and creates diff with (24).
|
||||
eq_ramp_up[gn, t] = @constraint(
|
||||
eq_ramp_up[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
(RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0) -
|
||||
prod_above[gn, t-1] <= RU
|
||||
prod_above[sc.name, gn, t-1] <= RU
|
||||
)
|
||||
end
|
||||
end
|
||||
@@ -90,9 +92,10 @@ function _add_ramp_eqs!(
|
||||
# min_power + RD < initial_power < SD
|
||||
# then the generator should be able to shut down at time t = 1,
|
||||
# but the constraint below will force the unit to produce power
|
||||
eq_ramp_down[gn, t] = @constraint(
|
||||
eq_ramp_down[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
g.initial_power - (g.min_power[t] + prod_above[gn, t]) <= RD
|
||||
g.initial_power -
|
||||
(g.min_power[t] + prod_above[sc.name, gn, t]) <= RD
|
||||
)
|
||||
end
|
||||
else
|
||||
@@ -102,13 +105,13 @@ function _add_ramp_eqs!(
|
||||
SD = g.shutdown_limit
|
||||
max_prod_last_period =
|
||||
g.min_power[t-1] * is_on[gn, t-1] +
|
||||
prod_above[gn, t-1] +
|
||||
prod_above[sc.name, gn, t-1] +
|
||||
(
|
||||
RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN ?
|
||||
reserve[t-1] : 0.0
|
||||
)
|
||||
min_prod_this_period =
|
||||
g.min_power[t] * is_on[gn, t] + prod_above[gn, t]
|
||||
g.min_power[t] * is_on[gn, t] + prod_above[sc.name, gn, t]
|
||||
eq_ramp_down[gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_last_period - min_prod_this_period <=
|
||||
@@ -118,11 +121,11 @@ function _add_ramp_eqs!(
|
||||
# Equation (27) in Kneuven et al. (2020)
|
||||
# TODO: Similar to above, what to do if shutting down in time t
|
||||
# and RD < SD? There is a difference with (25).
|
||||
eq_ramp_down[gn, t] = @constraint(
|
||||
eq_ramp_down[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t-1] +
|
||||
prod_above[sc.name, gn, t-1] +
|
||||
(RESERVES_WHEN_RAMP_DOWN ? reserve[t-1] : 0.0) -
|
||||
prod_above[gn, t] <= RD
|
||||
prod_above[sc.name, gn, t] <= RD
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
@@ -8,11 +8,12 @@ function _add_ramp_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_ramping::PanGua2016.Ramping,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
# TODO: Move upper case constants to model[:instance]
|
||||
RESERVES_WHEN_SHUT_DOWN = true
|
||||
gn = g.name
|
||||
reserve = _total_reserves(model, g)
|
||||
reserve = _total_reserves(model, g, sc)
|
||||
eq_str_prod_limit = _init(model, :eq_str_prod_limit)
|
||||
eq_prod_limit_ramp_up_extra_period =
|
||||
_init(model, :eq_prod_limit_ramp_up_extra_period)
|
||||
@@ -52,9 +53,9 @@ function _add_ramp_eqs!(
|
||||
# Generalization of (20)
|
||||
# Necessary that if any of the switch_on = 1 in the sum,
|
||||
# then switch_off[gn, t+1] = 0
|
||||
eq_str_prod_limit[gn, t] = @constraint(
|
||||
eq_str_prod_limit[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
reserve[t] <=
|
||||
Pbar * is_on[gn, t] -
|
||||
@@ -67,9 +68,10 @@ function _add_ramp_eqs!(
|
||||
if UT - 2 < TRU
|
||||
# Equation (40) in Kneuven et al. (2020)
|
||||
# Covers an additional time period of the ramp-up trajectory, compared to (38)
|
||||
eq_prod_limit_ramp_up_extra_period[gn, t] = @constraint(
|
||||
eq_prod_limit_ramp_up_extra_period[sc.name, gn, t] =
|
||||
@constraint(
|
||||
model,
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
reserve[t] <=
|
||||
Pbar * is_on[gn, t] - sum(
|
||||
@@ -84,9 +86,9 @@ function _add_ramp_eqs!(
|
||||
if KSD > 0
|
||||
KSU = min(TRU, UT - 2 - KSD, t - 1)
|
||||
# Equation (41) in Kneuven et al. (2020)
|
||||
eq_prod_limit_shutdown_trajectory[gn, t] = @constraint(
|
||||
eq_prod_limit_shutdown_trajectory[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
(RESERVES_WHEN_SHUT_DOWN ? reserve[t] : 0.0) <=
|
||||
Pbar * is_on[gn, t] - sum(
|
||||
|
||||
@@ -8,6 +8,7 @@ function _add_ramp_eqs!(
|
||||
::Gar1962.ProdVars,
|
||||
::WanHob2016.Ramping,
|
||||
::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
is_initially_on = (g.initial_status > 0)
|
||||
SU = g.startup_limit
|
||||
@@ -38,41 +39,43 @@ function _add_ramp_eqs!(
|
||||
for t in 1:model[:instance].time
|
||||
@constraint(
|
||||
model,
|
||||
prod_above[gn, t] + (is_on[gn, t] * minp[t]) <= mfg[rn, gn, t]
|
||||
prod_above[sc.name, gn, t] + (is_on[gn, t] * minp[t]) <=
|
||||
mfg[sc.name, gn, t]
|
||||
) # Eq. (19) in Wang & Hobbs (2016)
|
||||
@constraint(model, mfg[rn, gn, t] <= is_on[gn, t] * maxp[t]) # Eq. (22) in Wang & Hobbs (2016)
|
||||
@constraint(model, mfg[sc.name, gn, t] <= is_on[gn, t] * maxp[t]) # Eq. (22) in Wang & Hobbs (2016)
|
||||
if t != model[:instance].time
|
||||
@constraint(
|
||||
model,
|
||||
minp[t] * (is_on[gn, t+1] + is_on[gn, t] - 1) <=
|
||||
prod_above[gn, t] - dwflexiramp[rn, gn, t] +
|
||||
(is_on[gn, t] * minp[t])
|
||||
prod_above[sc.name, gn, t] -
|
||||
dwflexiramp[sc.name, rn, gn, t] + (is_on[gn, t] * minp[t])
|
||||
) # first inequality of Eq. (20) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
prod_above[gn, t] - dwflexiramp[rn, gn, t] +
|
||||
prod_above[sc.name, gn, t] -
|
||||
dwflexiramp[sc.name, rn, gn, t] +
|
||||
(is_on[gn, t] * minp[t]) <=
|
||||
mfg[rn, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
|
||||
mfg[sc.name, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
|
||||
) # second inequality of Eq. (20) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
minp[t] * (is_on[gn, t+1] + is_on[gn, t] - 1) <=
|
||||
prod_above[gn, t] +
|
||||
upflexiramp[rn, gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
upflexiramp[sc.name, rn, gn, t] +
|
||||
(is_on[gn, t] * minp[t])
|
||||
) # first inequality of Eq. (21) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
prod_above[gn, t] +
|
||||
upflexiramp[rn, gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
upflexiramp[sc.name, rn, gn, t] +
|
||||
(is_on[gn, t] * minp[t]) <=
|
||||
mfg[rn, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
|
||||
mfg[sc.name, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
|
||||
) # second inequality of Eq. (21) in Wang & Hobbs (2016)
|
||||
if t != 1
|
||||
@constraint(
|
||||
model,
|
||||
mfg[rn, gn, t] <=
|
||||
prod_above[gn, t-1] +
|
||||
mfg[sc.name, gn, t] <=
|
||||
prod_above[sc.name, gn, t-1] +
|
||||
(is_on[gn, t-1] * minp[t]) +
|
||||
(RU * is_on[gn, t-1]) +
|
||||
(SU * (is_on[gn, t] - is_on[gn, t-1])) +
|
||||
@@ -80,8 +83,13 @@ function _add_ramp_eqs!(
|
||||
) # Eq. (23) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
(prod_above[gn, t-1] + (is_on[gn, t-1] * minp[t])) -
|
||||
(prod_above[gn, t] + (is_on[gn, t] * minp[t])) <=
|
||||
(
|
||||
prod_above[sc.name, gn, t-1] +
|
||||
(is_on[gn, t-1] * minp[t])
|
||||
) - (
|
||||
prod_above[sc.name, gn, t] +
|
||||
(is_on[gn, t] * minp[t])
|
||||
) <=
|
||||
RD * is_on[gn, t] +
|
||||
SD * (is_on[gn, t-1] - is_on[gn, t]) +
|
||||
maxp[t] * (1 - is_on[gn, t-1])
|
||||
@@ -89,7 +97,7 @@ function _add_ramp_eqs!(
|
||||
else
|
||||
@constraint(
|
||||
model,
|
||||
mfg[rn, gn, t] <=
|
||||
mfg[sc.name, gn, t] <=
|
||||
initial_power +
|
||||
(RU * is_initially_on) +
|
||||
(SU * (is_on[gn, t] - is_initially_on)) +
|
||||
@@ -97,8 +105,10 @@ function _add_ramp_eqs!(
|
||||
) # Eq. (23) in Wang & Hobbs (2016) for the first time period
|
||||
@constraint(
|
||||
model,
|
||||
initial_power -
|
||||
(prod_above[gn, t] + (is_on[gn, t] * minp[t])) <=
|
||||
initial_power - (
|
||||
prod_above[sc.name, gn, t] +
|
||||
(is_on[gn, t] * minp[t])
|
||||
) <=
|
||||
RD * is_on[gn, t] +
|
||||
SD * (is_initially_on - is_on[gn, t]) +
|
||||
maxp[t] * (1 - is_initially_on)
|
||||
@@ -106,7 +116,7 @@ function _add_ramp_eqs!(
|
||||
end
|
||||
@constraint(
|
||||
model,
|
||||
mfg[rn, gn, t] <=
|
||||
mfg[sc.name, gn, t] <=
|
||||
(SD * (is_on[gn, t] - is_on[gn, t+1])) +
|
||||
(maxp[t] * is_on[gn, t+1])
|
||||
) # Eq. (24) in Wang & Hobbs (2016)
|
||||
@@ -114,11 +124,12 @@ function _add_ramp_eqs!(
|
||||
model,
|
||||
-RD * is_on[gn, t+1] -
|
||||
SD * (is_on[gn, t] - is_on[gn, t+1]) -
|
||||
maxp[t] * (1 - is_on[gn, t]) <= upflexiramp[rn, gn, t]
|
||||
maxp[t] * (1 - is_on[gn, t]) <=
|
||||
upflexiramp[sc.name, rn, gn, t]
|
||||
) # first inequality of Eq. (26) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
upflexiramp[rn, gn, t] <=
|
||||
upflexiramp[sc.name, rn, gn, t] <=
|
||||
RU * is_on[gn, t] +
|
||||
SU * (is_on[gn, t+1] - is_on[gn, t]) +
|
||||
maxp[t] * (1 - is_on[gn, t+1])
|
||||
@@ -126,11 +137,12 @@ function _add_ramp_eqs!(
|
||||
@constraint(
|
||||
model,
|
||||
-RU * is_on[gn, t] - SU * (is_on[gn, t+1] - is_on[gn, t]) -
|
||||
maxp[t] * (1 - is_on[gn, t+1]) <= dwflexiramp[rn, gn, t]
|
||||
maxp[t] * (1 - is_on[gn, t+1]) <=
|
||||
dwflexiramp[sc.name, rn, gn, t]
|
||||
) # first inequality of Eq. (27) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
dwflexiramp[rn, gn, t] <=
|
||||
dwflexiramp[sc.name, rn, gn, t] <=
|
||||
RD * is_on[gn, t+1] +
|
||||
SD * (is_on[gn, t] - is_on[gn, t+1]) +
|
||||
maxp[t] * (1 - is_on[gn, t])
|
||||
@@ -138,26 +150,27 @@ function _add_ramp_eqs!(
|
||||
@constraint(
|
||||
model,
|
||||
-maxp[t] * is_on[gn, t] + minp[t] * is_on[gn, t+1] <=
|
||||
upflexiramp[rn, gn, t]
|
||||
upflexiramp[sc.name, rn, gn, t]
|
||||
) # first inequality of Eq. (28) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
upflexiramp[rn, gn, t] <= maxp[t] * is_on[gn, t+1]
|
||||
upflexiramp[sc.name, rn, gn, t] <= maxp[t] * is_on[gn, t+1]
|
||||
) # second inequality of Eq. (28) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
-maxp[t] * is_on[gn, t+1] <= dwflexiramp[rn, gn, t]
|
||||
-maxp[t] * is_on[gn, t+1] <=
|
||||
dwflexiramp[sc.name, rn, gn, t]
|
||||
) # first inequality of Eq. (29) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
dwflexiramp[rn, gn, t] <=
|
||||
dwflexiramp[sc.name, rn, gn, t] <=
|
||||
(maxp[t] * is_on[gn, t]) - (minp[t] * is_on[gn, t+1])
|
||||
) # second inequality of Eq. (29) in Wang & Hobbs (2016)
|
||||
else
|
||||
@constraint(
|
||||
model,
|
||||
mfg[rn, gn, t] <=
|
||||
prod_above[gn, t-1] +
|
||||
mfg[sc.name, gn, t] <=
|
||||
prod_above[sc.name, gn, t-1] +
|
||||
(is_on[gn, t-1] * minp[t]) +
|
||||
(RU * is_on[gn, t-1]) +
|
||||
(SU * (is_on[gn, t] - is_on[gn, t-1])) +
|
||||
@@ -165,8 +178,11 @@ function _add_ramp_eqs!(
|
||||
) # Eq. (23) in Wang & Hobbs (2016) for the last time period
|
||||
@constraint(
|
||||
model,
|
||||
(prod_above[gn, t-1] + (is_on[gn, t-1] * minp[t])) -
|
||||
(prod_above[gn, t] + (is_on[gn, t] * minp[t])) <=
|
||||
(
|
||||
prod_above[sc.name, gn, t-1] +
|
||||
(is_on[gn, t-1] * minp[t])
|
||||
) -
|
||||
(prod_above[sc.name, gn, t] + (is_on[gn, t] * minp[t])) <=
|
||||
RD * is_on[gn, t] +
|
||||
SD * (is_on[gn, t-1] - is_on[gn, t]) +
|
||||
maxp[t] * (1 - is_on[gn, t-1])
|
||||
|
||||
@@ -2,22 +2,30 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
function _add_bus!(model::JuMP.Model, b::Bus)::Nothing
|
||||
function _add_bus!(
|
||||
model::JuMP.Model,
|
||||
b::Bus,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
net_injection = _init(model, :expr_net_injection)
|
||||
curtail = _init(model, :curtail)
|
||||
for t in 1:model[:instance].time
|
||||
# Fixed load
|
||||
net_injection[b.name, t] = AffExpr(-b.load[t])
|
||||
net_injection[sc.name, b.name, t] = AffExpr(-b.load[t])
|
||||
|
||||
# Load curtailment
|
||||
curtail[b.name, t] =
|
||||
curtail[sc.name, b.name, t] =
|
||||
@variable(model, lower_bound = 0, upper_bound = b.load[t])
|
||||
|
||||
add_to_expression!(net_injection[b.name, t], curtail[b.name, t], 1.0)
|
||||
add_to_expression!(
|
||||
net_injection[sc.name, b.name, t],
|
||||
curtail[sc.name, b.name, t],
|
||||
1.0,
|
||||
)
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
curtail[b.name, t],
|
||||
model[:instance].power_balance_penalty[t],
|
||||
curtail[sc.name, b.name, t],
|
||||
sc.power_balance_penalty[t] * sc.probability,
|
||||
)
|
||||
end
|
||||
return
|
||||
|
||||
@@ -6,43 +6,43 @@ function _add_transmission_line!(
|
||||
model::JuMP.Model,
|
||||
lm::TransmissionLine,
|
||||
f::ShiftFactorsFormulation,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
overflow = _init(model, :overflow)
|
||||
for t in 1:model[:instance].time
|
||||
overflow[lm.name, t] = @variable(model, lower_bound = 0)
|
||||
overflow[sc.name, lm.name, t] = @variable(model, lower_bound = 0)
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
overflow[lm.name, t],
|
||||
lm.flow_limit_penalty[t],
|
||||
overflow[sc.name, lm.name, t],
|
||||
lm.flow_limit_penalty[t] * sc.probability,
|
||||
)
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
function _setup_transmission(
|
||||
model::JuMP.Model,
|
||||
formulation::ShiftFactorsFormulation,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
instance = model[:instance]
|
||||
isf = formulation.precomputed_isf
|
||||
lodf = formulation.precomputed_lodf
|
||||
if length(instance.buses) == 1
|
||||
if length(sc.buses) == 1
|
||||
isf = zeros(0, 0)
|
||||
lodf = zeros(0, 0)
|
||||
elseif isf === nothing
|
||||
@info "Computing injection shift factors..."
