mirror of
https://github.com/ANL-CEEESA/UnitCommitment.jl.git
synced 2025-12-06 00:08:52 -06:00
stochastic extension w/ scenarios
This commit is contained in:
@@ -9,6 +9,7 @@ DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
|
||||
Distributed = "8ba89e20-285c-5b6f-9357-94700520ee1b"
|
||||
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
|
||||
GZip = "92fee26a-97fe-5a0c-ad85-20a5f3185b63"
|
||||
Glob = "c27321d9-0574-5035-807b-f59d2c89b15c"
|
||||
JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
|
||||
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
|
||||
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
|
||||
|
||||
@@ -4,6 +4,7 @@
|
||||
|
||||
module UnitCommitment
|
||||
|
||||
using Base: String
|
||||
include("instance/structs.jl")
|
||||
include("model/formulations/base/structs.jl")
|
||||
include("solution/structs.jl")
|
||||
|
||||
@@ -7,6 +7,7 @@ using JSON
|
||||
using DataStructures
|
||||
using GZip
|
||||
import Base: getindex, time
|
||||
using Glob
|
||||
|
||||
const INSTANCES_URL = "https://axavier.org/UnitCommitment.jl/0.3/instances"
|
||||
|
||||
@@ -43,6 +44,25 @@ function read_benchmark(
|
||||
return UnitCommitment.read(filename)
|
||||
end
|
||||
|
||||
function read_scenarios(path::AbstractString)::UnitCommitmentInstance
|
||||
scenario_paths = glob("*.json", path)
|
||||
scenarios = Vector{UnitCommitmentScenario}()
|
||||
total_number_of_scenarios = length(scenario_paths)
|
||||
for (scenario_index, scenario_path) in enumerate(scenario_paths)
|
||||
scenario = read_scenario(scenario_path,
|
||||
total_number_of_scenarios = total_number_of_scenarios,
|
||||
scenario_index = scenario_index)
|
||||
push!(scenarios, scenario)
|
||||
end
|
||||
instance = UnitCommitmentInstance(
|
||||
time = scenarios[1].time,
|
||||
scenarios = scenarios
|
||||
)
|
||||
abs(sum(scenario.probability for scenario in instance.scenarios) - 1.0) <= 0.01 ||
|
||||
error("scenario probabilities do not add up to one")
|
||||
return instance
|
||||
end
|
||||
|
||||
"""
|
||||
read(path::AbstractString)::UnitCommitmentInstance
|
||||
|
||||
@@ -54,18 +74,33 @@ Read instance from a file. The file may be gzipped.
|
||||
instance = UnitCommitment.read("/path/to/input.json.gz")
|
||||
```
|
||||
"""
|
||||
function read(path::AbstractString)::UnitCommitmentInstance
|
||||
function read_scenario(path::AbstractString; total_number_of_scenarios = 1, scenario_index = 1)::UnitCommitmentScenario
|
||||
if endswith(path, ".gz")
|
||||
return _read(gzopen(path))
|
||||
return _read(gzopen(path),total_number_of_scenarios, scenario_index)
|
||||
else
|
||||
return _read(open(path))
|
||||
return _read(open(path), total_number_of_scenarios, scenario_index)
|
||||
end
|
||||
end
|
||||
|
||||
function _read(file::IO)::UnitCommitmentInstance
|
||||
function read(path::AbstractString; total_number_of_scenarios = 1, scenario_index = 1)::UnitCommitmentInstance
|
||||
if endswith(path, ".gz")
|
||||
scenario = _read(gzopen(path),total_number_of_scenarios, scenario_index)
|
||||
else
|
||||
scenario = _read(open(path), total_number_of_scenarios, scenario_index)
|
||||
end
|
||||
instance = UnitCommitmentInstance(
|
||||
time = scenario.time,
|
||||
scenarios = [scenario]
|
||||
)
|
||||
return instance
|
||||
end
|
||||
|
||||
function _read(file::IO, total_number_of_scenarios::Int, scenario_index::Int)::UnitCommitmentScenario
|
||||
return _from_json(
|
||||
JSON.parse(file, dicttype = () -> DefaultOrderedDict(nothing)),
|
||||
)
|
||||
total_number_of_scenarios,
|
||||
scenario_index
|
||||
)
|
||||
end
|
||||
|
||||
function _read_json(path::String)::OrderedDict
|
||||
@@ -77,7 +112,7 @@ function _read_json(path::String)::OrderedDict
|
||||
return JSON.parse(file, dicttype = () -> DefaultOrderedDict(nothing))
|
||||
end
|
||||
|
||||
function _from_json(json; repair = true)
|
||||
function _from_json(json, total_number_of_scenarios::Int, scenario_index::Int; repair = true)::UnitCommitmentScenario
|
||||
_migrate(json)
|
||||
units = Unit[]
|
||||
buses = Bus[]
|
||||
@@ -101,6 +136,17 @@ function _from_json(json; repair = true)
|
||||
error("Time step $time_step is not a divisor of 60")
|
||||
time_multiplier = 60 ÷ time_step
|
||||
T = time_horizon * time_multiplier
|
||||
#####
|
||||
probability = json["Parameters"]["Scenario probability"]
|
||||
if probability === nothing
|
||||
probability = (1 / total_number_of_scenarios)
|
||||
end
|
||||
scenario_name = json["Parameters"]["Scenario name"]
|
||||
if scenario_name === nothing
|
||||
scenario_name = "s$(scenario_index)"
|
||||
end
|
||||
|
||||
######
|
||||
|
||||
name_to_bus = Dict{String,Bus}()
|
||||
name_to_line = Dict{String,TransmissionLine}()
|
||||
@@ -308,7 +354,9 @@ function _from_json(json; repair = true)
|
||||
end
|
||||
end
|
||||
|
||||
instance = UnitCommitmentInstance(
|
||||
scenario = UnitCommitmentScenario(
|
||||
name = scenario_name,
|
||||
probability = probability,
|
||||
buses_by_name = Dict(b.name => b for b in buses),
|
||||
buses = buses,
|
||||
contingencies_by_name = Dict(c.name => c for c in contingencies),
|
||||
@@ -320,14 +368,16 @@ function _from_json(json; repair = true)
|
||||
price_sensitive_loads = loads,
|
||||
reserves = reserves,
|
||||
reserves_by_name = name_to_reserve,
|
||||
shortfall_penalty = shortfall_penalty,
|
||||
flexiramp_shortfall_penalty = flexiramp_shortfall_penalty,
|
||||
# shortfall_penalty = shortfall_penalty,
|
||||
