mirror of
https://github.com/ANL-CEEESA/UnitCommitment.jl.git
synced 2025-12-06 08:18:51 -06:00
stochastic extension
This commit is contained in:
2
src/format.jl
Normal file
2
src/format.jl
Normal file
@@ -0,0 +1,2 @@
|
||||
using JuliaFormatter
|
||||
format(["../../src", "../../test", "../../benchmark/run.jl"], verbose = true)
|
||||
@@ -44,25 +44,6 @@ function read_benchmark(
|
||||
return UnitCommitment.read(filename)
|
||||
end
|
||||
|
||||
function read_scenarios(path::AbstractString)::UnitCommitmentInstance
|
||||
scenario_paths = glob("*.json", path)
|
||||
scenarios = Vector{UnitCommitmentScenario}()
|
||||
total_number_of_scenarios = length(scenario_paths)
|
||||
for (scenario_index, scenario_path) in enumerate(scenario_paths)
|
||||
scenario = read_scenario(scenario_path,
|
||||
total_number_of_scenarios = total_number_of_scenarios,
|
||||
scenario_index = scenario_index)
|
||||
push!(scenarios, scenario)
|
||||
end
|
||||
instance = UnitCommitmentInstance(
|
||||
time = scenarios[1].time,
|
||||
scenarios = scenarios
|
||||
)
|
||||
abs(sum(scenario.probability for scenario in instance.scenarios) - 1.0) <= 0.01 ||
|
||||
error("scenario probabilities do not add up to one")
|
||||
return instance
|
||||
end
|
||||
|
||||
"""
|
||||
read(path::AbstractString)::UnitCommitmentInstance
|
||||
|
||||
@@ -74,33 +55,54 @@ Read instance from a file. The file may be gzipped.
|
||||
instance = UnitCommitment.read("/path/to/input.json.gz")
|
||||
```
|
||||
"""
|
||||
function read_scenario(path::AbstractString; total_number_of_scenarios = 1, scenario_index = 1)::UnitCommitmentScenario
|
||||
if endswith(path, ".gz")
|
||||
return _read(gzopen(path),total_number_of_scenarios, scenario_index)
|
||||
else
|
||||
return _read(open(path), total_number_of_scenarios, scenario_index)
|
||||
end
|
||||
|
||||
function _repair_scenario_name_and_probability(
|
||||
sc::UnitCommitmentScenario,
|
||||
path::String,
|
||||
number_of_scenarios::Int,
|
||||
)::UnitCommitmentScenario
|
||||
sc.name !== nothing || (sc.name = first(split(last(split(path, "/")), ".")))
|
||||
sc.probability !== nothing || (sc.probability = (1 / number_of_scenarios))
|
||||
return sc
|
||||
end
|
||||
|
||||
function read(path::AbstractString; total_number_of_scenarios = 1, scenario_index = 1)::UnitCommitmentInstance
|
||||
if endswith(path, ".gz")
|
||||
scenario = _read(gzopen(path),total_number_of_scenarios, scenario_index)
|
||||
else
|
||||
scenario = _read(open(path), total_number_of_scenarios, scenario_index)
|
||||
end
|
||||
instance = UnitCommitmentInstance(
|
||||
time = scenario.time,
|
||||
function read(path)::UnitCommitmentInstance
|
||||
scenarios = Vector{UnitCommitmentScenario}()
|
||||
if (endswith(path, ".gz") || endswith(path, ".json"))
|
||||
endswith(path, ".gz") ? (scenario = _read(gzopen(path))) :
|
||||
(scenario = _read(open(path)))
|
||||
scenario = _repair_scenario_name_and_probability(scenario, "s1", 1)
|
||||
scenarios = [scenario]
|
||||
)
|
||||
elseif typeof(path) == Vector{String}
|
||||
number_of_scenarios = length(paths)
|
||||
for scenario_path in path
|
||||
if endswith(scenario_path, ".gz")
|
||||
scenario = _read(gzopen(scenario_path))
|
||||
elseif endswith(scenario_path, ".json")
|
||||
scenario = _read(open(scenario_path))
|
||||
else
|
||||
error("Unsupported input format")
|
||||
end
|
||||
scenario = _repair_scenario_name_and_probability(
|
||||
scenario,
|
||||
scenario_path,
|
||||
number_of_scenarios,
|
||||
)
|
||||
push!(scenarios, scenario)
|
||||
end
|
||||
else
|
||||
error("Unsupported input format")
|
||||
end
|
||||
|
||||
instance =
|
||||
UnitCommitmentInstance(time = scenarios[1].time, scenarios = scenarios)
|
||||
return instance
|
||||
end
|
||||
|
||||
function _read(file::IO, total_number_of_scenarios::Int, scenario_index::Int)::UnitCommitmentScenario
|
||||
function _read(file::IO)::UnitCommitmentScenario
|
||||
return _from_json(
|
||||
JSON.parse(file, dicttype = () -> DefaultOrderedDict(nothing)),
|
||||
total_number_of_scenarios,
|
||||
scenario_index
|
||||
)
|
||||
)
|
||||
end
|
||||
|
||||
function _read_json(path::String)::OrderedDict
|
||||
@@ -112,7 +114,7 @@ function _read_json(path::String)::OrderedDict
|
||||
return JSON.parse(file, dicttype = () -> DefaultOrderedDict(nothing))
|
||||
end
|
||||
|
||||
function _from_json(json, total_number_of_scenarios::Int, scenario_index::Int; repair = true)::UnitCommitmentScenario
|
||||
function _from_json(json; repair = true)::UnitCommitmentScenario
|
||||
_migrate(json)
|
||||
units = Unit[]
|
||||
buses = Bus[]
|
||||
@@ -136,18 +138,8 @@ function _from_json(json, total_number_of_scenarios::Int, scenario_index::Int; r
|
||||
error("Time step $time_step is not a divisor of 60")
|
||||
time_multiplier = 60 ÷ time_step
|
||||
T = time_horizon * time_multiplier
|
||||
#####
|
||||
probability = json["Parameters"]["Scenario probability"]
|
||||
if probability === nothing
|
||||
probability = (1 / total_number_of_scenarios)
|
||||
end
|
||||
scenario_name = json["Parameters"]["Scenario name"]
|
||||
if scenario_name === nothing
|
||||
scenario_name = "s$(scenario_index)"
|
||||
end
|
||||
|
||||
######
|
||||
|
||||
name_to_bus = Dict{String,Bus}()
|
||||
name_to_line = Dict{String,TransmissionLine}()
|
||||
name_to_unit = Dict{String,Unit}()
|
||||
@@ -164,15 +156,6 @@ function _from_json(json, total_number_of_scenarios::Int, scenario_index::Int; r
|
||||
json["Parameters"]["Power balance penalty (\$/MW)"],
|
||||
default = [1000.0 for t in 1:T],
|
||||
)
|
||||
# Penalty price for shortage in meeting system-wide flexiramp requirements
|
||||
flexiramp_shortfall_penalty = timeseries(
|
||||
json["Parameters"]["Flexiramp penalty (\$/MW)"],
|
||||
default = [500.0 for t in 1:T],
|
||||
)
|
||||
shortfall_penalty = timeseries(
|
||||
json["Parameters"]["Reserve shortfall penalty (\$/MW)"],
|
||||
default = [-1.0 for t in 1:T],
|
||||
)
|
||||
|
||||
# Read buses
|
||||
for (bus_name, dict) in json["Buses"]
|
||||
@@ -368,13 +351,11 @@ function _from_json(json, total_number_of_scenarios::Int, scenario_index::Int; r
|
||||
price_sensitive_loads = loads,
|
||||
reserves = reserves,
|
||||
reserves_by_name = name_to_reserve,
|
||||
# shortfall_penalty = shortfall_penalty,
|
||||
# flexiramp_shortfall_penalty = flexiramp_shortfall_penalty,
|
||||
time = T,
|
||||
units_by_name = Dict(g.name => g for g in units),
|
||||
units = units,
|
||||
isf = spzeros(Float64, length(lines), length(buses) - 1),
|
||||
lodf = spzeros(Float64, length(lines), length(lines))
|
||||
lodf = spzeros(Float64, length(lines), length(lines)),
|
||||
)
|
||||
if repair
|
||||
UnitCommitment.repair!(scenario)
|
||||
|
||||
@@ -74,8 +74,8 @@ mutable struct PriceSensitiveLoad
|
||||
end
|
||||
|
||||
Base.@kwdef mutable struct UnitCommitmentScenario
|
||||
name::String
|
||||
probability::Float64
|
||||
name::Any
|
||||
probability::Any
|
||||
buses_by_name::Dict{AbstractString,Bus}
|
||||
buses::Vector{Bus}
|
||||
contingencies_by_name::Dict{AbstractString,Contingency}
|
||||
@@ -87,8 +87,6 @@ Base.@kwdef mutable struct UnitCommitmentScenario
|
||||
price_sensitive_loads::Vector{PriceSensitiveLoad}
|
||||
reserves::Vector{Reserve}
|
||||
reserves_by_name::Dict{AbstractString,Reserve}
|
||||
# shortfall_penalty::Vector{Float64}
|
||||
# flexiramp_shortfall_penalty::Vector{Float64}
|
||||
units_by_name::Dict{AbstractString,Unit}
|
||||
units::Vector{Unit}
|
||||
time::Int
|
||||
@@ -104,16 +102,13 @@ end
|
||||
function Base.show(io::IO, instance::UnitCommitmentInstance)
|
||||
print(io, "UnitCommitmentInstance(")
|
||||
print(io, "$(length(instance.scenarios)) scenarios: ")
|
||||
for scenario in instance.scenarios
|
||||
print(io, "Scenario $(scenario.name): ")
|
||||
print(io, "$(length(scenario.units)) units, ")
|
||||
print(io, "$(length(scenario.buses)) buses, ")
|
||||
print(io, "$(length(scenario.lines)) lines, ")
|
||||
print(io, "$(length(scenario.contingencies)) contingencies, ")
|
||||
print(
|
||||
io,
|
||||
"$(length(scenario.price_sensitive_loads)) price sensitive loads, ",
|
||||
)
|
||||
for sc in instance.scenarios
|
||||
print(io, "Scenario $(sc.name): ")
|
||||
print(io, "$(length(sc.units)) units, ")
|
||||
print(io, "$(length(sc.buses)) buses, ")
|
||||
print(io, "$(length(sc.lines)) lines, ")
|
||||
print(io, "$(length(sc.contingencies)) contingencies, ")
|
||||
print(io, "$(length(sc.price_sensitive_loads)) price sensitive loads, ")
|
||||
end
|
||||
print(io, "$(instance.time) time steps")
|
||||
print(io, ")")
|
||||
|
||||
@@ -78,26 +78,25 @@ function build_model(;
|
||||
model[:obj] = AffExpr()
|
||||
model[:instance] = instance
|
||||
for g in instance.scenarios[1].units
|
||||
_add_unit_first_stage!(model, g, formulation)
|
||||
_add_unit_commitment!(model, g, formulation)
|
||||
end
|
||||
for scenario in instance.scenarios
|
||||
@info "Building scenario $(scenario.name) with" *
|
||||
"probability $(scenario.probability)"
|
||||