|
||||
time_isf = @elapsed begin
|
||||
isf = UnitCommitment._injection_shift_factors(
|
||||
lines = instance.lines,
|
||||
buses = instance.buses,
|
||||
buses = sc.buses,
|
||||
lines = sc.lines,
|
||||
)
|
||||
end
|
||||
@info @sprintf("Computed ISF in %.2f seconds", time_isf)
|
||||
@info "Computing line outage factors..."
|
||||
time_lodf = @elapsed begin
|
||||
lodf = UnitCommitment._line_outage_factors(
|
||||
lines = instance.lines,
|
||||
buses = instance.buses,
|
||||
buses = sc.buses,
|
||||
lines = sc.lines,
|
||||
isf = isf,
|
||||
)
|
||||
end
|
||||
@@ -55,7 +55,7 @@ function _setup_transmission(
|
||||
isf[abs.(isf).<formulation.isf_cutoff] .= 0
|
||||
lodf[abs.(lodf).<formulation.lodf_cutoff] .= 0
|
||||
end
|
||||
model[:isf] = isf
|
||||
model[:lodf] = lodf
|
||||
sc.isf = isf
|
||||
sc.lodf = lodf
|
||||
return
|
||||
end
|
||||
|
||||
@@ -5,21 +5,26 @@
|
||||
function _add_price_sensitive_load!(
|
||||
model::JuMP.Model,
|
||||
ps::PriceSensitiveLoad,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
loads = _init(model, :loads)
|
||||
net_injection = _init(model, :expr_net_injection)
|
||||
for t in 1:model[:instance].time
|
||||
# Decision variable
|
||||
loads[ps.name, t] =
|
||||
loads[sc.name, ps.name, t] =
|
||||
@variable(model, lower_bound = 0, upper_bound = ps.demand[t])
|
||||
|
||||
# Objective function terms
|
||||
add_to_expression!(model[:obj], loads[ps.name, t], -ps.revenue[t])
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
loads[sc.name, ps.name, t],
|
||||
-ps.revenue[t] * sc.probability,
|
||||
)
|
||||
|
||||
# Net injection
|
||||
add_to_expression!(
|
||||
net_injection[ps.bus.name, t],
|
||||
loads[ps.name, t],
|
||||
net_injection[sc.name, ps.bus.name, t],
|
||||
loads[sc.name, ps.name, t],
|
||||
-1.0,
|
||||
)
|
||||
end
|
||||
|
||||
@@ -18,7 +18,7 @@ function _injection_shift_factors(;
|
||||
lines::Array{TransmissionLine},
|
||||
)
|
||||
susceptance = _susceptance_matrix(lines)
|
||||
incidence = _reduced_incidence_matrix(lines = lines, buses = buses)
|
||||
incidence = _reduced_incidence_matrix(buses = buses, lines = lines)
|
||||
laplacian = transpose(incidence) * susceptance * incidence
|
||||
isf = susceptance * incidence * inv(Array(laplacian))
|
||||
return isf
|
||||
|
||||
@@ -2,54 +2,68 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
function _add_system_wide_eqs!(model::JuMP.Model)::Nothing
|
||||
_add_net_injection_eqs!(model)
|
||||
_add_spinning_reserve_eqs!(model)
|
||||
_add_flexiramp_reserve_eqs!(model)
|
||||
function _add_system_wide_eqs!(
|
||||
model::JuMP.Model,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
_add_net_injection_eqs!(model, sc)
|
||||
_add_spinning_reserve_eqs!(model, sc)
|
||||
_add_flexiramp_reserve_eqs!(model, sc)
|
||||
return
|
||||
end
|
||||
|
||||
function _add_net_injection_eqs!(model::JuMP.Model)::Nothing
|
||||
function _add_net_injection_eqs!(
|
||||
model::JuMP.Model,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
T = model[:instance].time
|
||||
net_injection = _init(model, :net_injection)
|
||||
eq_net_injection = _init(model, :eq_net_injection)
|
||||
eq_power_balance = _init(model, :eq_power_balance)
|
||||
for t in 1:T, b in model[:instance].buses
|
||||
n = net_injection[b.name, t] = @variable(model)
|
||||
eq_net_injection[b.name, t] =
|
||||
@constraint(model, -n + model[:expr_net_injection][b.name, t] == 0)
|
||||
for t in 1:T, b in sc.buses
|
||||
n = net_injection[sc.name, b.name, t] = @variable(model)
|
||||
eq_net_injection[sc.name, b.name, t] = @constraint(
|
||||
model,
|
||||
-n + model[:expr_net_injection][sc.name, b.name, t] == 0
|
||||
)
|
||||
end
|
||||
for t in 1:T
|
||||
eq_power_balance[t] = @constraint(
|
||||
eq_power_balance[sc.name, t] = @constraint(
|
||||
model,
|
||||
sum(net_injection[b.name, t] for b in model[:instance].buses) == 0
|
||||
sum(net_injection[sc.name, b.name, t] for b in sc.buses) == 0
|
||||
)
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
function _add_spinning_reserve_eqs!(model::JuMP.Model)::Nothing
|
||||
instance = model[:instance]
|
||||
function _add_spinning_reserve_eqs!(
|
||||
model::JuMP.Model,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
T = model[:instance].time
|
||||
eq_min_spinning_reserve = _init(model, :eq_min_spinning_reserve)
|
||||
for r in instance.reserves
|
||||
for r in sc.reserves
|
||||
r.type == "spinning" || continue
|
||||
for t in 1:instance.time
|
||||
for t in 1:T
|
||||
# Equation (68) in Kneuven et al. (2020)
|
||||
# As in Morales-España et al. (2013a)
|
||||
# Akin to the alternative formulation with max_power_avail
|
||||
# from Carrión and Arroyo (2006) and Ostrowski et al. (2012)
|
||||
eq_min_spinning_reserve[r.name, t] = @constraint(
|
||||
eq_min_spinning_reserve[sc.name, r.name, t] = @constraint(
|
||||
model,
|
||||
sum(model[:reserve][r.name, g.name, t] for g in r.units) +
|
||||
model[:reserve_shortfall][r.name, t] >= r.amount[t]
|
||||
sum(
|
||||
model[:reserve][sc.name, r.name, g.name, t] for
|
||||
g in r.units
|
||||
) + model[:reserve_shortfall][sc.name, r.name, t] >=
|
||||
r.amount[t]
|
||||
)
|
||||
|
||||
# Account for shortfall contribution to objective
|
||||
if r.shortfall_penalty >= 0
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
r.shortfall_penalty,
|
||||
model[:reserve_shortfall][r.name, t],
|
||||
r.shortfall_penalty * sc.probability,
|
||||
model[:reserve_shortfall][sc.name, r.name, t],
|
||||
)
|
||||
end
|
||||
end
|
||||
@@ -57,7 +71,10 @@ function _add_spinning_reserve_eqs!(model::JuMP.Model)::Nothing
|
||||
return
|
||||
end
|
||||
|
||||
function _add_flexiramp_reserve_eqs!(model::JuMP.Model)::Nothing
|
||||
function _add_flexiramp_reserve_eqs!(
|
||||
model::JuMP.Model,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
# Note: The flexpramp requirements in Wang & Hobbs (2016) are imposed as hard constraints
|
||||
# through Eq. (17) and Eq. (18). The constraints eq_min_upflexiramp and eq_min_dwflexiramp
|
||||
# provided below are modified versions of Eq. (17) and Eq. (18), respectively, in that
|
||||
@@ -65,29 +82,37 @@ function _add_flexiramp_reserve_eqs!(model::JuMP.Model)::Nothing