# flexiramp_shortfall_penalty = flexiramp_shortfall_penalty,
|
||||
time = T,
|
||||
units_by_name = Dict(g.name => g for g in units),
|
||||
units = units,
|
||||
isf = spzeros(Float64, length(lines), length(buses) - 1),
|
||||
lodf = spzeros(Float64, length(lines), length(lines))
|
||||
)
|
||||
if repair
|
||||
UnitCommitment.repair!(instance)
|
||||
UnitCommitment.repair!(scenario)
|
||||
end
|
||||
return instance
|
||||
return scenario
|
||||
end
|
||||
|
||||
@@ -73,7 +73,9 @@ mutable struct PriceSensitiveLoad
|
||||
revenue::Vector{Float64}
|
||||
end
|
||||
|
||||
Base.@kwdef mutable struct UnitCommitmentInstance
|
||||
Base.@kwdef mutable struct UnitCommitmentScenario
|
||||
name::String
|
||||
probability::Float64
|
||||
buses_by_name::Dict{AbstractString,Bus}
|
||||
buses::Vector{Bus}
|
||||
contingencies_by_name::Dict{AbstractString,Contingency}
|
||||
@@ -85,23 +87,34 @@ Base.@kwdef mutable struct UnitCommitmentInstance
|
||||
price_sensitive_loads::Vector{PriceSensitiveLoad}
|
||||
reserves::Vector{Reserve}
|
||||
reserves_by_name::Dict{AbstractString,Reserve}
|
||||
shortfall_penalty::Vector{Float64}
|
||||
flexiramp_shortfall_penalty::Vector{Float64}
|
||||
time::Int
|
||||
# shortfall_penalty::Vector{Float64}
|
||||
# flexiramp_shortfall_penalty::Vector{Float64}
|
||||
units_by_name::Dict{AbstractString,Unit}
|
||||
units::Vector{Unit}
|
||||
time::Int
|
||||
isf::Array{Float64,2}
|
||||
lodf::Array{Float64,2}
|
||||
end
|
||||
|
||||
Base.@kwdef mutable struct UnitCommitmentInstance
|
||||
time::Int
|
||||
scenarios::Vector{UnitCommitmentScenario}
|
||||
end
|
||||
|
||||
function Base.show(io::IO, instance::UnitCommitmentInstance)
|
||||
print(io, "UnitCommitmentInstance(")
|
||||
print(io, "$(length(instance.units)) units, ")
|
||||
print(io, "$(length(instance.buses)) buses, ")
|
||||
print(io, "$(length(instance.lines)) lines, ")
|
||||
print(io, "$(length(instance.contingencies)) contingencies, ")
|
||||
print(
|
||||
io,
|
||||
"$(length(instance.price_sensitive_loads)) price sensitive loads, ",
|
||||
)
|
||||
print(io, "$(length(instance.scenarios)) scenarios: ")
|
||||
for scenario in instance.scenarios
|
||||
print(io, "Scenario $(scenario.name): ")
|
||||
print(io, "$(length(scenario.units)) units, ")
|
||||
print(io, "$(length(scenario.buses)) buses, ")
|
||||
print(io, "$(length(scenario.lines)) lines, ")
|
||||
print(io, "$(length(scenario.contingencies)) contingencies, ")
|
||||
print(
|
||||
io,
|
||||
"$(length(scenario.price_sensitive_loads)) price sensitive loads, ",
|
||||
)
|
||||
end
|
||||
print(io, "$(instance.time) time steps")
|
||||
print(io, ")")
|
||||
return
|
||||
|
||||
@@ -77,20 +77,28 @@ function build_model(;
|
||||
end
|
||||
model[:obj] = AffExpr()
|
||||
model[:instance] = instance
|
||||
_setup_transmission(model, formulation.transmission)
|
||||
for l in instance.lines
|
||||
_add_transmission_line!(model, l, formulation.transmission)
|
||||
for g in instance.scenarios[1].units
|
||||
_add_unit_first_stage!(model, g, formulation)
|
||||
end
|
||||
for b in instance.buses
|
||||
_add_bus!(model, b)
|
||||
for scenario in instance.scenarios
|
||||
@info "Building scenario $(scenario.name) with" *
|
||||
"probability $(scenario.probability)"
|
||||
_setup_transmission(model, formulation.transmission, scenario)
|
||||
for l in scenario.lines
|
||||
_add_transmission_line!(model, l, formulation.transmission,
|
||||
scenario)
|
||||
end
|
||||
for b in scenario.buses
|
||||
_add_bus!(model, b, scenario)
|
||||
end
|
||||
for ps in scenario.price_sensitive_loads
|
||||
_add_price_sensitive_load!(model, ps, scenario)
|
||||
end
|
||||
for g in scenario.units
|
||||
_add_unit_second_stage!(model, g, formulation, scenario)
|
||||
end
|
||||
_add_system_wide_eqs!(model, scenario)
|
||||
end
|
||||
for g in instance.units
|
||||
_add_unit!(model, g, formulation)
|
||||
end
|
||||
for ps in instance.price_sensitive_loads
|
||||
_add_price_sensitive_load!(model, ps)
|
||||
end
|
||||
_add_system_wide_eqs!(model)
|
||||
@objective(model, Min, model[:obj])
|
||||
end
|
||||
@info @sprintf("Built model in %.2f seconds", time_model)
|
||||
|
||||
@@ -8,6 +8,7 @@ function _add_ramp_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_ramping::ArrCon2000.Ramping,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
# TODO: Move upper case constants to model[:instance]
|
||||
RESERVES_WHEN_START_UP = true
|
||||
@@ -22,7 +23,7 @@ function _add_ramp_eqs!(
|
||||
eq_ramp_down = _init(model, :eq_ramp_down)
|
||||
eq_ramp_up = _init(model, :eq_ramp_up)
|
||||
is_initially_on = (g.initial_status > 0)
|
||||
reserve = _total_reserves(model, g)
|
||||
reserve = _total_reserves(model, g, sc)
|
||||
|
||||
# Gar1962.ProdVars
|
||||
prod_above = model[:prod_above]
|
||||
@@ -37,10 +38,10 @@ function _add_ramp_eqs!(
|
||||
if t == 1
|
||||
if is_initially_on
|
||||
# min power is _not_ multiplied by is_on because if !is_on, then ramp up is irrelevant
|
||||
eq_ramp_up[gn, t] = @constraint(
|
||||
eq_ramp_up[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
g.min_power[t] +
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
(RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0) <=
|
||||
g.initial_power + RU
|
||||
)
|
||||
@@ -48,16 +49,16 @@ function _add_ramp_eqs!(
|
||||
else
|
||||
max_prod_this_period =
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
(
|
||||
RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ?