_setup_transmission(model, formulation.transmission, scenario)
|
||||
for l in scenario.lines
|
||||
_add_transmission_line!(model, l, formulation.transmission,
|
||||
scenario)
|
||||
for sc in instance.scenarios
|
||||
@info "Building scenario $(sc.name) with" *
|
||||
"probability $(sc.probability)"
|
||||
_setup_transmission(formulation.transmission, sc)
|
||||
for l in sc.lines
|
||||
_add_transmission_line!(model, l, formulation.transmission, sc)
|
||||
end
|
||||
for b in scenario.buses
|
||||
_add_bus!(model, b, scenario)
|
||||
for b in sc.buses
|
||||
_add_bus!(model, b, sc)
|
||||
end
|
||||
for ps in scenario.price_sensitive_loads
|
||||
_add_price_sensitive_load!(model, ps, scenario)
|
||||
for ps in sc.price_sensitive_loads
|
||||
_add_price_sensitive_load!(model, ps, sc)
|
||||
end
|
||||
for g in scenario.units
|
||||
_add_unit_second_stage!(model, g, formulation, scenario)
|
||||
for g in sc.units
|
||||
_add_unit_dispatch!(model, g, formulation, sc)
|
||||
end
|
||||
_add_system_wide_eqs!(model, scenario)
|
||||
_add_system_wide_eqs!(model, sc)
|
||||
end
|
||||
@objective(model, Min, model[:obj])
|
||||
end
|
||||
|
||||
@@ -8,7 +8,7 @@ function _add_ramp_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_ramping::ArrCon2000.Ramping,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
# TODO: Move upper case constants to model[:instance]
|
||||
RESERVES_WHEN_START_UP = true
|
||||
@@ -74,7 +74,8 @@ function _add_ramp_eqs!(
|
||||
# but the constraint below will force the unit to produce power
|
||||
eq_ramp_down[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
g.initial_power - (g.min_power[t] + prod_above[sc.name, gn, t]) <= RD
|
||||
g.initial_power -
|
||||
(g.min_power[t] + prod_above[sc.name, gn, t]) <= RD
|
||||
)
|
||||
end
|
||||
else
|
||||
|
||||
@@ -8,7 +8,7 @@ function _add_production_piecewise_linear_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_pwl_costs::CarArr2006.PwlCosts,
|
||||
formulation_status_vars::StatusVarsFormulation,
|
||||
sc::UnitCommitmentScenario
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
eq_prod_above_def = _init(model, :eq_prod_above_def)
|
||||
eq_segprod_limit = _init(model, :eq_segprod_limit)
|
||||
@@ -34,13 +34,17 @@ function _add_production_piecewise_linear_eqs!(
|
||||
|
||||
# Also add this as an explicit upper bound on segprod to make the
|
||||
# solver's work a bit easier
|
||||
set_upper_bound(segprod[sc.name, gn, t, k], g.cost_segments[k].mw[t])
|
||||
set_upper_bound(
|
||||
segprod[sc.name, gn, t, k],
|
||||
g.cost_segments[k].mw[t],
|
||||
)
|
||||
|
||||
# Definition of production
|
||||
# Equation (43) in Kneuven et al. (2020)
|
||||
eq_prod_above_def[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[sc.name, gn, t] == sum(segprod[sc.name, gn, t, k] for k in 1:K)
|
||||
prod_above[sc.name, gn, t] ==
|
||||
sum(segprod[sc.name, gn, t, k] for k in 1:K)
|
||||
)
|
||||
|
||||
# Objective function
|
||||
|
||||
@@ -8,7 +8,7 @@ function _add_ramp_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_ramping::DamKucRajAta2016.Ramping,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
# TODO: Move upper case constants to model[:instance]
|
||||
RESERVES_WHEN_START_UP = true
|
||||
@@ -66,7 +66,8 @@ function _add_ramp_eqs!(
|
||||
elseif (t == 1 && is_initially_on) || (t > 1 && !time_invariant)
|
||||
if t > 1
|
||||
min_prod_last_period =
|
||||
prod_above[sc.name, gn, t-1] + g.min_power[t-1] * is_on[gn, t-1]
|
||||
prod_above[sc.name, gn, t-1] +
|
||||
g.min_power[t-1] * is_on[gn, t-1]
|
||||
else
|
||||
min_prod_last_period = max(g.initial_power, 0.0)
|
||||
end
|
||||
|
||||
@@ -6,7 +6,7 @@ function _add_production_vars!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
sc::UnitCommitmentScenario
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
prod_above = _init(model, :prod_above)
|
||||
segprod = _init(model, :segprod)
|
||||
@@ -23,7 +23,7 @@ function _add_production_limit_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
sc::UnitCommitmentScenario
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
eq_prod_limit = _init(model, :eq_prod_limit)
|
||||
is_on = model[:is_on]
|
||||
@@ -34,10 +34,6 @@ function _add_production_limit_eqs!(
|
||||
# Objective function terms for production costs
|
||||
# Part of (69) of Kneuven et al. (2020) as C^R_g * u_g(t) term
|
||||
|
||||
### Moving this term to another function
|
||||
# add_to_expression!(model[:obj], is_on[gn, t], g.min_power_cost[t])
|
||||
###
|
||||
|
||||
# Production limit
|
||||
# Equation (18) in Kneuven et al. (2020)
|
||||
# as \bar{p}_g(t) \le \bar{P}_g u_g(t)
|
||||
@@ -49,7 +45,8 @@ function _add_production_limit_eqs!(
|
||||
end
|
||||
eq_prod_limit[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[sc.name, gn, t] + reserve[t] <= power_diff * is_on[gn, t]
|
||||
prod_above[sc.name, gn, t] + reserve[t] <=
|
||||
power_diff * is_on[gn, t]
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
@@ -8,7 +8,7 @@ function _add_production_piecewise_linear_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_pwl_costs::Gar1962.PwlCosts,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
eq_prod_above_def = _init(model, :eq_prod_above_def)
|
||||
eq_segprod_limit = _init(model, :eq_segprod_limit)
|
||||
@@ -27,7 +27,8 @@ function _add_production_piecewise_linear_eqs!(
|
||||
# Equation (43) in Kneuven et al. (2020)
|
||||
eq_prod_above_def[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[sc.name, gn, t] == sum(segprod[sc.name, gn, t, k] for k in 1:K)
|
||||
prod_above[sc.name, gn, t] ==
|
||||
sum(segprod[sc.name, gn, t, k] for k in 1:K)
|
||||
)
|
||||
|
||||
for k in 1:K
|
||||
@@ -40,12 +41,16 @@ function _add_production_piecewise_linear_eqs!(
|
||||
# that segment*
|
||||
eq_segprod_limit[sc.name, gn, t, k] = @constraint(
|
||||
model,
|
||||
segprod[sc.name, gn, t, k] <= g.cost_segments[k].mw[t] * is_on[gn, t]
|
||||
segprod[sc.name, gn, t, k] <=
|
||||
g.cost_segments[k].mw[t] * is_on[gn, t]
|
||||
)
|
||||
|
||||
# Also add this as an explicit upper bound on segprod to make the
|
||||
# solver's work a bit easier
|
||||
set_upper_bound(segprod[sc.name, gn, t, k], g.cost_segments[k].mw[t])
|
||||
set_upper_bound(
|
||||
segprod[sc.name, gn, t, k],
|
||||
g.cost_segments[k].mw[t],
|
||||
)
|
||||
|
||||
# Objective function
|
||||
# Equation (44) in Kneuven et al. (2020)
|
||||
|
||||
@@ -8,7 +8,7 @@ function _add_production_piecewise_linear_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_pwl_costs::KnuOstWat2018.PwlCosts,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
eq_prod_above_def = _init(model, :eq_prod_above_def)
|
||||
eq_segprod_limit_a = _init(model, :eq_segprod_limit_a)
|
||||
@@ -90,7 +90,8 @@ function _add_production_piecewise_linear_eqs!(
|
||||
# Equation (43) in Kneuven et al. (2020)
|
||||
eq_prod_above_def[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[sc.name, gn, t] == sum(segprod[sc.name, gn, t, k] for k in 1:K)
|
||||
prod_above[sc.name, gn, t] ==
|
||||
sum(segprod[sc.name, gn, t, k] for k in 1:K)
|
||||
)
|
||||
|
||||
# Objective function
|
||||
@@ -103,7 +104,10 @@ function _add_production_piecewise_linear_eqs!(
|
||||
|
||||
# Also add an explicit upper bound on segprod to make the solver's
|
||||
# work a bit easier
|
||||
set_upper_bound(segprod[sc.name, gn, t, k], g.cost_segments[k].mw[t])
|
||||
set_upper_bound(
|
||||
segprod[sc.name, gn, t, k],
|
||||
g.cost_segments[k].mw[t],
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
@@ -8,7 +8,7 @@ function _add_ramp_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_ramping::MorLatRam2013.Ramping,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
# TODO: Move upper case constants to model[:instance]
|
||||
RESERVES_WHEN_START_UP = true
|
||||
@@ -65,7 +65,8 @@ function _add_ramp_eqs!(
|
||||
reserve[t] : 0.0
|
||||
)
|
||||
min_prod_last_period =
|
||||
g.min_power[t-1] * is_on[gn, t-1] + prod_above[sc.name, gn, t-1]
|
||||
g.min_power[t-1] * is_on[gn, t-1] +
|
||||
prod_above[sc.name, gn, t-1]
|
||||
eq_ramp_up[gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_this_period - min_prod_last_period <=
|
||||
@@ -93,7 +94,8 @@ function _add_ramp_eqs!(
|
||||
# but the constraint below will force the unit to produce power
|
||||
eq_ramp_down[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
g.initial_power - (g.min_power[t] + prod_above[sc.name, gn, t]) <= RD
|
||||
g.initial_power -
|
||||
(g.min_power[t] + prod_above[sc.name, gn, t]) <= RD
|
||||
)
|
||||
end
|
||||
else
|
||||
|
||||
@@ -8,7 +8,7 @@ function _add_ramp_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_ramping::PanGua2016.Ramping,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
# TODO: Move upper case constants to model[:instance]
|
||||
RESERVES_WHEN_SHUT_DOWN = true
|
||||
@@ -68,16 +68,17 @@ function _add_ramp_eqs!(
|
||||
if UT - 2 < TRU
|
||||
# Equation (40) in Kneuven et al. (2020)
|
||||