|
||||
# objective function.
|
||||
eq_min_upflexiramp = _init(model, :eq_min_upflexiramp)
|
||||
eq_min_dwflexiramp = _init(model, :eq_min_dwflexiramp)
|
||||
instance = model[:instance]
|
||||
for r in instance.reserves
|
||||
T = model[:instance].time
|
||||
for r in sc.reserves
|
||||
r.type == "flexiramp" || continue
|
||||
for t in 1:instance.time
|
||||
for t in 1:T
|
||||
# Eq. (17) in Wang & Hobbs (2016)
|
||||
eq_min_upflexiramp[r.name, t] = @constraint(
|
||||
eq_min_upflexiramp[sc.name, r.name, t] = @constraint(
|
||||
model,
|
||||
sum(model[:upflexiramp][r.name, g.name, t] for g in r.units) + model[:upflexiramp_shortfall][r.name, t] >= r.amount[t]
|
||||
sum(
|
||||
model[:upflexiramp][sc.name, r.name, g.name, t] for
|
||||
g in r.units
|
||||
) + model[:upflexiramp_shortfall][sc.name, r.name, t] >=
|
||||
r.amount[t]
|
||||
)
|
||||
# Eq. (18) in Wang & Hobbs (2016)
|
||||
eq_min_dwflexiramp[r.name, t] = @constraint(
|
||||
eq_min_dwflexiramp[sc.name, r.name, t] = @constraint(
|
||||
model,
|
||||
sum(model[:dwflexiramp][r.name, g.name, t] for g in r.units) + model[:dwflexiramp_shortfall][r.name, t] >= r.amount[t]
|
||||
sum(
|
||||
model[:dwflexiramp][sc.name, r.name, g.name, t] for
|
||||
g in r.units
|
||||
) + model[:dwflexiramp_shortfall][sc.name, r.name, t] >=
|
||||
r.amount[t]
|
||||
)
|
||||
|
||||
# Account for flexiramp shortfall contribution to objective
|
||||
if r.shortfall_penalty >= 0
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
r.shortfall_penalty,
|
||||
r.shortfall_penalty * sc.probability,
|
||||
(
|
||||
model[:upflexiramp_shortfall][r.name, t] +
|
||||
model[:dwflexiramp_shortfall][r.name, t]
|
||||
model[:upflexiramp_shortfall][sc.name, r.name, t] +
|
||||
model[:dwflexiramp_shortfall][sc.name, r.name, t]
|
||||
),
|
||||
)
|
||||
end
|
||||
|
||||
@@ -2,7 +2,13 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
function _add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation)
|
||||
# Function for adding variables, constraints, and objective function terms
|
||||
# related to the binary commitment, startup and shutdown decisions of units
|
||||
function _add_unit_commitment!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation::Formulation,
|
||||
)
|
||||
if !all(g.must_run) && any(g.must_run)
|
||||
error("Partially must-run units are not currently supported")
|
||||
end
|
||||
@@ -11,22 +17,40 @@ function _add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation)
|
||||
end
|
||||
|
||||
# Variables
|
||||
_add_production_vars!(model, g, formulation.prod_vars)
|
||||
_add_spinning_reserve_vars!(model, g)
|
||||
_add_flexiramp_reserve_vars!(model, g)
|
||||
_add_startup_shutdown_vars!(model, g)
|
||||
_add_status_vars!(model, g, formulation.status_vars)
|
||||
|
||||
# Constraints and objective function
|
||||
_add_min_uptime_downtime_eqs!(model, g)
|
||||
_add_net_injection_eqs!(model, g)
|
||||
_add_production_limit_eqs!(model, g, formulation.prod_vars)
|
||||
_add_startup_cost_eqs!(model, g, formulation.startup_costs)
|
||||
_add_status_eqs!(model, g, formulation.status_vars)
|
||||
return
|
||||
end
|
||||
|
||||
# Function for adding variables, constraints, and objective function terms
|
||||
# related to the continuous dispatch decisions of units
|
||||
function _add_unit_dispatch!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation::Formulation,
|
||||
sc::UnitCommitmentScenario,
|
||||
)
|
||||
|
||||
# Variables
|
||||
_add_production_vars!(model, g, formulation.prod_vars, sc)
|
||||
_add_spinning_reserve_vars!(model, g, sc)
|
||||
_add_flexiramp_reserve_vars!(model, g, sc)
|
||||
|
||||
# Constraints and objective function
|
||||
_add_net_injection_eqs!(model, g, sc)
|
||||
_add_production_limit_eqs!(model, g, formulation.prod_vars, sc)
|
||||
_add_production_piecewise_linear_eqs!(
|
||||
model,
|
||||
g,
|
||||
formulation.prod_vars,
|
||||
formulation.pwl_costs,
|
||||
formulation.status_vars,
|
||||
sc,
|
||||
)
|
||||
_add_ramp_eqs!(
|
||||
model,
|
||||
@@ -34,26 +58,31 @@ function _add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation)
|
||||
formulation.prod_vars,
|
||||
formulation.ramping,
|
||||
formulation.status_vars,
|
||||
sc,
|
||||
)
|
||||
_add_startup_cost_eqs!(model, g, formulation.startup_costs)
|
||||
_add_startup_shutdown_limit_eqs!(model, g)
|
||||
_add_status_eqs!(model, g, formulation.status_vars)
|
||||
_add_startup_shutdown_limit_eqs!(model, g, sc)
|
||||
return
|
||||
end
|
||||
|
||||
_is_initially_on(g::Unit)::Float64 = (g.initial_status > 0 ? 1.0 : 0.0)
|
||||
|
||||
function _add_spinning_reserve_vars!(model::JuMP.Model, g::Unit)::Nothing
|
||||
function _add_spinning_reserve_vars!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
reserve = _init(model, :reserve)
|
||||
reserve_shortfall = _init(model, :reserve_shortfall)
|
||||
for r in g.reserves
|
||||
r.type == "spinning" || continue
|
||||
for t in 1:model[:instance].time
|
||||
reserve[r.name, g.name, t] = @variable(model, lower_bound = 0)
|
||||
if (r.name, t) ∉ keys(reserve_shortfall)
|
||||
reserve_shortfall[r.name, t] = @variable(model, lower_bound = 0)
|
||||
reserve[sc.name, r.name, g.name, t] =
|
||||
@variable(model, lower_bound = 0)
|
||||
if (sc.name, r.name, t) ∉ keys(reserve_shortfall)
|
||||
reserve_shortfall[sc.name, r.name, t] =
|
||||
@variable(model, lower_bound = 0)
|
||||
if r.shortfall_penalty < 0
|
||||
set_upper_bound(reserve_shortfall[r.name, t], 0.0)
|
||||
set_upper_bound(reserve_shortfall[sc.name, r.name, t], 0.0)
|
||||
end
|
||||
end
|
||||
end
|
||||
@@ -61,27 +90,37 @@ function _add_spinning_reserve_vars!(model::JuMP.Model, g::Unit)::Nothing
|
||||
return
|
||||
end
|
||||
|
||||
function _add_flexiramp_reserve_vars!(model::JuMP.Model, g::Unit)::Nothing
|
||||
function _add_flexiramp_reserve_vars!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
upflexiramp = _init(model, :upflexiramp)
|
||||
upflexiramp_shortfall = _init(model, :upflexiramp_shortfall)
|
||||
mfg = _init(model, :mfg)
|
||||
dwflexiramp = _init(model, :dwflexiramp)
|
||||
dwflexiramp_shortfall = _init(model, :dwflexiramp_shortfall)
|
||||
for r in g.reserves
|
||||
r.type == "flexiramp" || continue
|
||||
for t in 1:model[:instance].time
|
||||
# maximum feasible generation, \bar{g_{its}} in Wang & Hobbs (2016)
|
||||
mfg[r.name, g.name, t] = @variable(model, lower_bound = 0)
|
||||
upflexiramp[r.name, g.name, t] = @variable(model) # up-flexiramp, ur_{it} in Wang & Hobbs (2016)
|
||||
dwflexiramp[r.name, g.name, t] = @variable(model) # down-flexiramp, dr_{it} in Wang & Hobbs (2016)
|
||||
if (r.name, t) ∉ keys(upflexiramp_shortfall)
|
||||
upflexiramp_shortfall[r.name, t] =
|
||||
mfg[sc.name, g.name, t] = @variable(model, lower_bound = 0)
|
||||
for r in g.reserves
|
||||
r.type == "flexiramp" || continue
|
||||
upflexiramp[sc.name, r.name, g.name, t] = @variable(model) # up-flexiramp, ur_{it} in Wang & Hobbs (2016)
|
||||
dwflexiramp[sc.name, r.name, g.name, t] = @variable(model) # down-flexiramp, dr_{it} in Wang & Hobbs (2016)
|
||||
if (sc.name, r.name, t) ∉ keys(upflexiramp_shortfall)
|
||||
upflexiramp_shortfall[sc.name, r.name, t] =
|
||||
@variable(model, lower_bound = 0)
|
||||
dwflexiramp_shortfall[r.name, t] =
|
||||
dwflexiramp_shortfall[sc.name, r.name, t] =
|
||||
@variable(model, lower_bound = 0)
|
||||
if r.shortfall_penalty < 0
|
||||
set_upper_bound(upflexiramp_shortfall[r.name, t], 0.0)
|
||||
set_upper_bound(dwflexiramp_shortfall[r.name, t], 0.0)
|
||||
set_upper_bound(
|
||||
upflexiramp_shortfall[sc.name, r.name, t],
|
||||
0.0,
|
||||
)
|
||||
set_upper_bound(
|
||||
dwflexiramp_shortfall[sc.name, r.name, t],
|
||||
0.0,
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
@@ -99,32 +138,36 @@ function _add_startup_shutdown_vars!(model::JuMP.Model, g::Unit)::Nothing
|
||||
return
|
||||
end
|
||||
|
||||
function _add_startup_shutdown_limit_eqs!(model::JuMP.Model, g::Unit)::Nothing
|
||||
function _add_startup_shutdown_limit_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
eq_shutdown_limit = _init(model, :eq_shutdown_limit)
|
||||
eq_startup_limit = _init(model, :eq_startup_limit)
|
||||
is_on = model[:is_on]
|
||||
prod_above = model[:prod_above]
|
||||
reserve = _total_reserves(model, g)
|
||||
reserve = _total_reserves(model, g, sc)
|
||||
switch_off = model[:switch_off]
|
||||
switch_on = model[:switch_on]
|
||||
T = model[:instance].time
|
||||
for t in 1:T
|
||||
# Startup limit
|
||||
eq_startup_limit[g.name, t] = @constraint(
|
||||
eq_startup_limit[sc.name, g.name, t] = @constraint(
|
||||
model,
|
||||
prod_above[g.name, t] + reserve[t] <=
|
||||
prod_above[sc.name, g.name, t] + reserve[t] <=
|
||||
(g.max_power[t] - g.min_power[t]) * is_on[g.name, t] -
|
||||
max(0, g.max_power[t] - g.startup_limit) * switch_on[g.name, t]
|
||||
)
|
||||
# Shutdown limit
|
||||
if g.initial_power > g.shutdown_limit
|
||||
eq_shutdown_limit[g.name, 0] =
|
||||
eq_shutdown_limit[sc.name, g.name, 0] =
|
||||
@constraint(model, switch_off[g.name, 1] <= 0)
|
||||
end
|
||||
if t < T
|
||||
eq_shutdown_limit[g.name, t] = @constraint(
|
||||
eq_shutdown_limit[sc.name, g.name, t] = @constraint(
|
||||
model,
|
||||
prod_above[g.name, t] <=
|
||||
prod_above[sc.name, g.name, t] <=
|
||||
(g.max_power[t] - g.min_power[t]) * is_on[g.name, t] -
|
||||
max(0, g.max_power[t] - g.shutdown_limit) *
|
||||
switch_off[g.name, t+1]
|
||||
@@ -138,43 +181,44 @@ function _add_ramp_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation::RampingFormulation,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
prod_above = model[:prod_above]
|
||||
reserve = _total_reserves(model, g)
|
||||
reserve = _total_reserves(model, g, sc)
|
||||
eq_ramp_up = _init(model, :eq_ramp_up)
|
||||
eq_ramp_down = _init(model, :eq_ramp_down)
|
||||
for t in 1:model[:instance].time
|
||||
# Ramp up limit
|
||||
if t == 1
|
||||
if _is_initially_on(g) == 1
|
||||
eq_ramp_up[g.name, t] = @constraint(
|
||||
eq_ramp_up[sc.name, g.name, t] = @constraint(
|
||||
model,
|
||||
prod_above[g.name, t] + reserve[t] <=
|
||||
prod_above[sc.name, g.name, t] + reserve[t] <=
|
||||
(g.initial_power - g.min_power[t]) + g.ramp_up_limit
|
||||
)
|
||||
end
|
||||
else
|
||||
eq_ramp_up[g.name, t] = @constraint(
|
||||
eq_ramp_up[sc.name, g.name, t] = @constraint(
|
||||
model,
|
||||
prod_above[g.name, t] + reserve[t] <=
|
||||
prod_above[g.name, t-1] + g.ramp_up_limit
|
||||
prod_above[sc.name, g.name, t] + reserve[t] <=
|
||||
prod_above[sc.name, g.name, t-1] + g.ramp_up_limit
|
||||
)
|
||||
end
|
||||
|
||||
# Ramp down limit
|
||||
if t == 1
|
||||
if _is_initially_on(g) == 1
|
||||
eq_ramp_down[g.name, t] = @constraint(
|
||||
eq_ramp_down[sc.name, g.name, t] = @constraint(
|
||||
model,
|
||||
prod_above[g.name, t] >=
|
||||
prod_above[sc.name, g.name, t] >=
|
||||
(g.initial_power - g.min_power[t]) - g.ramp_down_limit
|
||||
)
|
||||
end
|
||||
else
|
||||
eq_ramp_down[g.name, t] = @constraint(
|
||||
eq_ramp_down[sc.name, g.name, t] = @constraint(
|
||||
model,
|
||||
prod_above[g.name, t] >=
|
||||
prod_above[g.name, t-1] - g.ramp_down_limit
|
||||
prod_above[sc.name, g.name, t] >=
|
||||
prod_above[sc.name, g.name, t-1] - g.ramp_down_limit
|
||||
)
|
||||
end
|
||||
end
|
||||
@@ -223,30 +267,37 @@ function _add_min_uptime_downtime_eqs!(model::JuMP.Model, g::Unit)::Nothing
|
||||
end
|
||||
end
|
||||
|
||||
function _add_net_injection_eqs!(model::JuMP.Model, g::Unit)::Nothing
|
||||
function _add_net_injection_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
expr_net_injection = model[:expr_net_injection]
|
||||
for t in 1:model[:instance].time
|
||||
# Add to net injection expression
|
||||
add_to_expression!(
|
||||
expr_net_injection[g.bus.name, t],
|
||||
model[:prod_above][g.name, t],
|
||||
expr_net_injection[sc.name, g.bus.name, t],
|
||||
model[:prod_above][sc.name, g.name, t],
|
||||
1.0,
|
||||
)
|
||||
add_to_expression!(
|
||||
expr_net_injection[g.bus.name, t],
|
||||
expr_net_injection[sc.name, g.bus.name, t],
|
||||
model[:is_on][g.name, t],
|
||||
g.min_power[t],
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
function _total_reserves(model, g)::Vector
|
||||
function _total_reserves(model, g, sc)::Vector
|
||||
T = model[:instance].time
|
||||
reserve = [0.0 for _ in 1:T]
|
||||
spinning_reserves = [r for r in g.reserves if r.type == "spinning"]
|
||||
if !isempty(spinning_reserves)
|
||||
reserve += [
|
||||
sum(model[:reserve][r.name, g.name, t] for r in spinning_reserves) for t in 1:model[:instance].time
|
||||
sum(
|
||||
model[:reserve][sc.name, r.name, g.name, t] for
|
||||
r in spinning_reserves
|
||||
) for t in 1:model[:instance].time
|
||||
]
|
||||
end
|
||||
return reserve
|
||||
|
||||
@@ -10,37 +10,43 @@ solution. Useful for computing LMPs.