|
||||
reserve[t] : 0.0
|
||||
)
|
||||
min_prod_last_period =
|
||||
g.min_power[t-1] * is_on[gn, t-1] + prod_above[gn, t-1]
|
||||
g.min_power[t-1] * is_on[gn, t-1] + prod_above[sc.name, gn, t-1]
|
||||
|
||||
# Equation (24) in Kneuven et al. (2020)
|
||||
eq_ramp_up[gn, t] = @constraint(
|
||||
eq_ramp_up[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_this_period - min_prod_last_period <=
|
||||
RU * is_on[gn, t-1] + SU * switch_on[gn, t]
|
||||
@@ -71,24 +72,24 @@ function _add_ramp_eqs!(
|
||||
# min_power + RD < initial_power < SD
|
||||
# then the generator should be able to shut down at time t = 1,
|
||||
# but the constraint below will force the unit to produce power
|
||||
eq_ramp_down[gn, t] = @constraint(
|
||||
eq_ramp_down[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
g.initial_power - (g.min_power[t] + prod_above[gn, t]) <= RD
|
||||
g.initial_power - (g.min_power[t] + prod_above[sc.name, gn, t]) <= RD
|
||||
)
|
||||
end
|
||||
else
|
||||
max_prod_last_period =
|
||||
g.min_power[t-1] * is_on[gn, t-1] +
|
||||
prod_above[gn, t-1] +
|
||||
prod_above[sc.name, gn, t-1] +
|
||||
(
|
||||
RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN ?
|
||||
reserve[t-1] : 0.0
|
||||
)
|
||||
min_prod_this_period =
|
||||
g.min_power[t] * is_on[gn, t] + prod_above[gn, t]
|
||||
g.min_power[t] * is_on[gn, t] + prod_above[sc.name, gn, t]
|
||||
|
||||
# Equation (25) in Kneuven et al. (2020)
|
||||
eq_ramp_down[gn, t] = @constraint(
|
||||
eq_ramp_down[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_last_period - min_prod_this_period <=
|
||||
RD * is_on[gn, t] + SD * switch_off[gn, t]
|
||||
|
||||
@@ -8,6 +8,7 @@ function _add_production_piecewise_linear_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_pwl_costs::CarArr2006.PwlCosts,
|
||||
formulation_status_vars::StatusVarsFormulation,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
eq_prod_above_def = _init(model, :eq_prod_above_def)
|
||||
eq_segprod_limit = _init(model, :eq_segprod_limit)
|
||||
@@ -26,28 +27,28 @@ function _add_production_piecewise_linear_eqs!(
|
||||
# difference between max power for segments k and k-1 so the
|
||||
# value of cost_segments[k].mw[t] is the max production *for
|
||||
# that segment*
|
||||
eq_segprod_limit[gn, t, k] = @constraint(
|
||||
eq_segprod_limit[sc.name, gn, t, k] = @constraint(
|
||||
model,
|
||||
segprod[gn, t, k] <= g.cost_segments[k].mw[t]
|
||||
segprod[sc.name, gn, t, k] <= g.cost_segments[k].mw[t]
|
||||
)
|
||||
|
||||
# Also add this as an explicit upper bound on segprod to make the
|
||||
# solver's work a bit easier
|
||||
set_upper_bound(segprod[gn, t, k], g.cost_segments[k].mw[t])
|
||||
set_upper_bound(segprod[sc.name, gn, t, k], g.cost_segments[k].mw[t])
|
||||
|
||||
# Definition of production
|
||||
# Equation (43) in Kneuven et al. (2020)
|
||||
eq_prod_above_def[gn, t] = @constraint(
|
||||
eq_prod_above_def[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] == sum(segprod[gn, t, k] for k in 1:K)
|
||||
prod_above[sc.name, gn, t] == sum(segprod[sc.name, gn, t, k] for k in 1:K)
|
||||
)
|
||||
|
||||
# Objective function
|
||||
# Equation (44) in Kneuven et al. (2020)
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
segprod[gn, t, k],
|
||||
g.cost_segments[k].cost[t],
|
||||
segprod[sc.name, gn, t, k],
|
||||
sc.probability * g.cost_segments[k].cost[t],
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
@@ -8,6 +8,7 @@ function _add_ramp_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_ramping::DamKucRajAta2016.Ramping,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
# TODO: Move upper case constants to model[:instance]
|
||||
RESERVES_WHEN_START_UP = true
|
||||
@@ -23,7 +24,7 @@ function _add_ramp_eqs!(
|
||||
gn = g.name
|
||||
eq_str_ramp_down = _init(model, :eq_str_ramp_down)
|
||||
eq_str_ramp_up = _init(model, :eq_str_ramp_up)
|
||||
reserve = _total_reserves(model, g)
|
||||
reserve = _total_reserves(model, g, sc)
|
||||
|
||||
# Gar1962.ProdVars
|
||||
prod_above = model[:prod_above]
|
||||
@@ -48,15 +49,15 @@ function _add_ramp_eqs!(
|
||||
# end
|
||||
|
||||
max_prod_this_period =
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
(RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0)
|
||||
min_prod_last_period = 0.0
|
||||
if t > 1 && time_invariant
|
||||
min_prod_last_period = prod_above[gn, t-1]
|
||||
min_prod_last_period = prod_above[sc.name, gn, t-1]
|
||||
|
||||
# Equation (35) in Kneuven et al. (2020)
|
||||
# Sparser version of (24)
|
||||
eq_str_ramp_up[gn, t] = @constraint(
|
||||
eq_str_ramp_up[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_this_period - min_prod_last_period <=
|
||||
(SU - g.min_power[t] - RU) * switch_on[gn, t] +
|
||||
@@ -65,7 +66,7 @@ function _add_ramp_eqs!(
|
||||
elseif (t == 1 && is_initially_on) || (t > 1 && !time_invariant)
|
||||
if t > 1
|
||||
min_prod_last_period =
|
||||
prod_above[gn, t-1] + g.min_power[t-1] * is_on[gn, t-1]
|
||||
prod_above[sc.name, gn, t-1] + g.min_power[t-1] * is_on[gn, t-1]
|
||||
else
|
||||
min_prod_last_period = max(g.initial_power, 0.0)
|
||||
end
|
||||
@@ -76,7 +77,7 @@ function _add_ramp_eqs!(
|
||||
|
||||
# Modified version of equation (35) in Kneuven et al. (2020)
|
||||
# Equivalent to (24)
|
||||
eq_str_ramp_up[gn, t] = @constraint(
|
||||
eq_str_ramp_up[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_this_period - min_prod_last_period <=
|
||||
(SU - RU) * switch_on[gn, t] + RU * is_on[gn, t]
|
||||
@@ -88,7 +89,7 @@ function _add_ramp_eqs!(
|
||||
t > 1 && (RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN) ?