# Covers an additional time period of the ramp-up trajectory, compared to (38)
|
||||
eq_prod_limit_ramp_up_extra_period[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[sc.name, gn, t] +
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
reserve[t] <=
|
||||
Pbar * is_on[gn, t] - sum(
|
||||
(Pbar - (SU + i * RU)) * switch_on[gn, t-i] for
|
||||
i in 0:min(UT - 1, TRU, t - 1)
|
||||
eq_prod_limit_ramp_up_extra_period[sc.name, gn, t] =
|
||||
@constraint(
|
||||
model,
|
||||
prod_above[sc.name, gn, t] +
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
reserve[t] <=
|
||||
Pbar * is_on[gn, t] - sum(
|
||||
(Pbar - (SU + i * RU)) * switch_on[gn, t-i] for
|
||||
i in 0:min(UT - 1, TRU, t - 1)
|
||||
)
|
||||
)
|
||||
)
|
||||
end
|
||||
|
||||
# Add in shutdown trajectory if KSD >= 0 (else this is dominated by (38))
|
||||
|
||||
@@ -8,7 +8,7 @@ function _add_ramp_eqs!(
|
||||
::Gar1962.ProdVars,
|
||||
::WanHob2016.Ramping,
|
||||
::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
is_initially_on = (g.initial_status > 0)
|
||||
SU = g.startup_limit
|
||||
@@ -30,7 +30,7 @@ function _add_ramp_eqs!(
|
||||
error("Each generator may only provide one flexiramp reserve")
|
||||
end
|
||||
for r in g.reserves
|
||||
if r.type !== "up-frp" && r.type !== "down-frp"
|
||||
if r.type !== "flexiramp"
|
||||
error(
|
||||
"This formulation only supports flexiramp reserves, not $(r.type)",
|
||||
)
|
||||
@@ -39,21 +39,23 @@ function _add_ramp_eqs!(
|
||||
for t in 1:model[:instance].time
|
||||
@constraint(
|
||||
model,
|
||||
prod_above[sc.name, gn, t] + (is_on[gn, t] * minp[t]) <= mfg[sc.name, rn, gn, t]
|
||||
prod_above[sc.name, gn, t] + (is_on[gn, t] * minp[t]) <=
|
||||
mfg[sc.name, gn, t]
|
||||
) # Eq. (19) in Wang & Hobbs (2016)
|
||||
@constraint(model, mfg[sc.name, rn, gn, t] <= is_on[gn, t] * maxp[t]) # Eq. (22) in Wang & Hobbs (2016)
|
||||
@constraint(model, mfg[sc.name, gn, t] <= is_on[gn, t] * maxp[t]) # Eq. (22) in Wang & Hobbs (2016)
|
||||
if t != model[:instance].time
|
||||
@constraint(
|
||||
model,
|
||||
minp[t] * (is_on[gn, t+1] + is_on[gn, t] - 1) <=
|
||||
prod_above[sc.name, gn, t] - dwflexiramp[sc.name, rn, gn, t] +
|
||||
(is_on[gn, t] * minp[t])
|
||||
prod_above[sc.name, gn, t] -
|
||||
dwflexiramp[sc.name, rn, gn, t] + (is_on[gn, t] * minp[t])
|
||||
) # first inequality of Eq. (20) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
prod_above[sc.name, gn, t] - dwflexiramp[sc.name, rn, gn, t] +
|
||||
prod_above[sc.name, gn, t] -
|
||||
dwflexiramp[sc.name, rn, gn, t] +
|
||||
(is_on[gn, t] * minp[t]) <=
|
||||
mfg[sc.name, rn, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
|
||||
mfg[sc.name, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
|
||||
) # second inequality of Eq. (20) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
@@ -67,12 +69,12 @@ function _add_ramp_eqs!(
|
||||
prod_above[sc.name, gn, t] +
|
||||
upflexiramp[sc.name, rn, gn, t] +
|
||||
(is_on[gn, t] * minp[t]) <=
|
||||
mfg[sc.name, rn, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
|
||||
mfg[sc.name, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
|
||||
) # second inequality of Eq. (21) in Wang & Hobbs (2016)
|
||||
if t != 1
|
||||
@constraint(
|
||||
model,
|
||||
mfg[sc.name, rn, gn, t] <=
|
||||
mfg[sc.name, gn, t] <=
|
||||
prod_above[sc.name, gn, t-1] +
|
||||
(is_on[gn, t-1] * minp[t]) +
|
||||
(RU * is_on[gn, t-1]) +
|
||||
@@ -81,8 +83,13 @@ function _add_ramp_eqs!(
|
||||
) # Eq. (23) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
(prod_above[sc.name, gn, t-1] + (is_on[gn, t-1] * minp[t])) -
|
||||
(prod_above[sc.name, gn, t] + (is_on[gn, t] * minp[t])) <=
|
||||
(
|
||||
prod_above[sc.name, gn, t-1] +
|
||||
(is_on[gn, t-1] * minp[t])
|
||||
) - (
|
||||
prod_above[sc.name, gn, t] +
|
||||
(is_on[gn, t] * minp[t])
|
||||
) <=
|
||||
RD * is_on[gn, t] +
|
||||
SD * (is_on[gn, t-1] - is_on[gn, t]) +
|
||||
maxp[t] * (1 - is_on[gn, t-1])
|
||||
@@ -90,7 +97,7 @@ function _add_ramp_eqs!(
|
||||
else
|
||||
@constraint(
|
||||
model,
|
||||
mfg[sc.name, rn, gn, t] <=
|
||||
mfg[sc.name, gn, t] <=
|
||||
initial_power +
|
||||
(RU * is_initially_on) +
|
||||
(SU * (is_on[gn, t] - is_initially_on)) +
|
||||
@@ -98,8 +105,10 @@ function _add_ramp_eqs!(
|
||||
) # Eq. (23) in Wang & Hobbs (2016) for the first time period
|
||||
@constraint(
|
||||
model,
|
||||
initial_power -
|
||||
(prod_above[sc.name, gn, t] + (is_on[gn, t] * minp[t])) <=
|
||||
initial_power - (
|
||||
prod_above[sc.name, gn, t] +
|
||||
(is_on[gn, t] * minp[t])
|
||||
) <=
|
||||
RD * is_on[gn, t] +
|
||||
SD * (is_initially_on - is_on[gn, t]) +
|
||||
maxp[t] * (1 - is_initially_on)
|
||||
@@ -107,7 +116,7 @@ function _add_ramp_eqs!(
|
||||
end
|
||||
@constraint(
|
||||
model,
|
||||
mfg[sc.name, rn, gn, t] <=
|
||||
mfg[sc.name, gn, t] <=
|
||||
(SD * (is_on[gn, t] - is_on[gn, t+1])) +
|
||||
(maxp[t] * is_on[gn, t+1])
|
||||
) # Eq. (24) in Wang & Hobbs (2016)
|
||||
@@ -115,7 +124,8 @@ function _add_ramp_eqs!(
|
||||
model,
|
||||
-RD * is_on[gn, t+1] -
|
||||
SD * (is_on[gn, t] - is_on[gn, t+1]) -
|
||||
maxp[t] * (1 - is_on[gn, t]) <= upflexiramp[sc.name, rn, gn, t]
|
||||
maxp[t] * (1 - is_on[gn, t]) <=
|
||||
upflexiramp[sc.name, rn, gn, t]
|
||||
) # first inequality of Eq. (26) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
@@ -127,7 +137,8 @@ function _add_ramp_eqs!(
|
||||
@constraint(
|
||||
model,
|
||||
-RU * is_on[gn, t] - SU * (is_on[gn, t+1] - is_on[gn, t]) -
|
||||
maxp[t] * (1 - is_on[gn, t+1]) <= dwflexiramp[sc.name, rn, gn, t]
|
||||
maxp[t] * (1 - is_on[gn, t+1]) <=
|
||||
dwflexiramp[sc.name, rn, gn, t]
|
||||
) # first inequality of Eq. (27) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
@@ -147,7 +158,8 @@ function _add_ramp_eqs!(
|
||||
) # second inequality of Eq. (28) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
-maxp[t] * is_on[gn, t+1] <= dwflexiramp[sc.name, rn, gn, t]
|
||||
-maxp[t] * is_on[gn, t+1] <=
|
||||
dwflexiramp[sc.name, rn, gn, t]
|
||||
) # first inequality of Eq. (29) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
@@ -157,7 +169,7 @@ function _add_ramp_eqs!(
|
||||
else
|
||||
@constraint(
|
||||
model,
|
||||
mfg[sc.name, rn, gn, t] <=
|
||||
mfg[sc.name, gn, t] <=
|
||||
prod_above[sc.name, gn, t-1] +
|
||||
(is_on[gn, t-1] * minp[t]) +
|
||||
(RU * is_on[gn, t-1]) +
|
||||
@@ -166,7 +178,10 @@ function _add_ramp_eqs!(
|
||||
) # Eq. (23) in Wang & Hobbs (2016) for the last time period
|
||||
@constraint(
|
||||
model,
|
||||
(prod_above[sc.name, gn, t-1] + (is_on[gn, t-1] * minp[t])) -
|
||||
(
|
||||
prod_above[sc.name, gn, t-1] +
|
||||
(is_on[gn, t-1] * minp[t])
|
||||
) -
|
||||
(prod_above[sc.name, gn, t] + (is_on[gn, t] * minp[t])) <=
|
||||
RD * is_on[gn, t] +
|
||||
SD * (is_on[gn, t-1] - is_on[gn, t]) +
|
||||
|
||||
@@ -2,7 +2,11 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
function _add_bus!(model::JuMP.Model, b::Bus, sc::UnitCommitmentScenario)::Nothing
|
||||
function _add_bus!(
|
||||
model::JuMP.Model,
|
||||
b::Bus,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
net_injection = _init(model, :expr_net_injection)
|
||||
curtail = _init(model, :curtail)
|
||||
for t in 1:model[:instance].time
|
||||
@@ -13,7 +17,11 @@ function _add_bus!(model::JuMP.Model, b::Bus, sc::UnitCommitmentScenario)::Nothi
|
||||
curtail[sc.name, b.name, t] =
|
||||
@variable(model, lower_bound = 0, upper_bound = b.load[t])
|
||||
|
||||
add_to_expression!(net_injection[sc.name, b.name, t], curtail[sc.name, b.name, t], 1.0)
|
||||
add_to_expression!(
|
||||
net_injection[sc.name, b.name, t],
|
||||
curtail[sc.name, b.name, t],
|
||||
1.0,
|
||||
)
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
curtail[sc.name, b.name, t],
|
||||
|
||||
@@ -6,7 +6,7 @@ function _add_transmission_line!(
|
||||
model::JuMP.Model,
|
||||
lm::TransmissionLine,
|
||||
f::ShiftFactorsFormulation,
|
||||
sc::UnitCommitmentScenario
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
overflow = _init(model, :overflow)
|
||||
for t in 1:model[:instance].time
|
||||
@@ -21,30 +21,28 @@ function _add_transmission_line!(
|
||||
end
|
||||
|
||||
function _setup_transmission(
|
||||
model::JuMP.Model,
|
||||
formulation::ShiftFactorsFormulation,
|
||||
scenario::UnitCommitmentScenario
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
instance = model[:instance]
|
||||
isf = formulation.precomputed_isf
|
||||
lodf = formulation.precomputed_lodf
|
||||
if length(scenario.buses) == 1
|
||||
if length(sc.buses) == 1
|
||||
isf = zeros(0, 0)
|
||||
lodf = zeros(0, 0)
|
||||
elseif isf === nothing
|
||||
@info "Computing injection shift factors..."
|
||||
time_isf = @elapsed begin
|
||||
isf = UnitCommitment._injection_shift_factors(
|
||||
lines = scenario.lines,
|
||||
buses = scenario.buses,
|
||||
buses = sc.buses,
|
||||
lines = sc.lines,
|
||||
)
|
||||
end
|
||||
@info @sprintf("Computed ISF in %.2f seconds", time_isf)
|
||||
@info "Computing line outage factors..."