|
||||
"""
|
||||
function fix!(model::JuMP.Model, solution::AbstractDict)::Nothing
|
||||
instance, T = model[:instance], model[:instance].time
|
||||
"Production (MW)" ∈ keys(solution) ? solution = Dict("s1" => solution) :
|
||||
nothing
|
||||
is_on = model[:is_on]
|
||||
prod_above = model[:prod_above]
|
||||
reserve = model[:reserve]
|
||||
for g in instance.units
|
||||
for sc in instance.scenarios
|
||||
for g in sc.units
|
||||
for t in 1:T
|
||||
is_on_value = round(solution["Is on"][g.name][t])
|
||||
prod_value =
|
||||
round(solution["Production (MW)"][g.name][t], digits = 5)
|
||||
is_on_value = round(solution[sc.name]["Is on"][g.name][t])
|
||||
prod_value = round(
|
||||
solution[sc.name]["Production (MW)"][g.name][t],
|
||||
digits = 5,
|
||||
)
|
||||
JuMP.fix(is_on[g.name, t], is_on_value, force = true)
|
||||
JuMP.fix(
|
||||
prod_above[g.name, t],
|
||||
prod_above[sc.name, g.name, t],
|
||||
prod_value - is_on_value * g.min_power[t],
|
||||
force = true,
|
||||
)
|
||||
end
|
||||
end
|
||||
for r in instance.reserves
|
||||
for r in sc.reserves
|
||||
r.type == "spinning" || continue
|
||||
for g in r.units
|
||||
for t in 1:T
|
||||
reserve_value = round(
|
||||
solution["Spinning reserve (MW)"][r.name][g.name][t],
|
||||
solution[sc.name]["Spinning reserve (MW)"][r.name][g.name][t],
|
||||
digits = 5,
|
||||
)
|
||||
JuMP.fix(
|
||||
reserve[r.name, g.name, t],
|
||||
reserve[sc.name, r.name, g.name, t],
|
||||
reserve_value,
|
||||
force = true,
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
@@ -5,13 +5,15 @@
|
||||
function _enforce_transmission(
|
||||
model::JuMP.Model,
|
||||
violations::Vector{_Violation},
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
for v in violations
|
||||
_enforce_transmission(
|
||||
model = model,
|
||||
sc = sc,
|
||||
violation = v,
|
||||
isf = model[:isf],
|
||||
lodf = model[:lodf],
|
||||
isf = sc.isf,
|
||||
lodf = sc.lodf,
|
||||
)
|
||||
end
|
||||
return
|
||||
@@ -19,6 +21,7 @@ end
|
||||
|
||||
function _enforce_transmission(;
|
||||
model::JuMP.Model,
|
||||
sc::UnitCommitmentScenario,
|
||||
violation::_Violation,
|
||||
isf::Matrix{Float64},
|
||||
lodf::Matrix{Float64},
|
||||
@@ -31,19 +34,21 @@ function _enforce_transmission(;
|
||||
if violation.outage_line === nothing
|
||||
limit = violation.monitored_line.normal_flow_limit[violation.time]
|
||||
@info @sprintf(
|
||||
" %8.3f MW overflow in %-5s time %3d (pre-contingency)",
|
||||
" %8.3f MW overflow in %-5s time %3d (pre-contingency, scenario %s)",
|
||||
violation.amount,
|
||||
violation.monitored_line.name,
|
||||
violation.time,
|
||||
sc.name,
|
||||
)
|
||||
else
|
||||
limit = violation.monitored_line.emergency_flow_limit[violation.time]
|
||||
@info @sprintf(
|
||||
" %8.3f MW overflow in %-5s time %3d (outage: line %s)",
|
||||
" %8.3f MW overflow in %-5s time %3d (outage: line %s, scenario %s)",
|
||||
violation.amount,
|
||||
violation.monitored_line.name,
|
||||
violation.time,
|
||||
violation.outage_line.name,
|
||||
sc.name,
|
||||
)
|
||||
end
|
||||
|
||||
@@ -51,7 +56,7 @@ function _enforce_transmission(;
|
||||
t = violation.time
|
||||
flow = @variable(model, base_name = "flow[$fm,$t]")
|
||||
|
||||
v = overflow[violation.monitored_line.name, violation.time]
|
||||
v = overflow[sc.name, violation.monitored_line.name, violation.time]
|
||||
@constraint(model, flow <= limit + v)
|
||||
@constraint(model, -flow <= limit + v)
|
||||
|
||||
@@ -59,23 +64,23 @@ function _enforce_transmission(;
|
||||
@constraint(
|
||||
model,
|
||||
flow == sum(
|
||||
net_injection[b.name, violation.time] *
|
||||
net_injection[sc.name, b.name, violation.time] *
|
||||
isf[violation.monitored_line.offset, b.offset] for
|
||||
b in instance.buses if b.offset > 0
|
||||
b in sc.buses if b.offset > 0
|
||||
)
|
||||
)
|
||||
else
|
||||
@constraint(
|
||||
model,
|
||||
flow == sum(
|
||||
net_injection[b.name, violation.time] * (
|
||||
net_injection[sc.name, b.name, violation.time] * (
|
||||
isf[violation.monitored_line.offset, b.offset] + (
|
||||
lodf[
|
||||
violation.monitored_line.offset,
|
||||
violation.outage_line.offset,
|
||||
] * isf[violation.outage_line.offset, b.offset]
|
||||
)
|
||||
) for b in instance.buses if b.offset > 0
|
||||
) for b in sc.buses if b.offset > 0
|
||||
)
|
||||
)
|
||||
end
|
||||
|
||||
@@ -5,40 +5,36 @@
|
||||
import Base.Threads: @threads
|
||||
|
||||
function _find_violations(
|
||||
model::JuMP.Model;
|
||||
model::JuMP.Model,
|
||||
sc::UnitCommitmentScenario;
|
||||
max_per_line::Int,
|
||||
max_per_period::Int,
|
||||
)
|
||||
instance = model[:instance]
|
||||
net_injection = model[:net_injection]
|
||||
overflow = model[:overflow]
|
||||
length(instance.buses) > 1 || return []
|
||||
length(sc.buses) > 1 || return []
|
||||
violations = []
|
||||
@info "Verifying transmission limits..."
|
||||
time_screening = @elapsed begin
|
||||
non_slack_buses = [b for b in instance.buses if b.offset > 0]
|
||||
|
||||
non_slack_buses = [b for b in sc.buses if b.offset > 0]
|
||||
net_injection_values = [
|
||||
value(net_injection[b.name, t]) for b in non_slack_buses,
|
||||
value(net_injection[sc.name, b.name, t]) for b in non_slack_buses,
|
||||
t in 1:instance.time
|
||||
]
|
||||
overflow_values = [
|
||||
value(overflow[lm.name, t]) for lm in instance.lines,
|
||||
value(overflow[sc.name, lm.name, t]) for lm in sc.lines,
|
||||
t in 1:instance.time
|
||||
]
|
||||
violations = UnitCommitment._find_violations(
|
||||
instance = instance,
|
||||
sc = sc,
|
||||
net_injections = net_injection_values,
|
||||
overflow = overflow_values,
|
||||
isf = model[:isf],
|
||||
lodf = model[:lodf],
|
||||
isf = sc.isf,
|
||||
lodf = sc.lodf,
|
||||
max_per_line = max_per_line,
|
||||
max_per_period = max_per_period,
|
||||
)
|
||||
end
|
||||
@info @sprintf(
|
||||
"Verified transmission limits in %.2f seconds",
|
||||
time_screening
|
||||
)
|
||||
return violations
|
||||
end
|
||||
|
||||
@@ -64,6 +60,7 @@ matrix, where L is the number of transmission lines.
|
||||
"""
|
||||
function _find_violations(;
|
||||
instance::UnitCommitmentInstance,
|
||||
sc::UnitCommitmentScenario,
|
||||
net_injections::Array{Float64,2},
|
||||
overflow::Array{Float64,2},
|
||||
isf::Array{Float64,2},
|
||||
@@ -71,8 +68,8 @@ function _find_violations(;
|
||||
max_per_line::Int,
|
||||
max_per_period::Int,
|
||||
)::Array{_Violation,1}
|
||||
B = length(instance.buses) - 1
|
||||
L = length(instance.lines)
|
||||
B = length(sc.buses) - 1
|
||||
L = length(sc.lines)
|
||||
T = instance.time
|
||||
K = nthreads()
|
||||
|
||||
@@ -93,17 +90,17 @@ function _find_violations(;
|
||||
post_v::Array{Float64} = zeros(L, L, K) # post_v[lm, lc, thread]
|
||||
|
||||
normal_limits::Array{Float64,2} = [
|
||||
l.normal_flow_limit[t] + overflow[l.offset, t] for
|
||||
l in instance.lines, t in 1:T
|
||||
l.normal_flow_limit[t] + overflow[l.offset, t] for l in sc.lines,
|
||||
t in 1:T
|
||||
]
|
||||
|
||||
emergency_limits::Array{Float64,2} = [
|
||||
l.emergency_flow_limit[t] + overflow[l.offset, t] for
|
||||
l in instance.lines, t in 1:T
|
||||
l.emergency_flow_limit[t] + overflow[l.offset, t] for l in sc.lines,
|
||||
t in 1:T
|
||||
]
|
||||
|
||||
is_vulnerable::Array{Bool} = zeros(Bool, L)
|
||||
for c in instance.contingencies
|
||||
for c in sc.contingencies
|
||||
is_vulnerable[c.lines[1].offset] = true
|
||||
end
|
||||
|
||||
@@ -144,7 +141,7 @@ function _find_violations(;
|
||||
filters[t],
|
||||
_Violation(
|
||||
time = t,
|
||||
monitored_line = instance.lines[lm],
|
||||
monitored_line = sc.lines[lm],
|
||||
outage_line = nothing,
|
||||
amount = pre_v[lm, k],
|
||||
),
|
||||
@@ -159,8 +156,8 @@ function _find_violations(;
|
||||
filters[t],
|
||||
_Violation(
|
||||
time = t,
|
||||
monitored_line = instance.lines[lm],
|
||||
outage_line = instance.lines[lc],
|
||||
monitored_line = sc.lines[lm],
|
||||
outage_line = sc.lines[lc],
|
||||
amount = post_v[lm, lc, k],
|
||||
),
|
||||
)
|
||||
|
||||
@@ -12,11 +12,16 @@ function optimize!(model::JuMP.Model, method::XavQiuWanThi2019.Method)::Nothing
|
||||
end
|
||||
initial_time = time()
|
||||
large_gap = false
|
||||
has_transmission = (length(model[:isf]) > 0)
|
||||
has_transmission = false
|
||||
for sc in model[:instance].scenarios
|
||||
if length(sc.isf) > 0
|
||||
has_transmission = true
|
||||
end
|
||||
if has_transmission && method.two_phase_gap
|
||||
set_gap(1e-2)
|
||||
large_gap = true
|
||||
end
|
||||
end
|
||||
while true
|
||||
time_elapsed = time() - initial_time
|
||||
time_remaining = method.time_limit - time_elapsed
|
||||
@@ -31,13 +36,41 @@ function optimize!(model::JuMP.Model, method::XavQiuWanThi2019.Method)::Nothing
|
||||
JuMP.set_time_limit_sec(model, time_remaining)
|
||||
@info "Solving MILP..."
|
||||
JuMP.optimize!(model)
|
||||
|
||||
has_transmission || break
|
||||
violations = _find_violations(
|
||||
|
||||
@info "Verifying transmission limits..."