|
||||
reserve[t-1] : 0.0
|
||||
)
|
||||
min_prod_this_period = prod_above[gn, t]
|
||||
min_prod_this_period = prod_above[sc.name, gn, t]
|
||||
on_last_period = 0.0
|
||||
if t > 1
|
||||
on_last_period = is_on[gn, t-1]
|
||||
@@ -98,7 +99,7 @@ function _add_ramp_eqs!(
|
||||
|
||||
if t > 1 && time_invariant
|
||||
# Equation (36) in Kneuven et al. (2020)
|
||||
eq_str_ramp_down[gn, t] = @constraint(
|
||||
eq_str_ramp_down[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_last_period - min_prod_this_period <=
|
||||
(SD - g.min_power[t] - RD) * switch_off[gn, t] +
|
||||
@@ -110,7 +111,7 @@ function _add_ramp_eqs!(
|
||||
|
||||
# Modified version of equation (36) in Kneuven et al. (2020)
|
||||
# Equivalent to (25)
|
||||
eq_str_ramp_down[gn, t] = @constraint(
|
||||
eq_str_ramp_down[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_last_period - min_prod_this_period <=
|
||||
(SD - RD) * switch_off[gn, t] + RD * on_last_period
|
||||
|
||||
@@ -6,14 +6,15 @@ function _add_production_vars!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
prod_above = _init(model, :prod_above)
|
||||
segprod = _init(model, :segprod)
|
||||
for t in 1:model[:instance].time
|
||||
for k in 1:length(g.cost_segments)
|
||||
segprod[g.name, t, k] = @variable(model, lower_bound = 0)
|
||||
segprod[sc.name, g.name, t, k] = @variable(model, lower_bound = 0)
|
||||
end
|
||||
prod_above[g.name, t] = @variable(model, lower_bound = 0)
|
||||
prod_above[sc.name, g.name, t] = @variable(model, lower_bound = 0)
|
||||
end
|
||||
return
|
||||
end
|
||||
@@ -22,16 +23,20 @@ function _add_production_limit_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
eq_prod_limit = _init(model, :eq_prod_limit)
|
||||
is_on = model[:is_on]
|
||||
prod_above = model[:prod_above]
|
||||
reserve = _total_reserves(model, g)
|
||||
reserve = _total_reserves(model, g, sc)
|
||||
gn = g.name
|
||||
for t in 1:model[:instance].time
|
||||
# Objective function terms for production costs
|
||||
# Part of (69) of Kneuven et al. (2020) as C^R_g * u_g(t) term
|
||||
add_to_expression!(model[:obj], is_on[gn, t], g.min_power_cost[t])
|
||||
|
||||
### Moving this term to another function
|
||||
# add_to_expression!(model[:obj], is_on[gn, t], g.min_power_cost[t])
|
||||
###
|
||||
|
||||
# Production limit
|
||||
# Equation (18) in Kneuven et al. (2020)
|
||||
@@ -42,9 +47,9 @@ function _add_production_limit_eqs!(
|
||||
if power_diff < 1e-7
|
||||
power_diff = 0.0
|
||||
end
|
||||
eq_prod_limit[gn, t] = @constraint(
|
||||
eq_prod_limit[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] + reserve[t] <= power_diff * is_on[gn, t]
|
||||
prod_above[sc.name, gn, t] + reserve[t] <= power_diff * is_on[gn, t]
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
@@ -8,6 +8,7 @@ function _add_production_piecewise_linear_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_pwl_costs::Gar1962.PwlCosts,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
eq_prod_above_def = _init(model, :eq_prod_above_def)
|
||||
eq_segprod_limit = _init(model, :eq_segprod_limit)
|
||||
@@ -24,9 +25,9 @@ function _add_production_piecewise_linear_eqs!(
|
||||
for t in 1:model[:instance].time
|
||||
# Definition of production
|
||||
# Equation (43) in Kneuven et al. (2020)
|
||||
eq_prod_above_def[gn, t] = @constraint(
|
||||
eq_prod_above_def[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] == sum(segprod[gn, t, k] for k in 1:K)
|
||||
prod_above[sc.name, gn, t] == sum(segprod[sc.name, gn, t, k] for k in 1:K)
|
||||
)
|
||||
|
||||
for k in 1:K
|
||||
@@ -37,21 +38,21 @@ function _add_production_piecewise_linear_eqs!(
|
||||
# difference between max power for segments k and k-1 so the
|
||||
# value of cost_segments[k].mw[t] is the max production *for
|
||||
# that segment*
|
||||
eq_segprod_limit[gn, t, k] = @constraint(
|
||||
eq_segprod_limit[sc.name, gn, t, k] = @constraint(
|
||||
model,
|
||||
segprod[gn, t, k] <= g.cost_segments[k].mw[t] * is_on[gn, t]
|
||||
segprod[sc.name, gn, t, k] <= g.cost_segments[k].mw[t] * is_on[gn, t]
|
||||
)
|
||||
|
||||
# Also add this as an explicit upper bound on segprod to make the
|
||||
# solver's work a bit easier
|
||||
set_upper_bound(segprod[gn, t, k], g.cost_segments[k].mw[t])
|
||||
set_upper_bound(segprod[sc.name, gn, t, k], g.cost_segments[k].mw[t])
|
||||
|
||||
# Objective function
|
||||
# Equation (44) in Kneuven et al. (2020)
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
segprod[gn, t, k],
|
||||
g.cost_segments[k].cost[t],
|
||||
segprod[sc.name, gn, t, k],
|
||||
sc.probability * g.cost_segments[k].cost[t],
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
@@ -20,6 +20,7 @@ function _add_status_vars!(
|
||||
switch_on[g.name, t] = @variable(model, binary = true)
|
||||
switch_off[g.name, t] = @variable(model, binary = true)
|
||||
end
|
||||
add_to_expression!(model[:obj], is_on[g.name, t], g.min_power_cost[t])
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
@@ -8,6 +8,7 @@ function _add_production_piecewise_linear_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_pwl_costs::KnuOstWat2018.PwlCosts,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
eq_prod_above_def = _init(model, :eq_prod_above_def)