|
||||
time_lodf = @elapsed begin
|
||||
lodf = UnitCommitment._line_outage_factors(
|
||||
lines = scenario.lines,
|
||||
buses = scenario.buses,
|
||||
buses = sc.buses,
|
||||
lines = sc.lines,
|
||||
isf = isf,
|
||||
)
|
||||
end
|
||||
@@ -57,7 +55,7 @@ function _setup_transmission(
|
||||
isf[abs.(isf).<formulation.isf_cutoff] .= 0
|
||||
lodf[abs.(lodf).<formulation.lodf_cutoff] .= 0
|
||||
end
|
||||
scenario.isf = isf
|
||||
scenario.lodf = lodf
|
||||
sc.isf = isf
|
||||
sc.lodf = lodf
|
||||
return
|
||||
end
|
||||
|
||||
@@ -5,7 +5,7 @@
|
||||
function _add_price_sensitive_load!(
|
||||
model::JuMP.Model,
|
||||
ps::PriceSensitiveLoad,
|
||||
sc::UnitCommitmentScenario
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
loads = _init(model, :loads)
|
||||
net_injection = _init(model, :expr_net_injection)
|
||||
@@ -15,8 +15,11 @@ function _add_price_sensitive_load!(
|
||||
@variable(model, lower_bound = 0, upper_bound = ps.demand[t])
|
||||
|
||||
# Objective function terms
|
||||
add_to_expression!(model[:obj], loads[ps.name, t],
|
||||
-ps.revenue[t] * sc.probability)
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
loads[sc.name, ps.name, t],
|
||||
-ps.revenue[t] * sc.probability,
|
||||
)
|
||||
|
||||
# Net injection
|
||||
add_to_expression!(
|
||||
|
||||
@@ -2,22 +2,30 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
function _add_system_wide_eqs!(model::JuMP.Model, sc::UnitCommitmentScenario)::Nothing
|
||||
function _add_system_wide_eqs!(
|
||||
model::JuMP.Model,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
_add_net_injection_eqs!(model, sc)
|
||||
_add_spinning_reserve_eqs!(model, sc)
|
||||
_add_flexiramp_reserve_eqs!(model, sc)
|
||||
return
|
||||
end
|
||||
|
||||
function _add_net_injection_eqs!(model::JuMP.Model, sc::UnitCommitmentScenario)::Nothing
|
||||
function _add_net_injection_eqs!(
|
||||
model::JuMP.Model,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
T = model[:instance].time
|
||||
net_injection = _init(model, :net_injection)
|
||||
eq_net_injection = _init(model, :eq_net_injection)
|
||||
eq_power_balance = _init(model, :eq_power_balance)
|
||||
for t in 1:T, b in sc.buses
|
||||
n = net_injection[sc.name, b.name, t] = @variable(model)
|
||||
eq_net_injection[sc.name, b.name, t] =
|
||||
@constraint(model, -n + model[:expr_net_injection][sc.name, b.name, t] == 0)
|
||||
eq_net_injection[sc.name, b.name, t] = @constraint(
|
||||
model,
|
||||
-n + model[:expr_net_injection][sc.name, b.name, t] == 0
|
||||
)
|
||||
end
|
||||
for t in 1:T
|
||||
eq_power_balance[sc.name, t] = @constraint(
|
||||
@@ -28,7 +36,10 @@ function _add_net_injection_eqs!(model::JuMP.Model, sc::UnitCommitmentScenario):
|
||||
return
|
||||
end
|
||||
|
||||
function _add_spinning_reserve_eqs!(model::JuMP.Model, sc::UnitCommitmentScenario)::Nothing
|
||||
function _add_spinning_reserve_eqs!(
|
||||
model::JuMP.Model,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
T = model[:instance].time
|
||||
eq_min_spinning_reserve = _init(model, :eq_min_spinning_reserve)
|
||||
for r in sc.reserves
|
||||
@@ -40,8 +51,11 @@ function _add_spinning_reserve_eqs!(model::JuMP.Model, sc::UnitCommitmentScenari
|
||||
# from Carrión and Arroyo (2006) and Ostrowski et al. (2012)
|
||||
eq_min_spinning_reserve[sc.name, r.name, t] = @constraint(
|
||||
model,
|
||||
sum(model[:reserve][sc.name, r.name, g.name, t] for g in r.units) +
|
||||
model[:reserve_shortfall][sc.name, r.name, t] >= r.amount[t]
|
||||
sum(
|
||||
model[:reserve][sc.name, r.name, g.name, t] for
|
||||
g in r.units
|
||||
) + model[:reserve_shortfall][sc.name, r.name, t] >=
|
||||
r.amount[t]
|
||||
)
|
||||
|
||||
# Account for shortfall contribution to objective
|
||||
@@ -57,7 +71,10 @@ function _add_spinning_reserve_eqs!(model::JuMP.Model, sc::UnitCommitmentScenari
|
||||
return
|
||||
end
|
||||
|
||||
function _add_flexiramp_reserve_eqs!(model::JuMP.Model, sc::UnitCommitmentScenario)::Nothing
|
||||
function _add_flexiramp_reserve_eqs!(
|
||||
model::JuMP.Model,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
# Note: The flexpramp requirements in Wang & Hobbs (2016) are imposed as hard constraints
|
||||
# through Eq. (17) and Eq. (18). The constraints eq_min_upflexiramp and eq_min_dwflexiramp
|
||||
# provided below are modified versions of Eq. (17) and Eq. (18), respectively, in that
|
||||
@@ -67,39 +84,37 @@ function _add_flexiramp_reserve_eqs!(model::JuMP.Model, sc::UnitCommitmentScenar
|
||||
eq_min_dwflexiramp = _init(model, :eq_min_dwflexiramp)
|
||||
T = model[:instance].time
|
||||
for r in sc.reserves
|
||||
if r.type == "up-frp"
|
||||
for t in 1:T
|
||||
# Eq. (17) in Wang & Hobbs (2016)
|
||||
eq_min_upflexiramp[sc.name, r.name, t] = @constraint(
|
||||
model,
|
||||
sum(model[:upflexiramp][sc.name, r.name, g.name, t] for g in r.units) +
|
||||
model[:upflexiramp_shortfall][sc.name, r.name, t] >= r.amount[t]
|
||||
)
|
||||
# Account for flexiramp shortfall contribution to objective
|
||||
if r.shortfall_penalty >= 0
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
r.shortfall_penalty * sc.probability,
|
||||
model[:upflexiramp_shortfall][sc.name, r.name, t]
|
||||
)
|
||||
end
|
||||
end
|
||||
elseif r.type == "down-frp"
|
||||
for t in 1:T
|
||||
# Eq. (18) in Wang & Hobbs (2016)
|
||||
eq_min_dwflexiramp[sc.name, r.name, t] = @constraint(
|
||||
model,
|
||||
sum(model[:dwflexiramp][sc.name, r.name, g.name, t] for g in r.units) +
|
||||
model[:dwflexiramp_shortfall][sc.name, r.name, t] >= r.amount[t]
|
||||
)
|
||||
# Account for flexiramp shortfall contribution to objective
|
||||
if r.shortfall_penalty >= 0
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
r.shortfall_penalty * sc.probability,
|
||||
r.type == "flexiramp" || continue
|
||||
for t in 1:T
|
||||
# Eq. (17) in Wang & Hobbs (2016)
|
||||
eq_min_upflexiramp[sc.name, r.name, t] = @constraint(
|
||||
model,
|
||||
sum(
|
||||
model[:upflexiramp][sc.name, r.name, g.name, t] for
|
||||
g in r.units
|
||||
) + model[:upflexiramp_shortfall][sc.name, r.name, t] >=
|
||||
r.amount[t]
|
||||
)
|
||||
# Eq. (18) in Wang & Hobbs (2016)
|
||||
eq_min_dwflexiramp[sc.name, r.name, t] = @constraint(
|
||||
model,
|
||||
sum(
|
||||
model[:dwflexiramp][sc.name, r.name, g.name, t] for
|
||||
g in r.units
|
||||
) + model[:dwflexiramp_shortfall][sc.name, r.name, t] >=
|
||||
r.amount[t]
|
||||
)
|
||||
|
||||
# Account for flexiramp shortfall contribution to objective
|
||||
if r.shortfall_penalty >= 0
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
r.shortfall_penalty * sc.probability,
|
||||
(
|
||||
model[:upflexiramp_shortfall][sc.name, r.name, t] +
|
||||
model[:dwflexiramp_shortfall][sc.name, r.name, t]
|
||||
)
|
||||
end
|
||||
),
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
@@ -2,7 +2,13 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
function _add_unit_first_stage!(model::JuMP.Model, g::Unit, formulation::Formulation)
|
||||
# Function for adding variables, constraints, and objective function terms
|
||||
# related to the binary commitment, startup and shutdown decisions of units
|
||||
function _add_unit_commitment!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation::Formulation,
|
||||
)
|
||||
if !all(g.must_run) && any(g.must_run)
|
||||
error("Partially must-run units are not currently supported")
|
||||
end
|
||||
@@ -21,24 +27,30 @@ function _add_unit_first_stage!(model::JuMP.Model, g::Unit, formulation::Formula
|
||||
return
|
||||
end
|
||||
|
||||
function _add_unit_second_stage!(model::JuMP.Model, g::Unit, formulation::Formulation,
|
||||
scenario::UnitCommitmentScenario)
|
||||
# Function for adding variables, constraints, and objective function terms
|
||||
# related to the continuous dispatch decisions of units
|
||||
function _add_unit_dispatch!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation::Formulation,
|
||||
sc::UnitCommitmentScenario,
|
||||
)
|
||||
|
||||
# Variables
|
||||
_add_production_vars!(model, g, formulation.prod_vars, scenario)
|
||||
_add_spinning_reserve_vars!(model, g, scenario)
|
||||
_add_flexiramp_reserve_vars!(model, g, scenario)
|
||||
_add_production_vars!(model, g, formulation.prod_vars, sc)
|
||||
_add_spinning_reserve_vars!(model, g, sc)
|
||||
_add_flexiramp_reserve_vars!(model, g, sc)
|
||||
|
||||
# Constraints and objective function
|
||||
_add_net_injection_eqs!(model, g, scenario)
|
||||
_add_production_limit_eqs!(model, g, formulation.prod_vars, scenario)
|
||||
_add_net_injection_eqs!(model, g, sc)
|
||||
_add_production_limit_eqs!(model, g, formulation.prod_vars, sc)
|
||||
_add_production_piecewise_linear_eqs!(
|
||||
model,
|
||||
g,
|
||||
formulation.prod_vars,
|
||||
formulation.pwl_costs,
|
||||
formulation.status_vars,
|
||||
scenario
|
||||
sc,
|
||||
)
|
||||
_add_ramp_eqs!(
|
||||
model,
|
||||
@@ -46,62 +58,29 @@ function _add_unit_second_stage!(model::JuMP.Model, g::Unit, formulation::Formul
|
||||
formulation.prod_vars,
|
||||
formulation.ramping,
|
||||
formulation.status_vars,
|
||||
scenario
|
||||
sc,
|
||||
)
|
||||
_add_startup_shutdown_limit_eqs!(model, g, scenario)
|
||||
_add_startup_shutdown_limit_eqs!(model, g, sc)
|
||||
return
|
||||
end
|
||||
|
||||
# function _add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation)
|
||||
# if !all(g.must_run) && any(g.must_run)
|
||||
# error("Partially must-run units are not currently supported")
|
||||
# end
|
||||
# if g.initial_power === nothing || g.initial_status === nothing
|
||||
# error("Initial conditions for $(g.name) must be provided")
|
||||
# end
|
||||
|
||||
# # Variables
|
||||
# _add_production_vars!(model, g, formulation.prod_vars)
|
||||
# _add_spinning_reserve_vars!(model, g)
|
||||
# _add_flexiramp_reserve_vars!(model, g)
|
||||
# _add_startup_shutdown_vars!(model, g)
|
||||
# _add_status_vars!(model, g, formulation.status_vars)
|
||||
|
||||
# # Constraints and objective function
|
||||
# _add_min_uptime_downtime_eqs!(model, g)
|
||||
# _add_net_injection_eqs!(model, g)
|
||||
# _add_production_limit_eqs!(model, g, formulation.prod_vars)
|
||||
# _add_production_piecewise_linear_eqs!(
|
||||
# model,
|
||||
# g,
|
||||
# formulation.prod_vars,
|
||||
# formulation.pwl_costs,
|
||||
# formulation.status_vars,
|
||||
# )
|
||||
# _add_ramp_eqs!(
|
||||
# model,
|
||||
# g,
|
||||
# formulation.prod_vars,
|
||||
# formulation.ramping,
|
||||
# formulation.status_vars,
|
||||
# )
|
||||