|
||||
time_screening = @elapsed begin
|
||||
violations = []
|
||||
for sc in model[:instance].scenarios
|
||||
push!(
|
||||
violations,
|
||||
_find_violations(
|
||||
model,
|
||||
sc,
|
||||
max_per_line = method.max_violations_per_line,
|
||||
max_per_period = method.max_violations_per_period,
|
||||
),
|
||||
)
|
||||
if isempty(violations)
|
||||
end
|
||||
end
|
||||
@info @sprintf(
|
||||
"Verified transmission limits in %.2f seconds",
|
||||
time_screening
|
||||
)
|
||||
|
||||
violations_found = false
|
||||
for v in violations
|
||||
if !isempty(v)
|
||||
violations_found = true
|
||||
end
|
||||
end
|
||||
|
||||
if violations_found
|
||||
for (i, v) in enumerate(violations)
|
||||
_enforce_transmission(model, v, model[:instance].scenarios[i])
|
||||
end
|
||||
else
|
||||
@info "No violations found"
|
||||
if large_gap
|
||||
large_gap = false
|
||||
@@ -45,8 +78,6 @@ function optimize!(model::JuMP.Model, method::XavQiuWanThi2019.Method)::Nothing
|
||||
else
|
||||
break
|
||||
end
|
||||
else
|
||||
_enforce_transmission(model, violations)
|
||||
end
|
||||
end
|
||||
return
|
||||
|
||||
@@ -16,34 +16,44 @@ solution = UnitCommitment.solution(model)
|
||||
"""
|
||||
function solution(model::JuMP.Model)::OrderedDict
|
||||
instance, T = model[:instance], model[:instance].time
|
||||
function timeseries(vars, collection)
|
||||
function timeseries(vars, collection; sc = nothing)
|
||||
if sc === nothing
|
||||
return OrderedDict(
|
||||
b.name => [round(value(vars[b.name, t]), digits = 5) for t in 1:T]
|
||||
for b in collection
|
||||
b.name =>
|
||||
[round(value(vars[b.name, t]), digits = 5) for t in 1:T] for
|
||||
b in collection
|
||||
)
|
||||
else
|
||||
return OrderedDict(
|
||||
b.name => [
|
||||
round(value(vars[sc.name, b.name, t]), digits = 5) for
|
||||
t in 1:T
|
||||
] for b in collection
|
||||
)
|
||||
end
|
||||
function production_cost(g)
|
||||
end
|
||||
function production_cost(g, sc)
|
||||
return [
|
||||
value(model[:is_on][g.name, t]) * g.min_power_cost[t] + sum(
|
||||
Float64[
|
||||
value(model[:segprod][g.name, t, k]) *
|
||||
value(model[:segprod][sc.name, g.name, t, k]) *
|
||||
g.cost_segments[k].cost[t] for
|
||||
k in 1:length(g.cost_segments)
|
||||
],
|
||||
) for t in 1:T
|
||||
]
|
||||
end
|
||||
function production(g)
|
||||
function production(g, sc)
|
||||
return [
|
||||
value(model[:is_on][g.name, t]) * g.min_power[t] + sum(
|
||||
Float64[
|
||||
value(model[:segprod][g.name, t, k]) for
|
||||
value(model[:segprod][sc.name, g.name, t, k]) for
|
||||
k in 1:length(g.cost_segments)
|
||||
],
|
||||
) for t in 1:T
|
||||
]
|
||||
end
|
||||
function startup_cost(g)
|
||||
function startup_cost(g, sc)
|
||||
S = length(g.startup_categories)
|
||||
return [
|
||||
sum(
|
||||
@@ -53,66 +63,70 @@ function solution(model::JuMP.Model)::OrderedDict
|
||||
]
|
||||
end
|
||||
sol = OrderedDict()
|
||||
sol["Production (MW)"] =
|
||||
OrderedDict(g.name => production(g) for g in instance.units)
|
||||
sol["Production cost (\$)"] =
|
||||
OrderedDict(g.name => production_cost(g) for g in instance.units)
|
||||
sol["Startup cost (\$)"] =
|
||||
OrderedDict(g.name => startup_cost(g) for g in instance.units)
|
||||
sol["Is on"] = timeseries(model[:is_on], instance.units)
|
||||
sol["Switch on"] = timeseries(model[:switch_on], instance.units)
|
||||
sol["Switch off"] = timeseries(model[:switch_off], instance.units)
|
||||
sol["Net injection (MW)"] =
|
||||
timeseries(model[:net_injection], instance.buses)
|
||||
sol["Load curtail (MW)"] = timeseries(model[:curtail], instance.buses)
|
||||
if !isempty(instance.lines)
|
||||
sol["Line overflow (MW)"] = timeseries(model[:overflow], instance.lines)
|
||||
for sc in instance.scenarios
|
||||
sol[sc.name] = OrderedDict()
|
||||
sol[sc.name]["Production (MW)"] =
|
||||
OrderedDict(g.name => production(g, sc) for g in sc.units)
|
||||
sol[sc.name]["Production cost (\$)"] =
|
||||
OrderedDict(g.name => production_cost(g, sc) for g in sc.units)
|
||||
sol[sc.name]["Startup cost (\$)"] =
|
||||
OrderedDict(g.name => startup_cost(g, sc) for g in sc.units)
|
||||
sol[sc.name]["Is on"] = timeseries(model[:is_on], sc.units)
|
||||
sol[sc.name]["Switch on"] = timeseries(model[:switch_on], sc.units)
|
||||
sol[sc.name]["Switch off"] = timeseries(model[:switch_off], sc.units)
|
||||
sol[sc.name]["Net injection (MW)"] =
|
||||
timeseries(model[:net_injection], sc.buses, sc = sc)
|
||||
sol[sc.name]["Load curtail (MW)"] =
|
||||
timeseries(model[:curtail], sc.buses, sc = sc)
|
||||
if !isempty(sc.lines)
|
||||
sol[sc.name]["Line overflow (MW)"] =
|
||||
timeseries(model[:overflow], sc.lines, sc = sc)
|
||||
end
|
||||
if !isempty(instance.price_sensitive_loads)
|
||||
sol["Price-sensitive loads (MW)"] =
|
||||
timeseries(model[:loads], instance.price_sensitive_loads)
|
||||
if !isempty(sc.price_sensitive_loads)
|
||||
sol[sc.name]["Price-sensitive loads (MW)"] =
|
||||
timeseries(model[:loads], sc.price_sensitive_loads, sc = sc)
|
||||
end
|
||||
sol["Spinning reserve (MW)"] = OrderedDict(
|
||||
sol[sc.name]["Spinning reserve (MW)"] = OrderedDict(
|
||||
r.name => OrderedDict(
|
||||
g.name => [
|
||||
value(model[:reserve][r.name, g.name, t]) for
|
||||
t in 1:instance.time
|
||||
value(model[:reserve][sc.name, r.name, g.name, t]) for t in 1:instance.time
|
||||
] for g in r.units
|
||||
) for r in instance.reserves if r.type == "spinning"
|
||||
) for r in sc.reserves if r.type == "spinning"
|
||||
)
|
||||
sol["Spinning reserve shortfall (MW)"] = OrderedDict(
|
||||
sol[sc.name]["Spinning reserve shortfall (MW)"] = OrderedDict(
|
||||
r.name => [
|
||||
value(model[:reserve_shortfall][r.name, t]) for
|
||||
value(model[:reserve_shortfall][sc.name, r.name, t]) for
|
||||
t in 1:instance.time
|
||||
] for r in instance.reserves if r.type == "spinning"
|
||||
] for r in sc.reserves if r.type == "spinning"
|
||||
)
|
||||
sol["Up-flexiramp (MW)"] = OrderedDict(
|
||||
sol[sc.name]["Up-flexiramp (MW)"] = OrderedDict(
|
||||
r.name => OrderedDict(
|
||||
g.name => [
|
||||
value(model[:upflexiramp][r.name, g.name, t]) for
|
||||
t in 1:instance.time
|
||||
value(model[:upflexiramp][sc.name, r.name, g.name, t]) for t in 1:instance.time
|
||||
] for g in r.units
|
||||
) for r in instance.reserves if r.type == "flexiramp"
|
||||
) for r in sc.reserves if r.type == "flexiramp"
|
||||
)
|
||||
sol["Up-flexiramp shortfall (MW)"] = OrderedDict(
|
||||
sol[sc.name]["Up-flexiramp shortfall (MW)"] = OrderedDict(
|
||||
r.name => [
|
||||
value(model[:upflexiramp_shortfall][r.name, t]) for
|
||||
t in 1:instance.time
|
||||
] for r in instance.reserves if r.type == "flexiramp"
|
||||
value(model[:upflexiramp_shortfall][sc.name, r.name, t]) for t in 1:instance.time
|
||||
] for r in sc.reserves if r.type == "flexiramp"
|
||||
)
|
||||
sol["Down-flexiramp (MW)"] = OrderedDict(
|
||||
sol[sc.name]["Down-flexiramp (MW)"] = OrderedDict(
|
||||
r.name => OrderedDict(
|
||||
g.name => [
|
||||
value(model[:dwflexiramp][r.name, g.name, t]) for
|
||||
t in 1:instance.time
|
||||
value(model[:dwflexiramp][sc.name, r.name, g.name, t]) for t in 1:instance.time
|
||||
] for g in r.units
|
||||
) for r in instance.reserves if r.type == "flexiramp"
|
||||
) for r in sc.reserves if r.type == "flexiramp"
|
||||
)
|
||||
sol["Down-flexiramp shortfall (MW)"] = OrderedDict(
|
||||
sol[sc.name]["Down-flexiramp shortfall (MW)"] = OrderedDict(
|
||||
r.name => [
|
||||
value(model[:upflexiramp_shortfall][r.name, t]) for
|
||||
t in 1:instance.time
|
||||
] for r in instance.reserves if r.type == "flexiramp"
|
||||
value(model[:dwflexiramp_shortfall][sc.name, r.name, t]) for t in 1:instance.time
|
||||
] for r in sc.reserves if r.type == "flexiramp"
|
||||
)
|
||||
end
|
||||
if length(instance.scenarios) == 1
|
||||
return first(values(sol))
|
||||
else
|
||||
return sol
|
||||
end
|
||||
end
|
||||
|
||||
@@ -5,18 +5,18 @@
|
||||
using JuMP
|
||||
|
||||
"""
|
||||
generate_initial_conditions!(instance, optimizer)
|
||||
generate_initial_conditions!(sc, optimizer)
|
||||
|
||||
Generates feasible initial conditions for the given instance, by constructing
|
||||
Generates feasible initial conditions for the given scenario, by constructing
|
||||
and solving a single-period mixed-integer optimization problem, using the given
|
||||
optimizer. The instance is modified in-place.
|
||||
optimizer. The scenario is modified in-place.
|
||||
"""
|
||||
function generate_initial_conditions!(
|
||||
instance::UnitCommitmentInstance,
|
||||
sc::UnitCommitmentScenario,
|
||||
optimizer,
|
||||
)::Nothing
|
||||
G = instance.units
|
||||
B = instance.buses
|
||||
G = sc.units
|
||||
B = sc.buses
|
||||
t = 1
|
||||
mip = JuMP.Model(optimizer)
|
||||
|
||||
|
||||
@@ -6,6 +6,7 @@ module XavQiuAhm2021
|
||||
|
||||
using Distributions
|
||||
import ..UnitCommitmentInstance
|
||||
import ..UnitCommitmentScenario
|
||||
|
||||
"""
|
||||
struct Randomization
|
||||
@@ -119,10 +120,10 @@ end
|
||||
|
||||
function _randomize_costs(
|
||||
rng,
|
||||
instance::UnitCommitmentInstance,
|
||||
sc::UnitCommitmentScenario,
|
||||
distribution,
|
||||
)::Nothing
|
||||
for unit in instance.units
|
||||
for unit in sc.units
|
||||
α = rand(rng, distribution)
|
||||
unit.min_power_cost *= α
|
||||
for k in unit.cost_segments
|
||||
@@ -137,17 +138,15 @@ end
|
||||
|
||||
function _randomize_load_share(
|
||||
rng,
|
||||
instance::UnitCommitmentInstance,
|
||||
sc::UnitCommitmentScenario,
|
||||
distribution,
|
||||
)::Nothing
|
||||
α = rand(rng, distribution, length(instance.buses))
|
||||
for t in 1:instance.time
|
||||
total = sum(bus.load[t] for bus in instance.buses)
|
||||
den = sum(
|
||||
bus.load[t] / total * α[i] for
|
||||
(i, bus) in enumerate(instance.buses)
|
||||
)
|
||||
for (i, bus) in enumerate(instance.buses)
|
||||
α = rand(rng, distribution, length(sc.buses))
|
||||
for t in 1:sc.time
|
||||
total = sum(bus.load[t] for bus in sc.buses)
|
||||
den =
|
||||
sum(bus.load[t] / total * α[i] for (i, bus) in enumerate(sc.buses))
|
||||
for (i, bus) in enumerate(sc.buses)
|
||||
bus.load[t] *= α[i] / den
|
||||
end
|
||||
end
|
||||
@@ -156,12 +155,12 @@ end
|
||||
|
||||
function _randomize_load_profile(
|
||||
rng,
|
||||
instance::UnitCommitmentInstance,
|
||||
sc::UnitCommitmentScenario,
|
||||
params::Randomization,
|
||||
)::Nothing
|
||||
# Generate new system load
|
||||
system_load = [1.0]
|
||||
for t in 2:instance.time
|
||||
for t in 2:sc.time
|
||||
idx = (t - 1) % length(params.load_profile_mu) + 1
|
||||
gamma = rand(
|
||||
rng,
|
||||
@@ -169,14 +168,14 @@ function _randomize_load_profile(
|
||||
)
|
||||
push!(system_load, system_load[t-1] * gamma)
|
||||
end
|
||||
capacity = sum(maximum(u.max_power) for u in instance.units)
|
||||
capacity = sum(maximum(u.max_power) for u in sc.units)
|
||||
peak_load = rand(rng, params.peak_load) * capacity
|
||||
system_load = system_load ./ maximum(system_load) .* peak_load
|
||||
|
||||
# Scale bus loads to match the new system load
|
||||
prev_system_load = sum(b.load for b in instance.buses)
|
||||
for b in instance.buses
|
||||
for t in 1:instance.time
|
||||
prev_system_load = sum(b.load for b in sc.buses)
|
||||
for b in sc.buses
|
||||
for t in 1:sc.time
|
||||
b.load[t] *= system_load[t] / prev_system_load[t]
|
||||
end
|
||||
end
|
||||
@@ -199,15 +198,26 @@ function randomize!(
|
||||
instance::UnitCommitment.UnitCommitmentInstance,
|
||||
method::XavQiuAhm2021.Randomization;
|
||||
rng = MersenneTwister(),
|
||||
)::Nothing
|
||||
for sc in instance.scenarios
|
||||
randomize!(sc, method; rng)
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
function randomize!(
|
||||
sc::UnitCommitment.UnitCommitmentScenario,
|
||||
method::XavQiuAhm2021.Randomization;
|
||||
rng = MersenneTwister(),
|
||||
)::Nothing
|
||||
if method.randomize_costs
|
||||
XavQiuAhm2021._randomize_costs(rng, instance, method.cost)
|
||||
XavQiuAhm2021._randomize_costs(rng, sc, method.cost)
|
||||
end
|
||||
if method.randomize_load_share
|
||||
XavQiuAhm2021._randomize_load_share(rng, instance, method.load_share)
|
||||
XavQiuAhm2021._randomize_load_share(rng, sc, method.load_share)
|
||||
end
|
||||
if method.randomize_load_profile
|
||||
XavQiuAhm2021._randomize_load_profile(rng, instance, method)
|
||||
XavQiuAhm2021._randomize_load_profile(rng, sc, method)
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
@@ -24,11 +24,12 @@ function slice(
|
||||
)::UnitCommitmentInstance
|
||||
modified = deepcopy(instance)
|
||||
modified.time = length(range)
|
||||
modified.power_balance_penalty = modified.power_balance_penalty[range]
|
||||
for r in modified.reserves
|
||||
for sc in modified.scenarios
|
||||
sc.power_balance_penalty = sc.power_balance_penalty[range]
|
||||
for r in sc.reserves
|
||||
r.amount = r.amount[range]
|
||||
end
|
||||
for u in modified.units
|
||||
for u in sc.units
|
||||
u.max_power = u.max_power[range]
|
||||
u.min_power = u.min_power[range]
|
||||
u.must_run = u.must_run[range]
|
||||
@@ -38,17 +39,18 @@ function slice(
|
||||
s.cost = s.cost[range]
|
||||
end
|
||||
end
|
||||
for b in modified.buses
|
||||
for b in sc.buses
|
||||
b.load = b.load[range]
|
||||
end
|
||||
for l in modified.lines
|
||||
for l in sc.lines
|
||||
l.normal_flow_limit = l.normal_flow_limit[range]
|
||||
l.emergency_flow_limit = l.emergency_flow_limit[range]
|
||||
l.flow_limit_penalty = l.flow_limit_penalty[range]
|
||||
end
|
||||
for ps in modified.price_sensitive_loads
|
||||
for ps in sc.price_sensitive_loads
|
||||
ps.demand = ps.demand[range]
|
||||
ps.revenue = ps.revenue[range]
|
||||
end
|
||||
end
|
||||
return modified
|
||||
end
|
||||
|
||||
@@ -3,19 +3,19 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
"""
|
||||
repair!(instance)
|
||||
repair!(sc)
|
||||
|
||||
Verifies that the given unit commitment instance is valid and automatically
|
||||
Verifies that the given unit commitment scenario is valid and automatically
|
||||
fixes some validation errors if possible, issuing a warning for each error
|
||||
found. If a validation error cannot be automatically fixed, issues an
|
||||
exception.