|
||||
eq_segprod_limit_a = _init(model, :eq_segprod_limit_a)
|
||||
@@ -58,27 +59,27 @@ function _add_production_piecewise_linear_eqs!(
|
||||
|
||||
if g.min_uptime > 1
|
||||
# Equation (46) in Kneuven et al. (2020)
|
||||
eq_segprod_limit_a[gn, t, k] = @constraint(
|
||||
eq_segprod_limit_a[sc.name, gn, t, k] = @constraint(
|
||||
model,
|
||||
segprod[gn, t, k] <=
|
||||
segprod[sc.name, gn, t, k] <=
|
||||
g.cost_segments[k].mw[t] * is_on[gn, t] -
|
||||
Cv * switch_on[gn, t] -
|
||||
(t < T ? Cw * switch_off[gn, t+1] : 0.0)
|
||||
)
|
||||
else
|
||||
# Equation (47a)/(48a) in Kneuven et al. (2020)
|
||||
eq_segprod_limit_b[gn, t, k] = @constraint(
|
||||
eq_segprod_limit_b[sc.name, gn, t, k] = @constraint(
|
||||
model,
|
||||
segprod[gn, t, k] <=
|
||||
segprod[sc.name, gn, t, k] <=
|
||||
g.cost_segments[k].mw[t] * is_on[gn, t] -
|
||||
Cv * switch_on[gn, t] -
|
||||
(t < T ? max(0, Cv - Cw) * switch_off[gn, t+1] : 0.0)
|
||||
)
|
||||
|
||||
# Equation (47b)/(48b) in Kneuven et al. (2020)
|
||||
eq_segprod_limit_c[gn, t, k] = @constraint(
|
||||
eq_segprod_limit_c[sc.name, gn, t, k] = @constraint(
|
||||
model,
|
||||
segprod[gn, t, k] <=
|
||||
segprod[sc.name, gn, t, k] <=
|
||||
g.cost_segments[k].mw[t] * is_on[gn, t] -
|
||||
max(0, Cw - Cv) * switch_on[gn, t] -
|
||||
(t < T ? Cw * switch_off[gn, t+1] : 0.0)
|
||||
@@ -87,22 +88,22 @@ function _add_production_piecewise_linear_eqs!(
|
||||
|
||||
# Definition of production
|
||||
# Equation (43) in Kneuven et al. (2020)
|
||||
eq_prod_above_def[gn, t] = @constraint(
|
||||
eq_prod_above_def[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] == sum(segprod[gn, t, k] for k in 1:K)
|
||||
prod_above[sc.name, gn, t] == sum(segprod[sc.name, gn, t, k] for k in 1:K)
|
||||
)
|
||||
|
||||
# Objective function
|
||||
# Equation (44) in Kneuven et al. (2020)
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
segprod[gn, t, k],
|
||||
segprod[sc.name, gn, t, k],
|
||||
g.cost_segments[k].cost[t],
|
||||
)
|
||||
|
||||
# Also add an explicit upper bound on segprod to make the solver's
|
||||
# work a bit easier
|
||||
set_upper_bound(segprod[gn, t, k], g.cost_segments[k].mw[t])
|
||||
set_upper_bound(segprod[sc.name, gn, t, k], g.cost_segments[k].mw[t])
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
@@ -8,6 +8,7 @@ function _add_ramp_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_ramping::MorLatRam2013.Ramping,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
# TODO: Move upper case constants to model[:instance]
|
||||
RESERVES_WHEN_START_UP = true
|
||||
@@ -22,7 +23,7 @@ function _add_ramp_eqs!(
|
||||
gn = g.name
|
||||
eq_ramp_down = _init(model, :eq_ramp_down)
|
||||
eq_ramp_up = _init(model, :eq_str_ramp_up)
|
||||
reserve = _total_reserves(model, g)
|
||||
reserve = _total_reserves(model, g, sc)
|
||||
|
||||
# Gar1962.ProdVars
|
||||
prod_above = model[:prod_above]
|
||||
@@ -39,10 +40,10 @@ function _add_ramp_eqs!(
|
||||
# Ramp up limit
|
||||
if t == 1
|
||||
if is_initially_on
|
||||
eq_ramp_up[gn, t] = @constraint(
|
||||
eq_ramp_up[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
g.min_power[t] +
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
(RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0) <=
|
||||
g.initial_power + RU
|
||||
)
|
||||
@@ -58,13 +59,13 @@ function _add_ramp_eqs!(
|
||||
SU = g.startup_limit
|
||||
max_prod_this_period =
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
(
|
||||
RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ?
|
||||
reserve[t] : 0.0
|
||||
)
|
||||
min_prod_last_period =
|
||||
g.min_power[t-1] * is_on[gn, t-1] + prod_above[gn, t-1]
|
||||
g.min_power[t-1] * is_on[gn, t-1] + prod_above[sc.name, gn, t-1]
|
||||
eq_ramp_up[gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_this_period - min_prod_last_period <=
|
||||
@@ -74,11 +75,11 @@ function _add_ramp_eqs!(
|
||||
# Equation (26) in Kneuven et al. (2020)
|
||||
# TODO: what if RU < SU? places too stringent upper bound
|
||||
# prod_above[gn, t] when starting up, and creates diff with (24).
|
||||
eq_ramp_up[gn, t] = @constraint(
|
||||
eq_ramp_up[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
(RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0) -
|
||||
prod_above[gn, t-1] <= RU
|
||||
prod_above[sc.name, gn, t-1] <= RU
|
||||
)
|
||||
end
|
||||
end
|
||||
@@ -90,9 +91,9 @@ function _add_ramp_eqs!(
|
||||
# min_power + RD < initial_power < SD
|
||||
# then the generator should be able to shut down at time t = 1,
|
||||
# but the constraint below will force the unit to produce power
|
||||
eq_ramp_down[gn, t] = @constraint(
|
||||
eq_ramp_down[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
g.initial_power - (g.min_power[t] + prod_above[gn, t]) <= RD
|
||||
g.initial_power - (g.min_power[t] + prod_above[sc.name, gn, t]) <= RD
|
||||
)
|
||||
end
|
||||
else
|
||||
@@ -102,13 +103,13 @@ function _add_ramp_eqs!(
|
||||
SD = g.shutdown_limit
|
||||
max_prod_last_period =
|
||||
g.min_power[t-1] * is_on[gn, t-1] +
|
||||
prod_above[gn, t-1] +
|
||||
prod_above[sc.name, gn, t-1] +
|
||||
(
|
||||
RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN ?