# _add_startup_cost_eqs!(model, g, formulation.startup_costs)
|
||||
# _add_startup_shutdown_limit_eqs!(model, g)
|
||||
# _add_status_eqs!(model, g, formulation.status_vars)
|
||||
# return
|
||||
# end
|
||||
|
||||
_is_initially_on(g::Unit)::Float64 = (g.initial_status > 0 ? 1.0 : 0.0)
|
||||
|
||||
function _add_spinning_reserve_vars!(model::JuMP.Model, g::Unit, sc::UnitCommitmentScenario)::Nothing
|
||||
function _add_spinning_reserve_vars!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
reserve = _init(model, :reserve)
|
||||
reserve_shortfall = _init(model, :reserve_shortfall)
|
||||
for r in g.reserves
|
||||
r.type == "spinning" || continue
|
||||
for t in 1:model[:instance].time
|
||||
reserve[sc.name, r.name, g.name, t] = @variable(model, lower_bound = 0)
|
||||
reserve[sc.name, r.name, g.name, t] =
|
||||
@variable(model, lower_bound = 0)
|
||||
if (sc.name, r.name, t) ∉ keys(reserve_shortfall)
|
||||
reserve_shortfall[sc.name, r.name, t] = @variable(model, lower_bound = 0)
|
||||
reserve_shortfall[sc.name, r.name, t] =
|
||||
@variable(model, lower_bound = 0)
|
||||
if r.shortfall_penalty < 0
|
||||
set_upper_bound(reserve_shortfall[sc.name, r.name, t], 0.0)
|
||||
end
|
||||
@@ -111,35 +90,37 @@ function _add_spinning_reserve_vars!(model::JuMP.Model, g::Unit, sc::UnitCommitm
|
||||
return
|
||||
end
|
||||
|
||||
function _add_flexiramp_reserve_vars!(model::JuMP.Model, g::Unit, sc::UnitCommitmentScenario)::Nothing
|
||||
function _add_flexiramp_reserve_vars!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
upflexiramp = _init(model, :upflexiramp)
|
||||
upflexiramp_shortfall = _init(model, :upflexiramp_shortfall)
|
||||
mfg = _init(model, :mfg)
|
||||
dwflexiramp = _init(model, :dwflexiramp)
|
||||
dwflexiramp_shortfall = _init(model, :dwflexiramp_shortfall)
|
||||
for r in g.reserves
|
||||
if r.type == "up-frp"
|
||||
for t in 1:model[:instance].time
|
||||
# maximum feasible generation, \bar{g_{its}} in Wang & Hobbs (2016)
|
||||
mfg[sc.name, r.name, g.name, t] = @variable(model, lower_bound = 0)
|
||||
upflexiramp[sc.name, r.name, g.name, t] = @variable(model) # up-flexiramp, ur_{it} in Wang & Hobbs (2016)
|
||||
if (sc.name, r.name, t) ∉ keys(upflexiramp_shortfall)
|
||||
upflexiramp_shortfall[sc.name, r.name, t] =
|
||||
@variable(model, lower_bound = 0)
|
||||
if r.shortfall_penalty < 0
|
||||
set_upper_bound(upflexiramp_shortfall[sc.name, r.name, t], 0.0)
|
||||
end
|
||||
end
|
||||
end
|
||||
elseif r.type == "down-frp"
|
||||
for t in 1:model[:instance].time
|
||||
dwflexiramp[sc.name, r.name, g.name, t] = @variable(model) # down-flexiramp, dr_{it} in Wang & Hobbs (2016)
|
||||
if (sc.name, r.name, t) ∉ keys(dwflexiramp_shortfall)
|
||||
dwflexiramp_shortfall[sc.name, r.name, t] =
|
||||
@variable(model, lower_bound = 0)
|
||||
if r.shortfall_penalty < 0
|
||||
set_upper_bound(dwflexiramp_shortfall[sc.name, r.name, t], 0.0)
|
||||
end
|
||||
for t in 1:model[:instance].time
|
||||
# maximum feasible generation, \bar{g_{its}} in Wang & Hobbs (2016)
|
||||
mfg[sc.name, g.name, t] = @variable(model, lower_bound = 0)
|
||||
for r in g.reserves
|
||||
r.type == "flexiramp" || continue
|
||||
upflexiramp[sc.name, r.name, g.name, t] = @variable(model) # up-flexiramp, ur_{it} in Wang & Hobbs (2016)
|
||||
dwflexiramp[sc.name, r.name, g.name, t] = @variable(model) # down-flexiramp, dr_{it} in Wang & Hobbs (2016)
|
||||
if (sc.name, r.name, t) ∉ keys(upflexiramp_shortfall)
|
||||
upflexiramp_shortfall[sc.name, r.name, t] =
|
||||
@variable(model, lower_bound = 0)
|
||||
dwflexiramp_shortfall[sc.name, r.name, t] =
|
||||
@variable(model, lower_bound = 0)
|
||||
if r.shortfall_penalty < 0
|
||||
set_upper_bound(
|
||||
upflexiramp_shortfall[sc.name, r.name, t],
|
||||
0.0,
|
||||
)
|
||||
set_upper_bound(
|
||||
dwflexiramp_shortfall[sc.name, r.name, t],
|
||||
0.0,
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
@@ -157,7 +138,11 @@ function _add_startup_shutdown_vars!(model::JuMP.Model, g::Unit)::Nothing
|
||||
return
|
||||
end
|
||||
|
||||
function _add_startup_shutdown_limit_eqs!(model::JuMP.Model, g::Unit, sc::UnitCommitmentScenario)::Nothing
|
||||
function _add_startup_shutdown_limit_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
eq_shutdown_limit = _init(model, :eq_shutdown_limit)
|
||||
eq_startup_limit = _init(model, :eq_startup_limit)
|
||||
is_on = model[:is_on]
|
||||
@@ -196,7 +181,7 @@ function _add_ramp_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation::RampingFormulation,
|
||||
sc::UnitCommitmentScenario
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
prod_above = model[:prod_above]
|
||||
reserve = _total_reserves(model, g, sc)
|
||||
@@ -282,7 +267,11 @@ function _add_min_uptime_downtime_eqs!(model::JuMP.Model, g::Unit)::Nothing
|
||||
end
|
||||
end
|
||||
|
||||
function _add_net_injection_eqs!(model::JuMP.Model, g::Unit, sc::UnitCommitmentScenario)::Nothing
|
||||
function _add_net_injection_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
expr_net_injection = model[:expr_net_injection]
|
||||
for t in 1:model[:instance].time
|
||||
# Add to net injection expression
|
||||
@@ -305,7 +294,10 @@ function _total_reserves(model, g, sc)::Vector
|
||||
spinning_reserves = [r for r in g.reserves if r.type == "spinning"]
|
||||
if !isempty(spinning_reserves)
|
||||
reserve += [
|
||||
sum(model[:reserve][sc.name, r.name, g.name, t] for r in spinning_reserves) for t in 1:model[:instance].time
|
||||
sum(
|
||||
model[:reserve][sc.name, r.name, g.name, t] for
|
||||
r in spinning_reserves
|
||||
) for t in 1:model[:instance].time
|
||||
]
|
||||
end
|
||||
return reserve
|
||||
|
||||
@@ -10,37 +10,43 @@ solution. Useful for computing LMPs.
|
||||
"""
|
||||
function fix!(model::JuMP.Model, solution::AbstractDict)::Nothing
|
||||
instance, T = model[:instance], model[:instance].time
|
||||
"Production (MW)" ∈ keys(solution) ? solution = Dict("s1" => solution) :
|
||||
nothing
|
||||
is_on = model[:is_on]
|
||||
prod_above = model[:prod_above]
|
||||
reserve = model[:reserve]
|
||||
for g in instance.units
|
||||
for t in 1:T
|
||||
is_on_value = round(solution["Is on"][g.name][t])
|
||||
prod_value =
|
||||
round(solution["Production (MW)"][g.name][t], digits = 5)
|
||||
JuMP.fix(is_on[g.name, t], is_on_value, force = true)
|
||||
JuMP.fix(
|
||||
prod_above[g.name, t],
|
||||
prod_value - is_on_value * g.min_power[t],
|
||||
force = true,
|
||||
)
|
||||
end
|
||||
end
|
||||
for r in instance.reserves
|
||||
r.type == "spinning" || continue
|
||||
for g in r.units
|
||||
for sc in instance.scenarios
|
||||
for g in sc.units
|
||||
for t in 1:T
|
||||
reserve_value = round(
|
||||
solution["Spinning reserve (MW)"][r.name][g.name][t],
|
||||
is_on_value = round(solution[sc.name]["Is on"][g.name][t])
|
||||
prod_value = round(
|
||||
solution[sc.name]["Production (MW)"][g.name][t],
|
||||
digits = 5,
|
||||
)
|
||||
JuMP.fix(is_on[g.name, t], is_on_value, force = true)
|
||||
JuMP.fix(
|
||||
reserve[r.name, g.name, t],
|
||||
reserve_value,
|
||||
prod_above[sc.name, g.name, t],
|
||||
prod_value - is_on_value * g.min_power[t],
|
||||
force = true,
|
||||
)
|
||||
end
|
||||
end
|
||||
for r in sc.reserves
|
||||
r.type == "spinning" || continue
|
||||
for g in r.units
|
||||
for t in 1:T
|
||||
reserve_value = round(
|
||||
solution[sc.name]["Spinning reserve (MW)"][r.name][g.name][t],
|
||||
digits = 5,
|
||||
)
|
||||
JuMP.fix(
|
||||
reserve[sc.name, r.name, g.name, t],
|
||||
reserve_value,
|
||||
force = true,
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
@@ -5,7 +5,7 @@
|
||||
function _enforce_transmission(
|
||||
model::JuMP.Model,
|
||||
violations::Vector{_Violation},
|
||||
sc::UnitCommitmentScenario
|
||||
sc::UnitCommitmentScenario,
|
||||
)::Nothing
|
||||
for v in violations
|
||||
_enforce_transmission(
|
||||
|
||||
@@ -19,8 +19,8 @@ function _find_violations(
|
||||
time_screening = @elapsed begin
|
||||
non_slack_buses = [b for b in sc.buses if b.offset > 0]
|
||||
net_injection_values = [
|
||||
value(net_injection[sc.name, b.name, t]) for b in non_slack_buses,
|
||||
t in 1:instance.time
|
||||
value(net_injection[sc.name, b.name, t]) for
|
||||
b in non_slack_buses, t in 1:instance.time
|
||||
]
|
||||
overflow_values = [
|
||||
value(overflow[sc.name, lm.name, t]) for lm in sc.lines,
|
||||
@@ -72,7 +72,7 @@ function _find_violations(;
|
||||
isf::Array{Float64,2},
|
||||
lodf::Array{Float64,2},
|
||||
max_per_line::Int,
|
||||
max_per_period::Int
|
||||
max_per_period::Int,
|
||||
)::Array{_Violation,1}
|
||||
B = length(sc.buses) - 1
|
||||
L = length(sc.lines)
|
||||
@@ -96,13 +96,13 @@ function _find_violations(;
|
||||
post_v::Array{Float64} = zeros(L, L, K) # post_v[lm, lc, thread]
|
||||
|
||||
normal_limits::Array{Float64,2} = [
|
||||
l.normal_flow_limit[t] + overflow[l.offset, t] for
|
||||
l in sc.lines, t in 1:T
|
||||
l.normal_flow_limit[t] + overflow[l.offset, t] for l in sc.lines,
|
||||
t in 1:T
|
||||
]
|
||||
|
||||
emergency_limits::Array{Float64,2} = [
|
||||
l.emergency_flow_limit[t] + overflow[l.offset, t] for
|
||||
l in sc.lines, t in 1:T
|
||||
l.emergency_flow_limit[t] + overflow[l.offset, t] for l in sc.lines,
|
||||
t in 1:T
|
||||
]
|
||||
|
||||
is_vulnerable::Array{Bool} = zeros(Bool, L)
|
||||
@@ -114,7 +114,7 @@ function _find_violations(;
|
||||
k = threadid()
|
||||
|
||||
# Pre-contingency flows
|
||||
pre_flow[:, k] = isf * net_injections[ :, t]
|
||||
pre_flow[:, k] = isf * net_injections[:, t]
|
||||
|
||||
# Post-contingency flows
|
||||
for lc in 1:L, lm in 1:L
|
||||
|
||||
@@ -10,9 +10,9 @@ function optimize!(model::JuMP.Model, method::XavQiuWanThi2019.Method)::Nothing
|
||||
JuMP.set_optimizer_attribute(model, "MIPGap", gap)
|
||||
@info @sprintf("MIP gap tolerance set to %f", gap)
|
||||
end
|
||||
for scenario in model[:instance].scenarios
|
||||
for sc in model[:instance].scenarios
|
||||
large_gap = false
|
||||
has_transmission = (length(scenario.isf) > 0)
|
||||
has_transmission = (length(sc.isf) > 0)
|
||||
if has_transmission && method.two_phase_gap
|
||||
set_gap(1e-2)
|
||||
large_gap = true
|
||||
@@ -36,7 +36,7 @@ function optimize!(model::JuMP.Model, method::XavQiuWanThi2019.Method)::Nothing
|
||||
has_transmission || break
|
||||
violations = _find_violations(
|
||||
model,
|
||||
scenario,
|
||||
sc,
|
||||
max_per_line = method.max_violations_per_line,
|
||||
max_per_period = method.max_violations_per_period,
|
||||
)
|
||||