|
||||
|
||||
Returns the number of validation errors found.
|
||||
"""
|
||||
function repair!(instance::UnitCommitmentInstance)::Int
|
||||
function repair!(sc::UnitCommitmentScenario)::Int
|
||||
n_errors = 0
|
||||
|
||||
for g in instance.units
|
||||
for g in sc.units
|
||||
|
||||
# Startup costs and delays must be increasing
|
||||
for s in 2:length(g.startup_categories)
|
||||
@@ -38,7 +38,7 @@ function repair!(instance::UnitCommitmentInstance)::Int
|
||||
end
|
||||
end
|
||||
|
||||
for t in 1:instance.time
|
||||
for t in 1:sc.time
|
||||
# Production cost curve should be convex
|
||||
for k in 2:length(g.cost_segments)
|
||||
cost = g.cost_segments[k].cost[t]
|
||||
|
||||
@@ -28,6 +28,8 @@ function validate(
|
||||
instance::UnitCommitmentInstance,
|
||||
solution::Union{Dict,OrderedDict},
|
||||
)::Bool
|
||||
"Production (MW)" ∈ keys(solution) ? solution = Dict("s1" => solution) :
|
||||
nothing
|
||||
err_count = 0
|
||||
err_count += _validate_units(instance, solution)
|
||||
err_count += _validate_reserve_and_demand(instance, solution)
|
||||
@@ -42,20 +44,23 @@ end
|
||||
|
||||
function _validate_units(instance::UnitCommitmentInstance, solution; tol = 0.01)
|
||||
err_count = 0
|
||||
|
||||
for unit in instance.units
|
||||
production = solution["Production (MW)"][unit.name]
|
||||
for sc in instance.scenarios
|
||||
for unit in sc.units
|
||||
production = solution[sc.name]["Production (MW)"][unit.name]
|
||||
reserve = [0.0 for _ in 1:instance.time]
|
||||
spinning_reserves = [r for r in unit.reserves if r.type == "spinning"]
|
||||
spinning_reserves =
|
||||
[r for r in unit.reserves if r.type == "spinning"]
|
||||
if !isempty(spinning_reserves)
|
||||
reserve += sum(
|
||||
solution["Spinning reserve (MW)"][r.name][unit.name] for
|
||||
r in spinning_reserves
|
||||
solution[sc.name]["Spinning reserve (MW)"][r.name][unit.name]
|
||||
for r in spinning_reserves
|
||||
)
|
||||
end
|
||||
actual_production_cost = solution["Production cost (\$)"][unit.name]
|
||||
actual_startup_cost = solution["Startup cost (\$)"][unit.name]
|
||||
is_on = bin(solution["Is on"][unit.name])
|
||||
actual_production_cost =
|
||||
solution[sc.name]["Production cost (\$)"][unit.name]
|
||||
actual_startup_cost =
|
||||
solution[sc.name]["Startup cost (\$)"][unit.name]
|
||||
is_on = bin(solution[sc.name]["Is on"][unit.name])
|
||||
|
||||
for t in 1:instance.time
|
||||
# Auxiliary variables
|
||||
@@ -68,7 +73,8 @@ function _validate_units(instance::UnitCommitmentInstance, solution; tol = 0.01)
|
||||
else
|
||||
is_starting_up = !is_on[t-1] && is_on[t]
|
||||
is_shutting_down = is_on[t-1] && !is_on[t]
|
||||
ramp_up = max(0, production[t] + reserve[t] - production[t-1])
|
||||
ramp_up =
|
||||
max(0, production[t] + reserve[t] - production[t-1])
|
||||
ramp_down = max(0, production[t-1] - production[t])
|
||||
end
|
||||
|
||||
@@ -106,10 +112,13 @@ function _validate_units(instance::UnitCommitmentInstance, solution; tol = 0.01)
|
||||
end
|
||||
|
||||
# Verify reserve eligibility
|
||||
for r in instance.reserves
|
||||
for r in sc.reserves
|
||||
if r.type == "spinning"
|
||||
if unit ∉ r.units &&
|
||||
(unit in keys(solution["Spinning reserve (MW)"][r.name]))
|
||||
if unit ∉ r.units && (
|
||||
unit in keys(
|
||||
solution[sc.name]["Spinning reserve (MW)"][r.name],
|
||||
)
|
||||
)
|
||||
@error @sprintf(
|
||||
"Unit %s is not eligible to provide reserve %s",
|
||||
unit.name,
|
||||
@@ -296,28 +305,31 @@ function _validate_units(instance::UnitCommitmentInstance, solution; tol = 0.01)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
return err_count
|
||||
end
|
||||
|
||||
function _validate_reserve_and_demand(instance, solution, tol = 0.01)
|
||||
err_count = 0
|
||||
for sc in instance.scenarios
|
||||
for t in 1:instance.time
|
||||
load_curtail = 0
|
||||
fixed_load = sum(b.load[t] for b in instance.buses)
|
||||
fixed_load = sum(b.load[t] for b in sc.buses)
|
||||
ps_load = 0
|
||||
if length(instance.price_sensitive_loads) > 0
|
||||
if length(sc.price_sensitive_loads) > 0
|
||||
ps_load = sum(
|
||||
solution["Price-sensitive loads (MW)"][ps.name][t] for
|
||||
ps in instance.price_sensitive_loads
|
||||
solution[sc.name]["Price-sensitive loads (MW)"][ps.name][t]
|
||||
for ps in sc.price_sensitive_loads
|
||||
)
|
||||
end
|
||||
production =
|
||||
sum(solution["Production (MW)"][g.name][t] for g in instance.units)
|
||||
production = sum(
|
||||
solution[sc.name]["Production (MW)"][g.name][t] for
|
||||
g in sc.units
|
||||
)
|
||||
if "Load curtail (MW)" in keys(solution)
|
||||
load_curtail = sum(
|
||||
solution["Load curtail (MW)"][b.name][t] for
|
||||
b in instance.buses
|
||||
solution[sc.name]["Load curtail (MW)"][b.name][t] for
|
||||
b in sc.buses
|
||||
)
|
||||
end
|
||||
balance = fixed_load - load_curtail - production + ps_load
|
||||
@@ -336,14 +348,14 @@ function _validate_reserve_and_demand(instance, solution, tol = 0.01)
|
||||
end
|
||||
|
||||
# Verify reserves
|
||||
for r in instance.reserves
|
||||
for r in sc.reserves
|
||||
if r.type == "spinning"
|
||||
provided = sum(
|
||||
solution["Spinning reserve (MW)"][r.name][g.name][t] for
|
||||
g in r.units
|
||||
solution[sc.name]["Spinning reserve (MW)"][r.name][g.name][t]
|
||||
for g in r.units
|
||||
)
|
||||
shortfall =
|
||||
solution["Spinning reserve shortfall (MW)"][r.name][t]
|
||||
solution[sc.name]["Spinning reserve shortfall (MW)"][r.name][t]
|
||||
required = r.amount[t]
|
||||
|
||||
if provided + shortfall < required - tol
|
||||
@@ -358,11 +370,11 @@ function _validate_reserve_and_demand(instance, solution, tol = 0.01)
|
||||
end
|
||||
elseif r.type == "flexiramp"
|
||||
upflexiramp = sum(
|
||||
solution["Up-flexiramp (MW)"][r.name][g.name][t] for
|
||||
g in r.units
|
||||
solution[sc.name]["Up-flexiramp (MW)"][r.name][g.name][t]
|
||||
for g in r.units
|
||||
)
|
||||
upflexiramp_shortfall =
|
||||
solution["Up-flexiramp shortfall (MW)"][r.name][t]
|
||||
solution[sc.name]["Up-flexiramp shortfall (MW)"][r.name][t]
|
||||
|
||||
if upflexiramp + upflexiramp_shortfall < r.amount[t] - tol
|
||||
@error @sprintf(
|
||||
@@ -376,11 +388,11 @@ function _validate_reserve_and_demand(instance, solution, tol = 0.01)
|
||||
end
|
||||
|
||||
dwflexiramp = sum(
|
||||
solution["Down-flexiramp (MW)"][r.name][g.name][t] for
|
||||
g in r.units
|
||||
solution[sc.name]["Down-flexiramp (MW)"][r.name][g.name][t]
|
||||
for g in r.units
|
||||
)
|
||||
dwflexiramp_shortfall =
|
||||
solution["Down-flexiramp shortfall (MW)"][r.name][t]
|
||||
solution[sc.name]["Down-flexiramp shortfall (MW)"][r.name][t]
|
||||
|
||||
if dwflexiramp + dwflexiramp_shortfall < r.amount[t] - tol
|
||||
@error @sprintf(
|
||||
@@ -397,6 +409,7 @@ function _validate_reserve_and_demand(instance, solution, tol = 0.01)
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
return err_count
|
||||
end
|
||||
|
||||
@@ -6,13 +6,17 @@ using UnitCommitment, LinearAlgebra, Cbc, JuMP, JSON, GZip
|
||||
|
||||
@testset "read v0.2" begin
|
||||
instance = UnitCommitment.read("$FIXTURES/ucjl-0.2.json.gz")
|
||||
@test length(instance.reserves_by_name["r1"].amount) == 4
|
||||
@test instance.units_by_name["g2"].reserves[1].name == "r1"
|
||||
@test length(instance.scenarios) == 1
|
||||
sc = instance.scenarios[1]
|
||||
@test length(sc.reserves_by_name["r1"].amount) == 4
|
||||
@test sc.units_by_name["g2"].reserves[1].name == "r1"
|
||||
end
|
||||
|
||||
@testset "read v0.3" begin
|
||||
instance = UnitCommitment.read("$FIXTURES/ucjl-0.3.json.gz")
|
||||
@test length(instance.units) == 6
|
||||
@test length(instance.buses) == 14
|
||||
@test length(instance.lines) == 20
|
||||
@test length(instance.scenarios) == 1
|
||||
sc = instance.scenarios[1]
|
||||
@test length(sc.units) == 6
|
||||
@test length(sc.buses) == 14
|
||||
@test length(sc.lines) == 20
|
||||
end
|
||||
|
||||
@@ -7,42 +7,49 @@ using UnitCommitment, LinearAlgebra, Cbc, JuMP, JSON, GZip
|
||||
@testset "read_benchmark" begin
|
||||
instance = UnitCommitment.read("$FIXTURES/case14.json.gz")
|
||||
|
||||
@test length(instance.lines) == 20
|
||||
@test length(instance.buses) == 14
|
||||
@test length(instance.units) == 6
|
||||
@test length(instance.contingencies) == 19
|
||||
@test length(instance.price_sensitive_loads) == 1
|
||||
@test repr(instance) == (
|
||||
"UnitCommitmentInstance(1 scenarios, 6 units, 14 buses, " *
|
||||
"20 lines, 19 contingencies, 1 price sensitive loads, 4 time steps)"
|
||||
)
|
||||
|
||||
@test length(instance.scenarios) == 1
|
||||
sc = instance.scenarios[1]
|
||||
@test length(sc.lines) == 20
|
||||
@test length(sc.buses) == 14
|
||||
@test length(sc.units) == 6
|
||||
@test length(sc.contingencies) == 19
|
||||
@test length(sc.price_sensitive_loads) == 1
|
||||
@test instance.time == 4
|
||||
|
||||
@test instance.lines[5].name == "l5"
|
||||
@test instance.lines[5].source.name == "b2"
|
||||
@test instance.lines[5].target.name == "b5"
|
||||
@test instance.lines[5].reactance ≈ 0.17388
|
||||
@test instance.lines[5].susceptance ≈ 10.037550333
|
||||
@test instance.lines[5].normal_flow_limit == [1e8 for t in 1:4]
|
||||
@test instance.lines[5].emergency_flow_limit == [1e8 for t in 1:4]
|
||||
@test instance.lines[5].flow_limit_penalty == [5e3 for t in 1:4]
|
||||
@test instance.lines_by_name["l5"].name == "l5"
|
||||
@test sc.lines[5].name == "l5"
|
||||
@test sc.lines[5].source.name == "b2"
|
||||
@test sc.lines[5].target.name == "b5"