|
||||
reserve[t-1] : 0.0
|
||||
)
|
||||
min_prod_this_period =
|
||||
g.min_power[t] * is_on[gn, t] + prod_above[gn, t]
|
||||
g.min_power[t] * is_on[gn, t] + prod_above[sc.name, gn, t]
|
||||
eq_ramp_down[gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_last_period - min_prod_this_period <=
|
||||
@@ -118,11 +119,11 @@ function _add_ramp_eqs!(
|
||||
# Equation (27) in Kneuven et al. (2020)
|
||||
# TODO: Similar to above, what to do if shutting down in time t
|
||||
# and RD < SD? There is a difference with (25).
|
||||
eq_ramp_down[gn, t] = @constraint(
|
||||
eq_ramp_down[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t-1] +
|
||||
prod_above[sc.name, gn, t-1] +
|
||||
(RESERVES_WHEN_RAMP_DOWN ? reserve[t-1] : 0.0) -
|
||||
prod_above[gn, t] <= RD
|
||||
prod_above[sc.name, gn, t] <= RD
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
@@ -8,11 +8,12 @@ function _add_ramp_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_ramping::PanGua2016.Ramping,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
# TODO: Move upper case constants to model[:instance]
|
||||
RESERVES_WHEN_SHUT_DOWN = true
|
||||
gn = g.name
|
||||
reserve = _total_reserves(model, g)
|
||||
reserve = _total_reserves(model, g, sc)
|
||||
eq_str_prod_limit = _init(model, :eq_str_prod_limit)
|
||||
eq_prod_limit_ramp_up_extra_period =
|
||||
_init(model, :eq_prod_limit_ramp_up_extra_period)
|
||||
@@ -52,9 +53,9 @@ function _add_ramp_eqs!(
|
||||
# Generalization of (20)
|
||||
# Necessary that if any of the switch_on = 1 in the sum,
|
||||
# then switch_off[gn, t+1] = 0
|
||||
eq_str_prod_limit[gn, t] = @constraint(
|
||||
eq_str_prod_limit[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
reserve[t] <=
|
||||
Pbar * is_on[gn, t] -
|
||||
@@ -67,9 +68,9 @@ function _add_ramp_eqs!(
|
||||
if UT - 2 < TRU
|
||||
# Equation (40) in Kneuven et al. (2020)
|
||||
# Covers an additional time period of the ramp-up trajectory, compared to (38)
|
||||
eq_prod_limit_ramp_up_extra_period[gn, t] = @constraint(
|
||||
eq_prod_limit_ramp_up_extra_period[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
reserve[t] <=
|
||||
Pbar * is_on[gn, t] - sum(
|
||||
@@ -84,9 +85,9 @@ function _add_ramp_eqs!(
|
||||
if KSD > 0
|
||||
KSU = min(TRU, UT - 2 - KSD, t - 1)
|
||||
# Equation (41) in Kneuven et al. (2020)
|
||||
eq_prod_limit_shutdown_trajectory[gn, t] = @constraint(
|
||||
eq_prod_limit_shutdown_trajectory[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
(RESERVES_WHEN_SHUT_DOWN ? reserve[t] : 0.0) <=
|
||||
Pbar * is_on[gn, t] - sum(
|
||||
|
||||
@@ -8,6 +8,7 @@ function _add_ramp_eqs!(
|
||||
::Gar1962.ProdVars,
|
||||
::WanHob2016.Ramping,
|
||||
::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
is_initially_on = (g.initial_status > 0)
|
||||
SU = g.startup_limit
|
||||
@@ -29,7 +30,7 @@ function _add_ramp_eqs!(
|
||||
error("Each generator may only provide one flexiramp reserve")
|
||||
end
|
||||
for r in g.reserves
|
||||
if r.type !== "flexiramp"
|
||||
if r.type !== "up-frp" && r.type !== "down-frp"
|
||||
error(
|
||||
"This formulation only supports flexiramp reserves, not $(r.type)",
|
||||
)
|
||||
@@ -38,41 +39,41 @@ function _add_ramp_eqs!(
|
||||
for t in 1:model[:instance].time
|
||||
@constraint(
|
||||
model,
|
||||
prod_above[gn, t] + (is_on[gn, t] * minp[t]) <= mfg[rn, gn, t]
|
||||
prod_above[sc.name, gn, t] + (is_on[gn, t] * minp[t]) <= mfg[sc.name, rn, gn, t]
|
||||
) # Eq. (19) in Wang & Hobbs (2016)
|
||||
@constraint(model, mfg[rn, gn, t] <= is_on[gn, t] * maxp[t]) # Eq. (22) in Wang & Hobbs (2016)
|
||||
@constraint(model, mfg[sc.name, rn, gn, t] <= is_on[gn, t] * maxp[t]) # Eq. (22) in Wang & Hobbs (2016)
|
||||
if t != model[:instance].time
|
||||
@constraint(
|
||||
model,
|
||||
minp[t] * (is_on[gn, t+1] + is_on[gn, t] - 1) <=
|
||||
prod_above[gn, t] - dwflexiramp[rn, gn, t] +
|
||||
prod_above[sc.name, gn, t] - dwflexiramp[sc.name, rn, gn, t] +
|
||||
(is_on[gn, t] * minp[t])
|
||||
) # first inequality of Eq. (20) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
prod_above[gn, t] - dwflexiramp[rn, gn, t] +
|
||||
prod_above[sc.name, gn, t] - dwflexiramp[sc.name, rn, gn, t] +
|
||||
(is_on[gn, t] * minp[t]) <=
|
||||
mfg[rn, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
|
||||
mfg[sc.name, rn, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
|
||||
) # second inequality of Eq. (20) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
minp[t] * (is_on[gn, t+1] + is_on[gn, t] - 1) <=
|
||||
prod_above[gn, t] +
|
||||
upflexiramp[rn, gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
upflexiramp[sc.name, rn, gn, t] +
|
||||
(is_on[gn, t] * minp[t])
|
||||
) # first inequality of Eq. (21) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
prod_above[gn, t] +
|
||||
upflexiramp[rn, gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
upflexiramp[sc.name, rn, gn, t] +
|
||||
(is_on[gn, t] * minp[t]) <=
|
||||
mfg[rn, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
|
||||
mfg[sc.name, rn, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
|
||||
) # second inequality of Eq. (21) in Wang & Hobbs (2016)
|
||||
if t != 1
|
||||
@constraint(
|
||||
model,
|
||||
mfg[rn, gn, t] <=
|
||||
prod_above[gn, t-1] +
|
||||
mfg[sc.name, rn, gn, t] <=
|
||||
prod_above[sc.name, gn, t-1] +
|
||||
(is_on[gn, t-1] * minp[t]) +
|
||||
(RU * is_on[gn, t-1]) +
|
||||
(SU * (is_on[gn, t] - is_on[gn, t-1])) +
|
||||
@@ -80,8 +81,8 @@ function _add_ramp_eqs!(
|
||||
) # Eq. (23) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
(prod_above[gn, t-1] + (is_on[gn, t-1] * minp[t])) -
|
||||
(prod_above[gn, t] + (is_on[gn, t] * minp[t])) <=
|
||||
(prod_above[sc.name, gn, t-1] + (is_on[gn, t-1] * minp[t])) -
|
||||
(prod_above[sc.name, gn, t] + (is_on[gn, t] * minp[t])) <=
|
||||
RD * is_on[gn, t] +
|
||||
SD * (is_on[gn, t-1] - is_on[gn, t]) +
|
||||
maxp[t] * (1 - is_on[gn, t-1])
|
||||
@@ -89,7 +90,7 @@ function _add_ramp_eqs!(