@@ -49,7 +49,7 @@ function optimize!(model::JuMP.Model, method::XavQiuWanThi2019.Method)::Nothing
|
||||
break
|
||||
end
|
||||
else
|
||||
_enforce_transmission(model, violations, scenario)
|
||||
_enforce_transmission(model, violations, sc)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
@@ -16,17 +16,21 @@ solution = UnitCommitment.solution(model)
|
||||
"""
|
||||
function solution(model::JuMP.Model)::OrderedDict
|
||||
instance, T = model[:instance], model[:instance].time
|
||||
function timeseries_first_stage(vars, collection)
|
||||
return OrderedDict(
|
||||
b.name => [round(value(vars[b.name, t]), digits = 5) for t in 1:T]
|
||||
for b in collection
|
||||
)
|
||||
end
|
||||
function timeseries_second_stage(vars, collection, sc)
|
||||
return OrderedDict(
|
||||
b.name => [round(value(vars[sc.name, b.name, t]), digits = 5) for t in 1:T]
|
||||
for b in collection
|
||||
)
|
||||
function timeseries(vars, collection; sc = nothing)
|
||||
if sc === nothing
|
||||
return OrderedDict(
|
||||
b.name =>
|
||||
[round(value(vars[b.name, t]), digits = 5) for t in 1:T] for
|
||||
b in collection
|
||||
)
|
||||
else
|
||||
return OrderedDict(
|
||||
b.name => [
|
||||
round(value(vars[sc.name, b.name, t]), digits = 5) for
|
||||
t in 1:T
|
||||
] for b in collection
|
||||
)
|
||||
end
|
||||
end
|
||||
function production_cost(g, sc)
|
||||
return [
|
||||
@@ -67,24 +71,25 @@ function solution(model::JuMP.Model)::OrderedDict
|
||||
OrderedDict(g.name => production_cost(g, sc) for g in sc.units)
|
||||
sol[sc.name]["Startup cost (\$)"] =
|
||||
OrderedDict(g.name => startup_cost(g, sc) for g in sc.units)
|
||||
sol[sc.name]["Is on"] = timeseries_first_stage(model[:is_on], sc.units)
|
||||
sol[sc.name]["Switch on"] = timeseries_first_stage(model[:switch_on], sc.units)
|
||||
sol[sc.name]["Switch off"] = timeseries_first_stage(model[:switch_off], sc.units)
|
||||
sol[sc.name]["Is on"] = timeseries(model[:is_on], sc.units)
|
||||
sol[sc.name]["Switch on"] = timeseries(model[:switch_on], sc.units)
|
||||
sol[sc.name]["Switch off"] = timeseries(model[:switch_off], sc.units)
|
||||
sol[sc.name]["Net injection (MW)"] =
|
||||
timeseries_second_stage(model[:net_injection], sc.buses, sc)
|
||||
sol[sc.name]["Load curtail (MW)"] = timeseries_second_stage(model[:curtail], sc.buses, sc)
|
||||
timeseries(model[:net_injection], sc.buses, sc = sc)
|
||||
sol[sc.name]["Load curtail (MW)"] =
|
||||
timeseries(model[:curtail], sc.buses, sc = sc)
|
||||
if !isempty(sc.lines)
|
||||
sol[sc.name]["Line overflow (MW)"] = timeseries_second_stage(model[:overflow], sc.lines, sc)
|
||||
sol[sc.name]["Line overflow (MW)"] =
|
||||
timeseries(model[:overflow], sc.lines, sc = sc)
|
||||
end
|
||||
if !isempty(sc.price_sensitive_loads)
|
||||
sol[sc.name]["Price-sensitive loads (MW)"] =
|
||||
timeseries_second_stage(model[:loads], sc.price_sensitive_loads, sc)
|
||||
timeseries(model[:loads], sc.price_sensitive_loads, sc = sc)
|
||||
end
|
||||
sol[sc.name]["Spinning reserve (MW)"] = OrderedDict(
|
||||
r.name => OrderedDict(
|
||||
g.name => [
|
||||
value(model[:reserve][sc.name, r.name, g.name, t]) for
|
||||
t in 1:instance.time
|
||||
value(model[:reserve][sc.name, r.name, g.name, t]) for t in 1:instance.time
|
||||
] for g in r.units
|
||||
) for r in sc.reserves if r.type == "spinning"
|
||||
)
|
||||
@@ -97,32 +102,31 @@ function solution(model::JuMP.Model)::OrderedDict
|
||||
sol[sc.name]["Up-flexiramp (MW)"] = OrderedDict(
|
||||
r.name => OrderedDict(
|
||||
g.name => [
|
||||
value(model[:upflexiramp][sc.name, r.name, g.name, t]) for
|
||||
t in 1:instance.time
|
||||
value(model[:upflexiramp][sc.name, r.name, g.name, t]) for t in 1:instance.time
|
||||
] for g in r.units
|
||||
) for r in sc.reserves if r.type == "up-frp"
|
||||
) for r in sc.reserves if r.type == "flexiramp"
|
||||
)
|
||||
sol[sc.name]["Up-flexiramp shortfall (MW)"] = OrderedDict(
|
||||
r.name => [
|
||||
value(model[:upflexiramp_shortfall][sc.name, r.name, t]) for
|
||||
t in 1:instance.time
|
||||
] for r in sc.reserves if r.type == "up-frp"
|
||||
value(model[:upflexiramp_shortfall][sc.name, r.name, t]) for t in 1:instance.time
|
||||
] for r in sc.reserves if r.type == "flexiramp"
|
||||
)
|
||||
sol[sc.name]["Down-flexiramp (MW)"] = OrderedDict(
|
||||
r.name => OrderedDict(
|
||||
g.name => [
|
||||
value(model[:dwflexiramp][sc.name, r.name, g.name, t]) for
|
||||
t in 1:instance.time
|
||||
value(model[:dwflexiramp][sc.name, r.name, g.name, t]) for t in 1:instance.time
|
||||
] for g in r.units
|
||||
) for r in sc.reserves if r.type == "down-frp"
|
||||
) for r in sc.reserves if r.type == "flexiramp"
|
||||
)
|
||||
sol[sc.name]["Down-flexiramp shortfall (MW)"] = OrderedDict(
|
||||
r.name => [
|
||||
value(model[:dwflexiramp_shortfall][sc.name, r.name, t]) for
|
||||
t in 1:instance.time
|
||||
] for r in sc.reserves if r.type == "down-frp"
|
||||
value(model[:dwflexiramp_shortfall][sc.name, r.name, t]) for t in 1:instance.time
|
||||
] for r in sc.reserves if r.type == "flexiramp"
|
||||
)
|
||||
end
|
||||
length(keys(sol)) > 1 ? nothing : sol = Dict(sol_key => sol_val for scen_key in keys(sol) for (sol_key, sol_val) in sol[scen_key])
|
||||
return sol
|
||||
if length(instance.scenarios) == 1
|
||||
return first(values(sol))
|
||||
else
|
||||
return sol
|
||||
end
|
||||
end
|
||||
|
||||
@@ -5,18 +5,18 @@
|
||||
using JuMP
|
||||
|
||||
"""
|
||||
generate_initial_conditions!(instance, optimizer)
|
||||
generate_initial_conditions!(sc, optimizer)
|
||||
|
||||
Generates feasible initial conditions for the given instance, by constructing
|
||||
Generates feasible initial conditions for the given scenario, by constructing
|
||||
and solving a single-period mixed-integer optimization problem, using the given
|
||||
optimizer. The instance is modified in-place.
|
||||
optimizer. The scenario is modified in-place.
|
||||
"""
|
||||
function generate_initial_conditions!(
|
||||
instance::UnitCommitmentInstance,
|
||||
sc::UnitCommitmentScenario,
|
||||
optimizer,
|
||||
)::Nothing
|
||||
G = instance.units
|
||||
B = instance.buses
|
||||
G = sc.units
|
||||
B = sc.buses
|
||||
t = 1
|
||||
mip = JuMP.Model(optimizer)
|
||||
|
||||
|
||||
@@ -6,6 +6,7 @@ module XavQiuAhm2021
|
||||
|
||||
using Distributions
|
||||
import ..UnitCommitmentInstance
|
||||
import ..UnitCommitmentScenario
|
||||
|
||||
"""
|
||||
struct Randomization
|
||||
@@ -119,10 +120,10 @@ end
|
||||
|
||||
function _randomize_costs(
|
||||
rng,
|
||||
instance::UnitCommitmentInstance,
|
||||
sc::UnitCommitmentScenario,
|
||||
distribution,
|
||||
)::Nothing
|
||||
for unit in instance.units
|
||||
for unit in sc.units
|
||||
α = rand(rng, distribution)
|
||||
unit.min_power_cost *= α
|
||||
for k in unit.cost_segments
|
||||
@@ -137,17 +138,15 @@ end
|
||||
|
||||
function _randomize_load_share(
|
||||
rng,
|
||||
instance::UnitCommitmentInstance,
|
||||
sc::UnitCommitmentScenario,
|
||||
distribution,
|
||||
)::Nothing
|
||||
α = rand(rng, distribution, length(instance.buses))
|
||||
for t in 1:instance.time
|
||||
total = sum(bus.load[t] for bus in instance.buses)
|
||||
den = sum(
|
||||
bus.load[t] / total * α[i] for
|
||||
(i, bus) in enumerate(instance.buses)
|
||||
)
|
||||
for (i, bus) in enumerate(instance.buses)
|
||||
α = rand(rng, distribution, length(sc.buses))
|
||||
for t in 1:sc.time
|
||||
total = sum(bus.load[t] for bus in sc.buses)
|
||||
den =
|
||||
sum(bus.load[t] / total * α[i] for (i, bus) in enumerate(sc.buses))
|
||||
for (i, bus) in enumerate(sc.buses)
|
||||
bus.load[t] *= α[i] / den
|
||||
end
|
||||
end
|
||||
@@ -156,12 +155,12 @@ end
|
||||
|
||||
function _randomize_load_profile(
|
||||
rng,
|
||||
instance::UnitCommitmentInstance,
|
||||
sc::UnitCommitmentScenario,
|
||||
params::Randomization,
|
||||
)::Nothing
|
||||
# Generate new system load
|
||||
system_load = [1.0]
|
||||
for t in 2:instance.time
|
||||
for t in 2:sc.time
|
||||
idx = (t - 1) % length(params.load_profile_mu) + 1
|
||||
gamma = rand(
|
||||
rng,
|
||||
@@ -169,14 +168,14 @@ function _randomize_load_profile(
|
||||
)
|
||||
push!(system_load, system_load[t-1] * gamma)
|
||||
end
|
||||
capacity = sum(maximum(u.max_power) for u in instance.units)
|
||||
capacity = sum(maximum(u.max_power) for u in sc.units)
|
||||
peak_load = rand(rng, params.peak_load) * capacity
|
||||
system_load = system_load ./ maximum(system_load) .* peak_load
|
||||
|
||||
# Scale bus loads to match the new system load
|
||||
prev_system_load = sum(b.load for b in instance.buses)
|
||||
for b in instance.buses
|
||||
for t in 1:instance.time
|
||||
prev_system_load = sum(b.load for b in sc.buses)
|
||||
for b in sc.buses
|
||||
for t in 1:sc.time
|
||||
b.load[t] *= system_load[t] / prev_system_load[t]
|
||||
end
|
||||
end
|
||||
@@ -199,15 +198,26 @@ function randomize!(
|
||||
instance::UnitCommitment.UnitCommitmentInstance,
|
||||
method::XavQiuAhm2021.Randomization;
|
||||
rng = MersenneTwister(),
|
||||
)::Nothing
|
||||
for sc in instance.scenarios
|
||||
randomize!(sc; method, rng)
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
function randomize!(
|
||||
sc::UnitCommitment.UnitCommitmentScenario;
|
||||
method::XavQiuAhm2021.Randomization,
|
||||
rng = MersenneTwister(),
|
||||
)::Nothing
|
||||
if method.randomize_costs
|
||||
XavQiuAhm2021._randomize_costs(rng, instance, method.cost)
|
||||
XavQiuAhm2021._randomize_costs(rng, sc, method.cost)
|
||||
end
|
||||
if method.randomize_load_share
|
||||
XavQiuAhm2021._randomize_load_share(rng, instance, method.load_share)
|
||||
XavQiuAhm2021._randomize_load_share(rng, sc, method.load_share)
|
||||
end
|
||||
if method.randomize_load_profile
|
||||
XavQiuAhm2021._randomize_load_profile(rng, instance, method)
|
||||
XavQiuAhm2021._randomize_load_profile(rng, sc, method)
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
@@ -24,31 +24,33 @@ function slice(
|
||||
)::UnitCommitmentInstance
|
||||
modified = deepcopy(instance)
|
||||
modified.time = length(range)
|
||||
modified.power_balance_penalty = modified.power_balance_penalty[range]
|
||||
for r in modified.reserves
|
||||
r.amount = r.amount[range]
|
||||
end
|
||||
for u in modified.units
|
||||
u.max_power = u.max_power[range]
|
||||
u.min_power = u.min_power[range]
|
||||
u.must_run = u.must_run[range]
|
||||
u.min_power_cost = u.min_power_cost[range]
|
||||
for s in u.cost_segments
|
||||
s.mw = s.mw[range]
|
||||
s.cost = s.cost[range]
|
||||
for sc in modified.scenarios