|
||||
@test sc.lines[5].reactance ≈ 0.17388
|
||||
@test sc.lines[5].susceptance ≈ 10.037550333
|
||||
@test sc.lines[5].normal_flow_limit == [1e8 for t in 1:4]
|
||||
@test sc.lines[5].emergency_flow_limit == [1e8 for t in 1:4]
|
||||
@test sc.lines[5].flow_limit_penalty == [5e3 for t in 1:4]
|
||||
@test sc.lines_by_name["l5"].name == "l5"
|
||||
|
||||
@test instance.lines[1].name == "l1"
|
||||
@test instance.lines[1].source.name == "b1"
|
||||
@test instance.lines[1].target.name == "b2"
|
||||
@test instance.lines[1].reactance ≈ 0.059170
|
||||
@test instance.lines[1].susceptance ≈ 29.496860773945
|
||||
@test instance.lines[1].normal_flow_limit == [300.0 for t in 1:4]
|
||||
@test instance.lines[1].emergency_flow_limit == [400.0 for t in 1:4]
|
||||
@test instance.lines[1].flow_limit_penalty == [1e3 for t in 1:4]
|
||||
@test sc.lines[1].name == "l1"
|
||||
@test sc.lines[1].source.name == "b1"
|
||||
@test sc.lines[1].target.name == "b2"
|
||||
@test sc.lines[1].reactance ≈ 0.059170
|
||||
@test sc.lines[1].susceptance ≈ 29.496860773945
|
||||
@test sc.lines[1].normal_flow_limit == [300.0 for t in 1:4]
|
||||
@test sc.lines[1].emergency_flow_limit == [400.0 for t in 1:4]
|
||||
@test sc.lines[1].flow_limit_penalty == [1e3 for t in 1:4]
|
||||
|
||||
@test instance.buses[9].name == "b9"
|
||||
@test instance.buses[9].load == [35.36638, 33.25495, 31.67138, 31.14353]
|
||||
@test instance.buses_by_name["b9"].name == "b9"
|
||||
@test sc.buses[9].name == "b9"
|
||||
@test sc.buses[9].load == [35.36638, 33.25495, 31.67138, 31.14353]
|
||||
@test sc.buses_by_name["b9"].name == "b9"
|
||||
|
||||
@test instance.reserves[1].name == "r1"
|
||||
@test instance.reserves[1].type == "spinning"
|
||||
@test instance.reserves[1].amount == [100.0, 100.0, 100.0, 100.0]
|
||||
@test instance.reserves_by_name["r1"].name == "r1"
|
||||
@test sc.reserves[1].name == "r1"
|
||||
@test sc.reserves[1].type == "spinning"
|
||||
@test sc.reserves[1].amount == [100.0, 100.0, 100.0, 100.0]
|
||||
@test sc.reserves_by_name["r1"].name == "r1"
|
||||
|
||||
unit = instance.units[1]
|
||||
unit = sc.units[1]
|
||||
@test unit.name == "g1"
|
||||
@test unit.bus.name == "b1"
|
||||
@test unit.ramp_up_limit == 1e6
|
||||
@@ -69,14 +76,14 @@ using UnitCommitment, LinearAlgebra, Cbc, JuMP, JSON, GZip
|
||||
@test unit.startup_categories[2].cost == 1500.0
|
||||
@test unit.startup_categories[3].cost == 2000.0
|
||||
@test length(unit.reserves) == 0
|
||||
@test instance.units_by_name["g1"].name == "g1"
|
||||
@test sc.units_by_name["g1"].name == "g1"
|
||||
|
||||
unit = instance.units[2]
|
||||
unit = sc.units[2]
|
||||
@test unit.name == "g2"
|
||||
@test unit.must_run == [false for t in 1:4]
|
||||
@test length(unit.reserves) == 1
|
||||
|
||||
unit = instance.units[3]
|
||||
unit = sc.units[3]
|
||||
@test unit.name == "g3"
|
||||
@test unit.bus.name == "b3"
|
||||
@test unit.ramp_up_limit == 70.0
|
||||
@@ -98,23 +105,23 @@ using UnitCommitment, LinearAlgebra, Cbc, JuMP, JSON, GZip
|
||||
@test length(unit.reserves) == 1
|
||||
@test unit.reserves[1].name == "r1"
|
||||
|
||||
@test instance.contingencies[1].lines == [instance.lines[1]]
|
||||
@test instance.contingencies[1].units == []
|
||||
@test instance.contingencies[1].name == "c1"
|
||||
@test instance.contingencies_by_name["c1"].name == "c1"
|
||||
@test sc.contingencies[1].lines == [sc.lines[1]]
|
||||
@test sc.contingencies[1].units == []
|
||||
@test sc.contingencies[1].name == "c1"
|
||||
@test sc.contingencies_by_name["c1"].name == "c1"
|
||||
|
||||
load = instance.price_sensitive_loads[1]
|
||||
load = sc.price_sensitive_loads[1]
|
||||
@test load.name == "ps1"
|
||||
@test load.bus.name == "b3"
|
||||
@test load.revenue == [100.0 for t in 1:4]
|
||||
@test load.demand == [50.0 for t in 1:4]
|
||||
@test instance.price_sensitive_loads_by_name["ps1"].name == "ps1"
|
||||
@test sc.price_sensitive_loads_by_name["ps1"].name == "ps1"
|
||||
end
|
||||
|
||||
@testset "read_benchmark sub-hourly" begin
|
||||
instance = UnitCommitment.read("$FIXTURES/case14-sub-hourly.json.gz")
|
||||
@test instance.time == 4
|
||||
unit = instance.units[1]
|
||||
unit = instance.scenarios[1].units[1]
|
||||
@test unit.name == "g1"
|
||||
@test unit.min_uptime == 2
|
||||
@test unit.min_downtime == 2
|
||||
|
||||
@@ -7,13 +7,13 @@ import UnitCommitment: _Violation, _offer, _query
|
||||
|
||||
@testset "_ViolationFilter" begin
|
||||
instance = UnitCommitment.read("$FIXTURES/case14.json.gz")
|
||||
sc = instance.scenarios[1]
|
||||
filter = UnitCommitment._ViolationFilter(max_per_line = 1, max_total = 2)
|
||||
|
||||
_offer(
|
||||
filter,
|
||||
_Violation(
|
||||
time = 1,
|
||||
monitored_line = instance.lines[1],
|
||||
monitored_line = sc.lines[1],
|
||||
outage_line = nothing,
|
||||
amount = 100.0,
|
||||
),
|
||||
@@ -22,8 +22,8 @@ import UnitCommitment: _Violation, _offer, _query
|
||||
filter,
|
||||
_Violation(
|
||||
time = 1,
|
||||
monitored_line = instance.lines[1],
|
||||
outage_line = instance.lines[1],
|
||||
monitored_line = sc.lines[1],
|
||||
outage_line = sc.lines[1],
|
||||
amount = 300.0,
|
||||
),
|
||||
)
|
||||
@@ -31,8 +31,8 @@ import UnitCommitment: _Violation, _offer, _query
|
||||
filter,
|
||||
_Violation(
|
||||
time = 1,
|
||||
monitored_line = instance.lines[1],
|
||||
outage_line = instance.lines[5],
|
||||
monitored_line = sc.lines[1],
|
||||
outage_line = sc.lines[5],
|
||||
amount = 500.0,
|
||||
),
|
||||
)
|
||||
@@ -40,8 +40,8 @@ import UnitCommitment: _Violation, _offer, _query
|
||||
filter,
|
||||
_Violation(
|
||||
time = 1,
|
||||
monitored_line = instance.lines[1],
|
||||
outage_line = instance.lines[4],
|
||||
monitored_line = sc.lines[1],
|
||||
outage_line = sc.lines[4],
|
||||
amount = 400.0,
|
||||
),
|
||||
)
|
||||
@@ -49,8 +49,8 @@ import UnitCommitment: _Violation, _offer, _query
|
||||
filter,
|
||||
_Violation(
|
||||
time = 1,
|
||||
monitored_line = instance.lines[2],
|
||||
outage_line = instance.lines[1],
|
||||
monitored_line = sc.lines[2],
|
||||
outage_line = sc.lines[1],
|
||||
amount = 200.0,
|
||||
),
|
||||
)
|
||||
@@ -58,8 +58,8 @@ import UnitCommitment: _Violation, _offer, _query
|
||||
filter,
|
||||
_Violation(
|
||||
time = 1,
|
||||
monitored_line = instance.lines[2],
|
||||
outage_line = instance.lines[8],
|
||||
monitored_line = sc.lines[2],
|
||||
outage_line = sc.lines[8],
|
||||
amount = 100.0,
|
||||
),
|
||||
)
|
||||
@@ -68,14 +68,14 @@ import UnitCommitment: _Violation, _offer, _query
|
||||
expected = [
|
||||
_Violation(
|
||||
time = 1,
|
||||
monitored_line = instance.lines[2],
|
||||
outage_line = instance.lines[1],
|
||||
monitored_line = sc.lines[2],
|
||||
outage_line = sc.lines[1],
|
||||
amount = 200.0,
|
||||
),
|
||||
_Violation(
|
||||
time = 1,
|
||||
monitored_line = instance.lines[1],
|
||||
outage_line = instance.lines[5],
|
||||
monitored_line = sc.lines[1],
|
||||
outage_line = sc.lines[5],
|
||||
amount = 500.0,
|
||||
),
|
||||
]
|
||||
|
||||
@@ -7,23 +7,25 @@ import UnitCommitment: _Violation, _offer, _query
|
||||
|
||||
@testset "find_violations" begin
|
||||
instance = UnitCommitment.read("$FIXTURES/case14.json.gz")
|
||||
for line in instance.lines, t in 1:instance.time
|
||||
sc = instance.scenarios[1]
|
||||
for line in sc.lines, t in 1:instance.time
|
||||
line.normal_flow_limit[t] = 1.0
|
||||
line.emergency_flow_limit[t] = 1.0
|
||||
end
|
||||
isf = UnitCommitment._injection_shift_factors(
|
||||
lines = instance.lines,
|
||||
buses = instance.buses,
|
||||
lines = sc.lines,
|
||||
buses = sc.buses,
|
||||
)
|
||||
lodf = UnitCommitment._line_outage_factors(
|
||||
lines = instance.lines,
|
||||
buses = instance.buses,
|
||||
lines = sc.lines,
|
||||
buses = sc.buses,
|
||||
isf = isf,
|
||||
)
|
||||
inj = [1000.0 for b in 1:13, t in 1:instance.time]
|
||||
overflow = [0.0 for l in instance.lines, t in 1:instance.time]
|
||||
overflow = [0.0 for l in sc.lines, t in 1:instance.time]
|
||||
violations = UnitCommitment._find_violations(
|
||||
instance = instance,
|
||||
sc = sc,
|
||||
net_injections = inj,
|
||||
overflow = overflow,
|
||||
isf = isf,
|
||||
|
||||
@@ -6,7 +6,8 @@ using UnitCommitment, Test, LinearAlgebra
|
||||
|
||||
@testset "_susceptance_matrix" begin
|
||||
instance = UnitCommitment.read("$FIXTURES/case14.json.gz")
|
||||
actual = UnitCommitment._susceptance_matrix(instance.lines)
|
||||
sc = instance.scenarios[1]
|
||||
actual = UnitCommitment._susceptance_matrix(sc.lines)
|
||||
@test size(actual) == (20, 20)
|
||||
expected = Diagonal([
|
||||
29.5,
|
||||
@@ -35,9 +36,10 @@ end
|
||||
|
||||
@testset "_reduced_incidence_matrix" begin
|
||||
instance = UnitCommitment.read("$FIXTURES/case14.json.gz")
|
||||
sc = instance.scenarios[1]
|
||||
actual = UnitCommitment._reduced_incidence_matrix(
|
||||
lines = instance.lines,
|
||||
buses = instance.buses,
|
||||
lines = sc.lines,
|
||||
buses = sc.buses,
|
||||
)
|
||||
@test size(actual) == (20, 13)
|
||||
@test actual[1, 1] == -1.0
|
||||
@@ -82,9 +84,10 @@ end
|
||||
|
||||
@testset "_injection_shift_factors" begin
|
||||
instance = UnitCommitment.read("$FIXTURES/case14.json.gz")
|
||||
sc = instance.scenarios[1]
|
||||
actual = UnitCommitment._injection_shift_factors(
|
||||
lines = instance.lines,
|
||||
buses = instance.buses,
|
||||
lines = sc.lines,
|
||||
buses = sc.buses,
|
||||
)
|
||||
@test size(actual) == (20, 13)
|
||||
@test round.(actual, digits = 2) == [