|
||||
else
|
||||
@constraint(
|
||||
model,
|
||||
mfg[rn, gn, t] <=
|
||||
mfg[sc.name, rn, gn, t] <=
|
||||
initial_power +
|
||||
(RU * is_initially_on) +
|
||||
(SU * (is_on[gn, t] - is_initially_on)) +
|
||||
@@ -98,7 +99,7 @@ function _add_ramp_eqs!(
|
||||
@constraint(
|
||||
model,
|
||||
initial_power -
|
||||
(prod_above[gn, t] + (is_on[gn, t] * minp[t])) <=
|
||||
(prod_above[sc.name, gn, t] + (is_on[gn, t] * minp[t])) <=
|
||||
RD * is_on[gn, t] +
|
||||
SD * (is_initially_on - is_on[gn, t]) +
|
||||
maxp[t] * (1 - is_initially_on)
|
||||
@@ -106,7 +107,7 @@ function _add_ramp_eqs!(
|
||||
end
|
||||
@constraint(
|
||||
model,
|
||||
mfg[rn, gn, t] <=
|
||||
mfg[sc.name, rn, gn, t] <=
|
||||
(SD * (is_on[gn, t] - is_on[gn, t+1])) +
|
||||
(maxp[t] * is_on[gn, t+1])
|
||||
) # Eq. (24) in Wang & Hobbs (2016)
|
||||
@@ -114,11 +115,11 @@ function _add_ramp_eqs!(
|
||||
model,
|
||||
-RD * is_on[gn, t+1] -
|
||||
SD * (is_on[gn, t] - is_on[gn, t+1]) -
|
||||
maxp[t] * (1 - is_on[gn, t]) <= upflexiramp[rn, gn, t]
|
||||
maxp[t] * (1 - is_on[gn, t]) <= upflexiramp[sc.name, rn, gn, t]
|
||||
) # first inequality of Eq. (26) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
upflexiramp[rn, gn, t] <=
|
||||
upflexiramp[sc.name, rn, gn, t] <=
|
||||
RU * is_on[gn, t] +
|
||||
SU * (is_on[gn, t+1] - is_on[gn, t]) +
|
||||
maxp[t] * (1 - is_on[gn, t+1])
|
||||
@@ -126,11 +127,11 @@ function _add_ramp_eqs!(
|
||||
@constraint(
|
||||
model,
|
||||
-RU * is_on[gn, t] - SU * (is_on[gn, t+1] - is_on[gn, t]) -
|
||||
maxp[t] * (1 - is_on[gn, t+1]) <= dwflexiramp[rn, gn, t]
|
||||
maxp[t] * (1 - is_on[gn, t+1]) <= dwflexiramp[sc.name, rn, gn, t]
|
||||
) # first inequality of Eq. (27) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
dwflexiramp[rn, gn, t] <=
|
||||
dwflexiramp[sc.name, rn, gn, t] <=
|
||||
RD * is_on[gn, t+1] +
|
||||
SD * (is_on[gn, t] - is_on[gn, t+1]) +
|
||||
maxp[t] * (1 - is_on[gn, t])
|
||||
@@ -138,26 +139,26 @@ function _add_ramp_eqs!(
|
||||
@constraint(
|
||||
model,
|
||||
-maxp[t] * is_on[gn, t] + minp[t] * is_on[gn, t+1] <=
|
||||
upflexiramp[rn, gn, t]
|
||||
upflexiramp[sc.name, rn, gn, t]
|
||||
) # first inequality of Eq. (28) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
upflexiramp[rn, gn, t] <= maxp[t] * is_on[gn, t+1]
|
||||
upflexiramp[sc.name, rn, gn, t] <= maxp[t] * is_on[gn, t+1]
|
||||
) # second inequality of Eq. (28) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
-maxp[t] * is_on[gn, t+1] <= dwflexiramp[rn, gn, t]
|
||||
-maxp[t] * is_on[gn, t+1] <= dwflexiramp[sc.name, rn, gn, t]
|
||||
) # first inequality of Eq. (29) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
dwflexiramp[rn, gn, t] <=
|
||||
dwflexiramp[sc.name, rn, gn, t] <=
|
||||
(maxp[t] * is_on[gn, t]) - (minp[t] * is_on[gn, t+1])
|
||||
) # second inequality of Eq. (29) in Wang & Hobbs (2016)
|
||||
else
|
||||
@constraint(
|
||||
model,
|
||||
mfg[rn, gn, t] <=
|
||||
prod_above[gn, t-1] +
|
||||
mfg[sc.name, rn, gn, t] <=
|
||||
prod_above[sc.name, gn, t-1] +
|
||||
(is_on[gn, t-1] * minp[t]) +
|
||||
(RU * is_on[gn, t-1]) +
|
||||
(SU * (is_on[gn, t] - is_on[gn, t-1])) +
|
||||
@@ -165,8 +166,8 @@ function _add_ramp_eqs!(
|
||||
) # Eq. (23) in Wang & Hobbs (2016) for the last time period
|
||||
@constraint(
|
||||
model,
|
||||
(prod_above[gn, t-1] + (is_on[gn, t-1] * minp[t])) -
|
||||
(prod_above[gn, t] + (is_on[gn, t] * minp[t])) <=
|
||||
(prod_above[sc.name, gn, t-1] + (is_on[gn, t-1] * minp[t])) -
|
||||
(prod_above[sc.name, gn, t] + (is_on[gn, t] * minp[t])) <=
|
||||
RD * is_on[gn, t] +
|
||||
SD * (is_on[gn, t-1] - is_on[gn, t]) +
|
||||
maxp[t] * (1 - is_on[gn, t-1])
|
||||
|
||||
@@ -2,22 +2,22 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
function _add_bus!(model::JuMP.Model, b::Bus)::Nothing
|
||||
function _add_bus!(model::JuMP.Model, b::Bus, sc::UnitCommitmentScenario)::Nothing
|
||||
net_injection = _init(model, :expr_net_injection)
|
||||
curtail = _init(model, :curtail)
|
||||
for t in 1:model[:instance].time
|
||||
# Fixed load
|
||||
net_injection[b.name, t] = AffExpr(-b.load[t])
|
||||
net_injection[sc.name, b.name, t] = AffExpr(-b.load[t])
|
||||
|
||||
# Load curtailment
|
||||
curtail[b.name, t] =
|
||||
curtail[sc.name, b.name, t] =
|
||||
@variable(model, lower_bound = 0, upper_bound = b.load[t])
|
||||
|
||||
add_to_expression!(net_injection[b.name, t], curtail[b.name, t], 1.0)
|
||||
add_to_expression!(net_injection[sc.name, b.name, t], curtail[sc.name, b.name, t], 1.0)
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
curtail[b.name, t],
|
||||
model[:instance].power_balance_penalty[t],
|
||||
curtail[sc.name, b.name, t],
|
||||
sc.power_balance_penalty[t] * sc.probability,
|
||||
)
|
||||
end
|
||||
return
|
||||
|
||||
@@ -6,14 +6,15 @@ function _add_transmission_line!(
|
||||
model::JuMP.Model,
|
||||
lm::TransmissionLine,
|
||||
f::ShiftFactorsFormulation,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
overflow = _init(model, :overflow)
|
||||
for t in 1:model[:instance].time
|
||||
overflow[lm.name, t] = @variable(model, lower_bound = 0)
|
||||
overflow[sc.name, lm.name, t] = @variable(model, lower_bound = 0)
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
overflow[lm.name, t],
|
||||
lm.flow_limit_penalty[t],
|
||||
overflow[sc.name, lm.name, t],
|
||||
lm.flow_limit_penalty[t] * sc.probability,
|
||||
)
|
||||
end
|
||||
return
|
||||
@@ -22,27 +23,28 @@ end
|
||||
function _setup_transmission(
|
||||
model::JuMP.Model,
|
||||
formulation::ShiftFactorsFormulation,
|
||||
scenario::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
instance = model[:instance]
|
||||
isf = formulation.precomputed_isf
|
||||
lodf = formulation.precomputed_lodf
|
||||
if length(instance.buses) == 1
|
||||
if length(scenario.buses) == 1
|
||||
isf = zeros(0, 0)
|
||||
lodf = zeros(0, 0)
|
||||
elseif isf === nothing
|
||||
@info "Computing injection shift factors..."