|
||||
sc.power_balance_penalty = sc.power_balance_penalty[range]
|
||||
for r in sc.reserves
|
||||
r.amount = r.amount[range]
|
||||
end
|
||||
for u in sc.units
|
||||
u.max_power = u.max_power[range]
|
||||
u.min_power = u.min_power[range]
|
||||
u.must_run = u.must_run[range]
|
||||
u.min_power_cost = u.min_power_cost[range]
|
||||
for s in u.cost_segments
|
||||
s.mw = s.mw[range]
|
||||
s.cost = s.cost[range]
|
||||
end
|
||||
end
|
||||
for b in sc.buses
|
||||
b.load = b.load[range]
|
||||
end
|
||||
for l in sc.lines
|
||||
l.normal_flow_limit = l.normal_flow_limit[range]
|
||||
l.emergency_flow_limit = l.emergency_flow_limit[range]
|
||||
l.flow_limit_penalty = l.flow_limit_penalty[range]
|
||||
end
|
||||
for ps in sc.price_sensitive_loads
|
||||
ps.demand = ps.demand[range]
|
||||
ps.revenue = ps.revenue[range]
|
||||
end
|
||||
end
|
||||
for b in modified.buses
|
||||
b.load = b.load[range]
|
||||
end
|
||||
for l in modified.lines
|
||||
l.normal_flow_limit = l.normal_flow_limit[range]
|
||||
l.emergency_flow_limit = l.emergency_flow_limit[range]
|
||||
l.flow_limit_penalty = l.flow_limit_penalty[range]
|
||||
end
|
||||
for ps in modified.price_sensitive_loads
|
||||
ps.demand = ps.demand[range]
|
||||
ps.revenue = ps.revenue[range]
|
||||
end
|
||||
return modified
|
||||
end
|
||||
|
||||
@@ -28,6 +28,8 @@ function validate(
|
||||
instance::UnitCommitmentInstance,
|
||||
solution::Union{Dict,OrderedDict},
|
||||
)::Bool
|
||||
"Production (MW)" ∈ keys(solution) ? solution = Dict("s1" => solution) :
|
||||
nothing
|
||||
err_count = 0
|
||||
err_count += _validate_units(instance, solution)
|
||||
err_count += _validate_reserve_and_demand(instance, solution)
|
||||
@@ -42,358 +44,369 @@ end
|
||||
|
||||
function _validate_units(instance::UnitCommitmentInstance, solution; tol = 0.01)
|
||||
err_count = 0
|
||||
|
||||
for unit in instance.units
|
||||
production = solution["Production (MW)"][unit.name]
|
||||
reserve = [0.0 for _ in 1:instance.time]
|
||||
spinning_reserves = [r for r in unit.reserves if r.type == "spinning"]
|
||||
if !isempty(spinning_reserves)
|
||||
reserve += sum(
|
||||
solution["Spinning reserve (MW)"][r.name][unit.name] for
|
||||
r in spinning_reserves
|
||||
)
|
||||
end
|
||||
actual_production_cost = solution["Production cost (\$)"][unit.name]
|
||||
actual_startup_cost = solution["Startup cost (\$)"][unit.name]
|
||||
is_on = bin(solution["Is on"][unit.name])
|
||||
|
||||
for t in 1:instance.time
|
||||
# Auxiliary variables
|
||||
if t == 1
|
||||
is_starting_up = (unit.initial_status < 0) && is_on[t]
|
||||
is_shutting_down = (unit.initial_status > 0) && !is_on[t]
|
||||
ramp_up =
|
||||
max(0, production[t] + reserve[t] - unit.initial_power)
|
||||
ramp_down = max(0, unit.initial_power - production[t])
|
||||
else
|
||||
is_starting_up = !is_on[t-1] && is_on[t]
|
||||
is_shutting_down = is_on[t-1] && !is_on[t]
|
||||
ramp_up = max(0, production[t] + reserve[t] - production[t-1])
|
||||
ramp_down = max(0, production[t-1] - production[t])
|
||||
for sc in instance.scenarios
|
||||
for unit in sc.units
|
||||
production = solution[sc.name]["Production (MW)"][unit.name]
|
||||
reserve = [0.0 for _ in 1:instance.time]
|
||||
spinning_reserves =
|
||||
[r for r in unit.reserves if r.type == "spinning"]
|
||||
if !isempty(spinning_reserves)
|
||||
reserve += sum(
|
||||
solution[sc.name]["Spinning reserve (MW)"][r.name][unit.name]
|
||||
for r in spinning_reserves
|
||||
)
|
||||
end
|
||||
actual_production_cost =
|
||||
solution[sc.name]["Production cost (\$)"][unit.name]
|
||||
actual_startup_cost =
|
||||
solution[sc.name]["Startup cost (\$)"][unit.name]
|
||||
is_on = bin(solution[sc.name]["Is on"][unit.name])
|
||||
|
||||
# Compute production costs
|
||||
production_cost, startup_cost = 0, 0
|
||||
if is_on[t]
|
||||
production_cost += unit.min_power_cost[t]
|
||||
residual = max(0, production[t] - unit.min_power[t])
|
||||
for s in unit.cost_segments
|
||||
cleared = min(residual, s.mw[t])
|
||||
production_cost += cleared * s.cost[t]
|
||||
residual = max(0, residual - s.mw[t])
|
||||
for t in 1:instance.time
|
||||
# Auxiliary variables
|
||||
if t == 1
|
||||
is_starting_up = (unit.initial_status < 0) && is_on[t]
|
||||
is_shutting_down = (unit.initial_status > 0) && !is_on[t]
|
||||
ramp_up =
|
||||
max(0, production[t] + reserve[t] - unit.initial_power)
|
||||
ramp_down = max(0, unit.initial_power - production[t])
|
||||
else
|
||||
is_starting_up = !is_on[t-1] && is_on[t]
|
||||
is_shutting_down = is_on[t-1] && !is_on[t]
|
||||
ramp_up =
|
||||
max(0, production[t] + reserve[t] - production[t-1])
|
||||
ramp_down = max(0, production[t-1] - production[t])
|
||||
end
|
||||
end
|
||||
|
||||
# Production should be non-negative
|
||||
if production[t] < -tol
|
||||
@error @sprintf(
|
||||
"Unit %s produces negative amount of power at time %d (%.2f)",
|
||||
unit.name,
|
||||
t,
|
||||
production[t]
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
# Compute production costs
|
||||
production_cost, startup_cost = 0, 0
|
||||
if is_on[t]
|
||||
production_cost += unit.min_power_cost[t]
|
||||
residual = max(0, production[t] - unit.min_power[t])
|
||||
for s in unit.cost_segments
|
||||
cleared = min(residual, s.mw[t])
|
||||
production_cost += cleared * s.cost[t]
|
||||
residual = max(0, residual - s.mw[t])
|
||||
end
|
||||
end
|
||||
|
||||
# Verify must-run
|
||||
if !is_on[t] && unit.must_run[t]
|
||||
@error @sprintf(
|
||||
"Must-run unit %s is offline at time %d",
|
||||
unit.name,
|
||||
t
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
# Production should be non-negative
|
||||
if production[t] < -tol
|
||||
@error @sprintf(
|
||||
"Unit %s produces negative amount of power at time %d (%.2f)",
|
||||
unit.name,
|
||||
t,
|
||||
production[t]
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
|
||||
# Verify reserve eligibility
|
||||
for r in instance.reserves
|
||||
if r.type == "spinning"
|
||||
if unit ∉ r.units &&
|
||||
(unit in keys(solution["Spinning reserve (MW)"][r.name]))
|
||||
# Verify must-run
|
||||
if !is_on[t] && unit.must_run[t]
|
||||
@error @sprintf(
|
||||
"Must-run unit %s is offline at time %d",
|
||||
unit.name,
|
||||
t
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
|
||||
# Verify reserve eligibility
|
||||
for r in sc.reserves
|
||||
if r.type == "spinning"
|
||||
if unit ∉ r.units && (
|
||||
unit in keys(
|
||||
solution[sc.name]["Spinning reserve (MW)"][r.name],
|
||||
)
|
||||
)
|
||||
@error @sprintf(
|
||||
"Unit %s is not eligible to provide reserve %s",
|
||||
unit.name,
|
||||
r.name,
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
# If unit is on, must produce at least its minimum power
|
||||
if is_on[t] && (production[t] < unit.min_power[t] - tol)
|
||||
@error @sprintf(
|
||||
"Unit %s produces below its minimum limit at time %d (%.2f < %.2f)",
|
||||
unit.name,
|
||||
t,
|
||||
production[t],
|
||||
unit.min_power[t]
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
|
||||
# If unit is on, must produce at most its maximum power
|
||||
if is_on[t] &&
|
||||
(production[t] + reserve[t] > unit.max_power[t] + tol)
|
||||
@error @sprintf(
|
||||
"Unit %s produces above its maximum limit at time %d (%.2f + %.2f> %.2f)",
|
||||
unit.name,
|
||||
t,
|
||||
production[t],
|
||||
reserve[t],
|
||||
unit.max_power[t]
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
|
||||
# If unit is off, must produce zero
|
||||
if !is_on[t] && production[t] + reserve[t] > tol
|
||||
@error @sprintf(
|
||||
"Unit %s produces power at time %d while off (%.2f + %.2f > 0)",
|
||||
unit.name,
|
||||
t,
|
||||
production[t],
|
||||
reserve[t],
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
|
||||
# Startup limit
|
||||
if is_starting_up && (ramp_up > unit.startup_limit + tol)
|
||||
@error @sprintf(
|
||||
"Unit %s exceeds startup limit at time %d (%.2f > %.2f)",
|
||||
unit.name,
|
||||
t,
|
||||
ramp_up,
|
||||
unit.startup_limit
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
|
||||
# Shutdown limit
|
||||
if is_shutting_down && (ramp_down > unit.shutdown_limit + tol)
|
||||
@error @sprintf(
|
||||
"Unit %s exceeds shutdown limit at time %d (%.2f > %.2f)",
|
||||
unit.name,
|
||||
t,
|
||||
ramp_down,
|
||||
unit.shutdown_limit
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
|
||||
# Ramp-up limit
|
||||
if !is_starting_up &&
|
||||
!is_shutting_down &&
|
||||
(ramp_up > unit.ramp_up_limit + tol)
|
||||
@error @sprintf(
|
||||
"Unit %s exceeds ramp up limit at time %d (%.2f > %.2f)",
|
||||
unit.name,
|
||||
t,
|
||||
ramp_up,
|
||||
unit.ramp_up_limit
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
|
||||
# Ramp-down limit
|
||||
if !is_starting_up &&
|
||||
!is_shutting_down &&
|
||||
(ramp_down > unit.ramp_down_limit + tol)
|
||||
@error @sprintf(
|
||||
"Unit %s exceeds ramp down limit at time %d (%.2f > %.2f)",
|
||||
unit.name,
|
||||
t,
|
||||
ramp_down,
|
||||
unit.ramp_down_limit
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
|
||||
# Verify startup costs & minimum downtime
|
||||
if is_starting_up
|
||||
|
||||
# Calculate how much time the unit has been offline
|
||||
time_down = 0
|
||||
for k in 1:(t-1)
|
||||
if !is_on[t-k]
|
||||
time_down += 1
|
||||
else
|
||||
break
|
||||
end
|
||||
end
|
||||
if (t == time_down + 1) && (unit.initial_status < 0)
|
||||
time_down -= unit.initial_status
|
||||
end
|
||||
|
||||
# Calculate startup costs
|
||||
for c in unit.startup_categories
|
||||
if time_down >= c.delay
|
||||
startup_cost = c.cost
|
||||
end
|
||||
end
|
||||
|
||||
# Check minimum downtime
|
||||
if time_down < unit.min_downtime
|
||||
@error @sprintf(
|
||||
"Unit %s is not eligible to provide reserve %s",
|
||||
"Unit %s violates minimum downtime at time %d",
|
||||
unit.name,
|
||||
r.name,
|
||||
t
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
# If unit is on, must produce at least its minimum power
|
||||
if is_on[t] && (production[t] < unit.min_power[t] - tol)
|
||||
@error @sprintf(
|
||||
"Unit %s produces below its minimum limit at time %d (%.2f < %.2f)",
|
||||
unit.name,
|
||||
t,
|
||||
production[t],
|
||||
unit.min_power[t]
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
# Verify minimum uptime
|
||||
if is_shutting_down
|
||||
|
||||
# If unit is on, must produce at most its maximum power
|
||||
if is_on[t] &&
|
||||
(production[t] + reserve[t] > unit.max_power[t] + tol)
|
||||
@error @sprintf(