|
||||
@@ -113,25 +116,26 @@ end
|
||||
|
||||
@testset "_line_outage_factors" begin
|
||||
instance = UnitCommitment.read("$FIXTURES/case14.json.gz")
|
||||
sc = instance.scenarios[1]
|
||||
isf_before = UnitCommitment._injection_shift_factors(
|
||||
lines = instance.lines,
|
||||
buses = instance.buses,
|
||||
lines = sc.lines,
|
||||
buses = sc.buses,
|
||||
)
|
||||
lodf = UnitCommitment._line_outage_factors(
|
||||
lines = instance.lines,
|
||||
buses = instance.buses,
|
||||
lines = sc.lines,
|
||||
buses = sc.buses,
|
||||
isf = isf_before,
|
||||
)
|
||||
for contingency in instance.contingencies
|
||||
for contingency in sc.contingencies
|
||||
for lc in contingency.lines
|
||||
prev_susceptance = lc.susceptance
|
||||
lc.susceptance = 0.0
|
||||
isf_after = UnitCommitment._injection_shift_factors(
|
||||
lines = instance.lines,
|
||||
buses = instance.buses,
|
||||
lines = sc.lines,
|
||||
buses = sc.buses,
|
||||
)
|
||||
lc.susceptance = prev_susceptance
|
||||
for lm in instance.lines
|
||||
for lm in sc.lines
|
||||
expected = isf_after[lm.offset, :]
|
||||
actual =
|
||||
isf_before[lm.offset, :] +
|
||||
|
||||
@@ -8,18 +8,18 @@ using UnitCommitment, Cbc, JuMP
|
||||
# Load instance
|
||||
instance = UnitCommitment.read("$FIXTURES/case118-initcond.json.gz")
|
||||
optimizer = optimizer_with_attributes(Cbc.Optimizer, "logLevel" => 0)
|
||||
|
||||
sc = instance.scenarios[1]
|
||||
# All units should have unknown initial conditions
|
||||
for g in instance.units
|
||||
for g in sc.units
|
||||
@test g.initial_power === nothing
|
||||
@test g.initial_status === nothing
|
||||
end
|
||||
|
||||
# Generate initial conditions
|
||||
UnitCommitment.generate_initial_conditions!(instance, optimizer)
|
||||
UnitCommitment.generate_initial_conditions!(sc, optimizer)
|
||||
|
||||
# All units should now have known initial conditions
|
||||
for g in instance.units
|
||||
for g in sc.units
|
||||
@test g.initial_power !== nothing
|
||||
@test g.initial_status !== nothing
|
||||
end
|
||||
|
||||
@@ -9,30 +9,31 @@ using Distributions
|
||||
using Random
|
||||
using UnitCommitment, Cbc, JuMP
|
||||
|
||||
get_instance() = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
|
||||
system_load(instance) = sum(b.load for b in instance.buses)
|
||||
function get_scenario()
|
||||
return UnitCommitment.read_benchmark(
|
||||
"matpower/case118/2017-02-01",
|
||||
).scenarios[1]
|
||||
end
|
||||
system_load(sc) = sum(b.load for b in sc.buses)
|
||||
test_approx(x, y) = @test isapprox(x, y, atol = 1e-3)
|
||||
|
||||
@testset "XavQiuAhm2021" begin
|
||||
@testset "cost and load share" begin
|
||||
instance = get_instance()
|
||||
|
||||
sc = get_scenario()
|
||||
# Check original costs
|
||||
unit = instance.units[10]
|
||||
unit = sc.units[10]
|
||||
test_approx(unit.min_power_cost[1], 825.023)
|
||||
test_approx(unit.cost_segments[1].cost[1], 36.659)
|
||||
test_approx(unit.startup_categories[1].cost[1], 7570.42)
|
||||
|
||||
# Check original load share
|
||||
bus = instance.buses[1]
|
||||
prev_system_load = system_load(instance)
|
||||
bus = sc.buses[1]
|
||||
prev_system_load = system_load(sc)
|
||||
test_approx(bus.load[1] / prev_system_load[1], 0.012)
|
||||
|
||||
randomize!(
|
||||
instance,
|
||||
method = XavQiuAhm2021.Randomization(
|
||||
randomize_load_profile = false,
|
||||
),
|
||||
sc,
|
||||
XavQiuAhm2021.Randomization(randomize_load_profile = false),
|
||||
rng = MersenneTwister(42),
|
||||
)
|
||||
|
||||
@@ -42,7 +43,7 @@ test_approx(x, y) = @test isapprox(x, y, atol = 1e-3)
|
||||
test_approx(unit.startup_categories[1].cost[1], 7634.226)
|
||||
|
||||
# Check randomized load share
|
||||
curr_system_load = system_load(instance)
|
||||
curr_system_load = system_load(sc)
|
||||
test_approx(bus.load[1] / curr_system_load[1], 0.013)
|
||||
|
||||
# System load should not change
|
||||
@@ -50,20 +51,15 @@ test_approx(x, y) = @test isapprox(x, y, atol = 1e-3)
|
||||
end
|
||||
|
||||
@testset "load profile" begin
|
||||
instance = get_instance()
|
||||
|
||||
sc = get_scenario()
|
||||
# Check original load profile
|
||||
@test round.(system_load(instance), digits = 1)[1:8] ≈
|
||||
@test round.(system_load(sc), digits = 1)[1:8] ≈
|
||||
[3059.5, 2983.2, 2937.5, 2953.9, 3073.1, 3356.4, 4068.5, 4018.8]
|
||||
|
||||
randomize!(
|
||||
instance,
|
||||
XavQiuAhm2021.Randomization(),
|
||||
rng = MersenneTwister(42),
|
||||
)
|
||||
randomize!(sc, XavQiuAhm2021.Randomization(); rng = MersenneTwister(42))
|
||||
|
||||
# Check randomized load profile
|
||||
@test round.(system_load(instance), digits = 1)[1:8] ≈
|
||||
@test round.(system_load(sc), digits = 1)[1:8] ≈
|
||||
[4854.7, 4849.2, 4732.7, 4848.2, 4948.4, 5231.1, 5874.8, 5934.8]
|
||||
end
|
||||
end
|
||||
|
||||
@@ -7,12 +7,13 @@ using UnitCommitment, LinearAlgebra, Cbc, JuMP, JSON, GZip
|
||||
@testset "slice" begin
|
||||
instance = UnitCommitment.read("$FIXTURES/case14.json.gz")
|
||||
modified = UnitCommitment.slice(instance, 1:2)
|
||||
sc = modified.scenarios[1]
|
||||
|
||||
# Should update all time-dependent fields
|
||||
@test modified.time == 2
|
||||
@test length(modified.power_balance_penalty) == 2
|
||||
@test length(modified.reserves_by_name["r1"].amount) == 2
|
||||
for u in modified.units
|
||||
@test length(sc.power_balance_penalty) == 2
|
||||
@test length(sc.reserves_by_name["r1"].amount) == 2
|
||||
for u in sc.units
|
||||
@test length(u.max_power) == 2
|
||||
@test length(u.min_power) == 2
|
||||
@test length(u.must_run) == 2
|
||||
@@ -22,18 +23,19 @@ using UnitCommitment, LinearAlgebra, Cbc, JuMP, JSON, GZip
|
||||
@test length(s.cost) == 2
|
||||
end
|
||||
end
|
||||
for b in modified.buses
|
||||
for b in sc.buses
|
||||
@test length(b.load) == 2
|
||||
end
|
||||
for l in modified.lines
|
||||
for l in sc.lines
|
||||
@test length(l.normal_flow_limit) == 2
|
||||
@test length(l.emergency_flow_limit) == 2
|
||||
@test length(l.flow_limit_penalty) == 2
|
||||
end
|
||||
for ps in modified.price_sensitive_loads
|
||||
for ps in sc.price_sensitive_loads
|
||||
@test length(ps.demand) == 2
|
||||
@test length(ps.revenue) == 2
|
||||
end
|
||||
|
||||
# Should be able to build model without errors
|
||||
optimizer = optimizer_with_attributes(Cbc.Optimizer, "logLevel" => 0)
|
||||
model = UnitCommitment.build_model(
|
||||
|
||||
@@ -4,11 +4,19 @@
|
||||
|
||||
using UnitCommitment, LinearAlgebra, Cbc, JuMP, JSON
|
||||
|
||||
@testset "usage" begin
|
||||
instance = UnitCommitment.read("$FIXTURES/case14.json.gz")
|
||||
for line in instance.lines, t in 1:4
|
||||
function _set_flow_limits!(instance)
|
||||
for sc in instance.scenarios
|
||||
sc.power_balance_penalty = [100_000 for _ in 1:instance.time]
|
||||
for line in sc.lines, t in 1:4
|
||||
line.normal_flow_limit[t] = 10.0
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
@testset "usage" begin
|
||||
@testset "deterministic" begin
|
||||
instance = UnitCommitment.read("$FIXTURES/case14.json.gz")
|
||||
_set_flow_limits!(instance)
|
||||
optimizer = optimizer_with_attributes(Cbc.Optimizer, "logLevel" => 0)
|
||||
model = UnitCommitment.build_model(
|
||||
instance = instance,
|
||||
@@ -34,4 +42,21 @@ using UnitCommitment, LinearAlgebra, Cbc, JuMP, JSON
|
||||
UnitCommitment.fix!(model, solution)
|
||||
UnitCommitment.optimize!(model)
|
||||
@test UnitCommitment.validate(instance, solution)
|
||||
end
|
||||
|
||||
@testset "stochastic" begin
|
||||
instance = UnitCommitment.read([
|
||||
"$FIXTURES/case14.json.gz",
|
||||
"$FIXTURES/case14.json.gz",
|
||||
])
|
||||
_set_flow_limits!(instance)
|
||||
@test length(instance.scenarios) == 2
|
||||
optimizer = optimizer_with_attributes(Cbc.Optimizer, "logLevel" => 0)
|
||||
model = UnitCommitment.build_model(
|
||||
instance = instance,
|
||||
optimizer = optimizer,
|
||||
)
|
||||
UnitCommitment.optimize!(model)
|
||||
solution = UnitCommitment.solution(model)
|
||||
end
|
||||
end
|
||||
|
||||
@@ -16,8 +16,8 @@ end
|
||||
json = parse_case14()
|
||||
json["Generators"]["g1"]["Production cost curve (MW)"] = [100, 150, 200]
|
||||
json["Generators"]["g1"]["Production cost curve (\$)"] = [10, 25, 30]
|
||||
instance = UnitCommitment._from_json(json, repair = false)
|
||||
@test UnitCommitment.repair!(instance) == 4
|
||||
sc = UnitCommitment._from_json(json, repair = false)
|
||||
@test UnitCommitment.repair!(sc) == 4
|
||||
end
|
||||
|
||||
@testset "Startup limit must be greater than Pmin" begin
|
||||
@@ -25,15 +25,15 @@ end
|
||||
json["Generators"]["g1"]["Production cost curve (MW)"] = [100, 150]
|
||||
json["Generators"]["g1"]["Production cost curve (\$)"] = [100, 150]
|
||||
json["Generators"]["g1"]["Startup limit (MW)"] = 80
|
||||
instance = UnitCommitment._from_json(json, repair = false)
|
||||
@test UnitCommitment.repair!(instance) == 1
|
||||
sc = UnitCommitment._from_json(json, repair = false)
|
||||
@test UnitCommitment.repair!(sc) == 1
|
||||
end
|
||||
|
||||
@testset "Startup costs and delays must be increasing" begin
|
||||
json = parse_case14()
|
||||
json["Generators"]["g1"]["Startup costs (\$)"] = [300, 200, 100]
|
||||
json["Generators"]["g1"]["Startup delays (h)"] = [8, 4, 2]
|
||||
instance = UnitCommitment._from_json(json, repair = false)
|
||||
@test UnitCommitment.repair!(instance) == 4
|
||||
sc = UnitCommitment._from_json(json, repair = false)
|
||||
@test UnitCommitment.repair!(sc) == 4
|
||||
end
|
||||
end
|
||||
|
||||
Reference in New Issue
Block a user