|
||||
"Unit %s produces above its maximum limit at time %d (%.2f + %.2f> %.2f)",
|
||||
unit.name,
|
||||
t,
|
||||
production[t],
|
||||
reserve[t],
|
||||
unit.max_power[t]
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
|
||||
# If unit is off, must produce zero
|
||||
if !is_on[t] && production[t] + reserve[t] > tol
|
||||
@error @sprintf(
|
||||
"Unit %s produces power at time %d while off (%.2f + %.2f > 0)",
|
||||
unit.name,
|
||||
t,
|
||||
production[t],
|
||||
reserve[t],
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
|
||||
# Startup limit
|
||||
if is_starting_up && (ramp_up > unit.startup_limit + tol)
|
||||
@error @sprintf(
|
||||
"Unit %s exceeds startup limit at time %d (%.2f > %.2f)",
|
||||
unit.name,
|
||||
t,
|
||||
ramp_up,
|
||||
unit.startup_limit
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
|
||||
# Shutdown limit
|
||||
if is_shutting_down && (ramp_down > unit.shutdown_limit + tol)
|
||||
@error @sprintf(
|
||||
"Unit %s exceeds shutdown limit at time %d (%.2f > %.2f)",
|
||||
unit.name,
|
||||
t,
|
||||
ramp_down,
|
||||
unit.shutdown_limit
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
|
||||
# Ramp-up limit
|
||||
if !is_starting_up &&
|
||||
!is_shutting_down &&
|
||||
(ramp_up > unit.ramp_up_limit + tol)
|
||||
@error @sprintf(
|
||||
"Unit %s exceeds ramp up limit at time %d (%.2f > %.2f)",
|
||||
unit.name,
|
||||
t,
|
||||
ramp_up,
|
||||
unit.ramp_up_limit
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
|
||||
# Ramp-down limit
|
||||
if !is_starting_up &&
|
||||
!is_shutting_down &&
|
||||
(ramp_down > unit.ramp_down_limit + tol)
|
||||
@error @sprintf(
|
||||
"Unit %s exceeds ramp down limit at time %d (%.2f > %.2f)",
|
||||
unit.name,
|
||||
t,
|
||||
ramp_down,
|
||||
unit.ramp_down_limit
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
|
||||
# Verify startup costs & minimum downtime
|
||||
if is_starting_up
|
||||
|
||||
# Calculate how much time the unit has been offline
|
||||
time_down = 0
|
||||
for k in 1:(t-1)
|
||||
if !is_on[t-k]
|
||||
time_down += 1
|
||||
else
|
||||
break
|
||||
# Calculate how much time the unit has been online
|
||||
time_up = 0
|
||||
for k in 1:(t-1)
|
||||
if is_on[t-k]
|
||||
time_up += 1
|
||||
else
|
||||
break
|
||||
end
|
||||
end
|
||||
if (t == time_up + 1) && (unit.initial_status > 0)
|
||||
time_up += unit.initial_status
|
||||
end
|
||||
end
|
||||
if (t == time_down + 1) && (unit.initial_status < 0)
|
||||
time_down -= unit.initial_status
|
||||
end
|
||||
|
||||
# Calculate startup costs
|
||||
for c in unit.startup_categories
|
||||
if time_down >= c.delay
|
||||
startup_cost = c.cost
|
||||
# Check minimum uptime
|
||||
if time_up < unit.min_uptime
|
||||
@error @sprintf(
|
||||
"Unit %s violates minimum uptime at time %d",
|
||||
unit.name,
|
||||
t
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
end
|
||||
|
||||
# Check minimum downtime
|
||||
if time_down < unit.min_downtime
|
||||
# Verify production costs
|
||||
if abs(actual_production_cost[t] - production_cost) > 1.00
|
||||
@error @sprintf(
|
||||
"Unit %s violates minimum downtime at time %d",
|
||||
"Unit %s has unexpected production cost at time %d (%.2f should be %.2f)",
|
||||
unit.name,
|
||||
t
|
||||
t,
|
||||
actual_production_cost[t],
|
||||
production_cost
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
end
|
||||
|
||||
# Verify minimum uptime
|
||||
if is_shutting_down
|
||||
|
||||
# Calculate how much time the unit has been online
|
||||
time_up = 0
|
||||
for k in 1:(t-1)
|
||||
if is_on[t-k]
|
||||
time_up += 1
|
||||
else
|
||||
break
|
||||
end
|
||||
end
|
||||
if (t == time_up + 1) && (unit.initial_status > 0)
|
||||
time_up += unit.initial_status
|
||||
end
|
||||
|
||||
# Check minimum uptime
|
||||
if time_up < unit.min_uptime
|
||||
# Verify startup costs
|
||||
if abs(actual_startup_cost[t] - startup_cost) > 1.00
|
||||
@error @sprintf(
|
||||
"Unit %s violates minimum uptime at time %d",
|
||||
"Unit %s has unexpected startup cost at time %d (%.2f should be %.2f)",
|
||||
unit.name,
|
||||
t
|
||||
t,
|
||||
actual_startup_cost[t],
|
||||
startup_cost
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
end
|
||||
|
||||
# Verify production costs
|
||||
if abs(actual_production_cost[t] - production_cost) > 1.00
|
||||
@error @sprintf(
|
||||
"Unit %s has unexpected production cost at time %d (%.2f should be %.2f)",
|
||||
unit.name,
|
||||
t,
|
||||
actual_production_cost[t],
|
||||
production_cost
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
|
||||
# Verify startup costs
|
||||
if abs(actual_startup_cost[t] - startup_cost) > 1.00
|
||||
@error @sprintf(
|
||||
"Unit %s has unexpected startup cost at time %d (%.2f should be %.2f)",
|
||||
unit.name,
|
||||
t,
|
||||
actual_startup_cost[t],
|
||||
startup_cost
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
return err_count
|
||||
end
|
||||
|
||||
function _validate_reserve_and_demand(instance, solution, tol = 0.01)
|
||||
err_count = 0
|
||||
for t in 1:instance.time
|
||||
load_curtail = 0
|
||||
fixed_load = sum(b.load[t] for b in instance.buses)
|
||||
ps_load = 0
|
||||
if length(instance.price_sensitive_loads) > 0
|
||||
ps_load = sum(
|
||||
solution["Price-sensitive loads (MW)"][ps.name][t] for
|
||||
ps in instance.price_sensitive_loads
|
||||
)
|
||||
end
|
||||
production =
|
||||
sum(solution["Production (MW)"][g.name][t] for g in instance.units)
|
||||
if "Load curtail (MW)" in keys(solution)
|
||||
load_curtail = sum(
|
||||
solution["Load curtail (MW)"][b.name][t] for
|
||||
b in instance.buses
|
||||
)
|
||||
end
|
||||
balance = fixed_load - load_curtail - production + ps_load
|
||||
|
||||
# Verify that production equals demand
|
||||
if abs(balance) > tol
|
||||
@error @sprintf(
|
||||
"Non-zero power balance at time %d (%.2f + %.2f - %.2f - %.2f != 0)",
|
||||
t,
|
||||
fixed_load,
|
||||
ps_load,
|
||||
load_curtail,
|
||||
production,
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
|
||||
# Verify reserves
|
||||
for r in instance.reserves
|
||||
if r.type == "spinning"
|
||||
provided = sum(
|
||||
solution["Spinning reserve (MW)"][r.name][g.name][t] for
|
||||
g in r.units
|
||||
for sc in instance.scenarios
|
||||
for t in 1:instance.time
|
||||
load_curtail = 0
|
||||
fixed_load = sum(b.load[t] for b in sc.buses)
|
||||
ps_load = 0
|
||||
if length(sc.price_sensitive_loads) > 0
|
||||
ps_load = sum(
|
||||
solution[sc.name]["Price-sensitive loads (MW)"][ps.name][t]
|
||||
for ps in sc.price_sensitive_loads
|
||||
)
|
||||
shortfall =
|
||||
solution["Spinning reserve shortfall (MW)"][r.name][t]
|
||||
required = r.amount[t]
|
||||
|
||||
if provided + shortfall < required - tol
|
||||
@error @sprintf(
|
||||
"Insufficient reserve %s at time %d (%.2f + %.2f < %.2f)",
|
||||
r.name,
|
||||
t,
|
||||
provided,
|
||||
shortfall,
|
||||
required,
|
||||
)
|
||||
end
|
||||
elseif r.type == "up-frp"
|
||||
upflexiramp = sum(
|
||||
solution["Up-flexiramp (MW)"][r.name][g.name][t] for
|
||||
g in r.units
|
||||
end
|
||||
production = sum(
|
||||
solution[sc.name]["Production (MW)"][g.name][t] for
|
||||
g in sc.units
|
||||
)
|
||||
if "Load curtail (MW)" in keys(solution)
|
||||
load_curtail = sum(
|
||||
solution[sc.name]["Load curtail (MW)"][b.name][t] for
|
||||
b in sc.buses
|
||||
)
|
||||
upflexiramp_shortfall =
|
||||
solution["Up-flexiramp shortfall (MW)"][r.name][t]
|
||||
end
|
||||
balance = fixed_load - load_curtail - production + ps_load
|
||||
|
||||
if upflexiramp + upflexiramp_shortfall < r.amount[t] - tol
|
||||
@error @sprintf(
|
||||
"Insufficient up-flexiramp at time %d (%.2f + %.2f < %.2f)",
|
||||
t,
|
||||
upflexiramp,
|
||||
upflexiramp_shortfall,
|
||||
r.amount[t],
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
elseif r.type == "down-frp"
|
||||
dwflexiramp = sum(
|
||||
solution["Down-flexiramp (MW)"][r.name][g.name][t] for
|
||||
g in r.units
|
||||
# Verify that production equals demand
|
||||
if abs(balance) > tol
|
||||
@error @sprintf(
|
||||
"Non-zero power balance at time %d (%.2f + %.2f - %.2f - %.2f != 0)",
|
||||
t,
|
||||
fixed_load,
|
||||
ps_load,
|
||||
load_curtail,
|
||||
production,
|
||||
)
|
||||
dwflexiramp_shortfall =
|
||||
solution["Down-flexiramp shortfall (MW)"][r.name][t]
|
||||
err_count += 1
|
||||
end
|
||||
|
||||
if dwflexiramp + dwflexiramp_shortfall < r.amount[t] - tol
|
||||
@error @sprintf(
|
||||
"Insufficient down-flexiramp at time %d (%.2f + %.2f < %.2f)",
|
||||
t,
|
||||
dwflexiramp,
|
||||
dwflexiramp_shortfall,
|
||||
r.amount[t],
|
||||
# Verify reserves
|
||||
for r in sc.reserves
|
||||
if r.type == "spinning"
|
||||
provided = sum(
|
||||
solution[sc.name]["Spinning reserve (MW)"][r.name][g.name][t]
|
||||
for g in r.units
|
||||
)
|
||||
err_count += 1
|
||||
shortfall =
|
||||
solution[sc.name]["Spinning reserve shortfall (MW)"][r.name][t]
|
||||
required = r.amount[t]
|
||||
|
||||
if provided + shortfall < required - tol
|
||||
@error @sprintf(
|
||||
"Insufficient reserve %s at time %d (%.2f + %.2f < %.2f)",
|
||||
r.name,
|
||||
t,
|
||||
provided,
|
||||
shortfall,
|
||||
required,
|
||||
)
|
||||
end
|
||||
elseif r.type == "flexiramp"
|
||||
upflexiramp = sum(
|
||||
solution[sc.name]["Up-flexiramp (MW)"][r.name][g.name][t]
|
||||
for g in r.units
|
||||
)
|
||||
upflexiramp_shortfall =
|
||||
solution[sc.name]["Up-flexiramp shortfall (MW)"][r.name][t]
|
||||
|
||||
if upflexiramp + upflexiramp_shortfall < r.amount[t] - tol
|
||||
@error @sprintf(
|
||||
"Insufficient up-flexiramp at time %d (%.2f + %.2f < %.2f)",
|
||||
t,
|
||||
upflexiramp,
|
||||
upflexiramp_shortfall,
|
||||
r.amount[t],
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
|
||||
dwflexiramp = sum(
|
||||
solution[sc.name]["Down-flexiramp (MW)"][r.name][g.name][t]
|
||||
for g in r.units
|
||||
)
|
||||
dwflexiramp_shortfall =
|
||||
solution[sc.name]["Down-flexiramp shortfall (MW)"][r.name][t]
|
||||
|
||||
if dwflexiramp + dwflexiramp_shortfall < r.amount[t] - tol
|
||||
@error @sprintf(
|
||||
"Insufficient down-flexiramp at time %d (%.2f + %.2f < %.2f)",
|
||||
t,
|
||||
dwflexiramp,
|
||||
dwflexiramp_shortfall,
|
||||
r.amount[t],
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
else
|
||||
error("Unknown reserve type: $(r.type)")
|
||||
end
|
||||
else
|
||||
error("Unknown reserve type: $(r.type)")
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
Reference in New Issue
Block a user