|
||||
time_isf = @elapsed begin
|
||||
isf = UnitCommitment._injection_shift_factors(
|
||||
lines = instance.lines,
|
||||
buses = instance.buses,
|
||||
lines = scenario.lines,
|
||||
buses = scenario.buses,
|
||||
)
|
||||
end
|
||||
@info @sprintf("Computed ISF in %.2f seconds", time_isf)
|
||||
@info "Computing line outage factors..."
|
||||
time_lodf = @elapsed begin
|
||||
lodf = UnitCommitment._line_outage_factors(
|
||||
lines = instance.lines,
|
||||
buses = instance.buses,
|
||||
lines = scenario.lines,
|
||||
buses = scenario.buses,
|
||||
isf = isf,
|
||||
)
|
||||
end
|
||||
@@ -55,7 +57,7 @@ function _setup_transmission(
|
||||
isf[abs.(isf).<formulation.isf_cutoff] .= 0
|
||||
lodf[abs.(lodf).<formulation.lodf_cutoff] .= 0
|
||||
end
|
||||
model[:isf] = isf
|
||||
model[:lodf] = lodf
|
||||
scenario.isf = isf
|
||||
scenario.lodf = lodf
|
||||
return
|
||||
end
|
||||
|
||||
@@ -5,21 +5,23 @@
|
||||
function _add_price_sensitive_load!(
|
||||
model::JuMP.Model,
|
||||
ps::PriceSensitiveLoad,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
loads = _init(model, :loads)
|
||||
net_injection = _init(model, :expr_net_injection)
|
||||
for t in 1:model[:instance].time
|
||||
# Decision variable
|
||||
loads[ps.name, t] =
|
||||
loads[sc.name, ps.name, t] =
|
||||
@variable(model, lower_bound = 0, upper_bound = ps.demand[t])
|
||||
|
||||
# Objective function terms
|
||||
add_to_expression!(model[:obj], loads[ps.name, t], -ps.revenue[t])
|
||||
add_to_expression!(model[:obj], loads[ps.name, t],
|
||||
-ps.revenue[t] * sc.probability)
|
||||
|
||||
# Net injection
|
||||
add_to_expression!(
|
||||
net_injection[ps.bus.name, t],
|
||||
loads[ps.name, t],
|
||||
net_injection[sc.name, ps.bus.name, t],
|
||||
loads[sc.name, ps.name, t],
|
||||
-1.0,
|
||||
)
|
||||
end
|
||||
|
||||
@@ -18,7 +18,7 @@ function _injection_shift_factors(;
|
||||
lines::Array{TransmissionLine},
|
||||
)
|
||||
susceptance = _susceptance_matrix(lines)
|
||||
incidence = _reduced_incidence_matrix(lines = lines, buses = buses)
|
||||
incidence = _reduced_incidence_matrix(buses = buses, lines = lines)
|
||||
laplacian = transpose(incidence) * susceptance * incidence
|
||||
isf = susceptance * incidence * inv(Array(laplacian))
|
||||
return isf
|
||||
|
||||
@@ -2,54 +2,54 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
function _add_system_wide_eqs!(model::JuMP.Model)::Nothing
|
||||
_add_net_injection_eqs!(model)
|
||||
_add_spinning_reserve_eqs!(model)
|
||||
_add_flexiramp_reserve_eqs!(model)
|
||||
function _add_system_wide_eqs!(model::JuMP.Model, sc::UnitCommitmentScenario)::Nothing
|
||||
_add_net_injection_eqs!(model, sc)
|
||||
_add_spinning_reserve_eqs!(model, sc)
|
||||
_add_flexiramp_reserve_eqs!(model, sc)
|
||||
return
|
||||
end
|
||||
|
||||
function _add_net_injection_eqs!(model::JuMP.Model)::Nothing
|
||||
function _add_net_injection_eqs!(model::JuMP.Model, sc::UnitCommitmentScenario)::Nothing
|
||||
T = model[:instance].time
|
||||
net_injection = _init(model, :net_injection)
|
||||
eq_net_injection = _init(model, :eq_net_injection)
|
||||
eq_power_balance = _init(model, :eq_power_balance)
|
||||
for t in 1:T, b in model[:instance].buses
|
||||
n = net_injection[b.name, t] = @variable(model)
|
||||
eq_net_injection[b.name, t] =
|
||||
@constraint(model, -n + model[:expr_net_injection][b.name, t] == 0)
|
||||
for t in 1:T, b in sc.buses
|
||||
n = net_injection[sc.name, b.name, t] = @variable(model)
|
||||
eq_net_injection[sc.name, b.name, t] =
|
||||
@constraint(model, -n + model[:expr_net_injection][sc.name, b.name, t] == 0)
|
||||
end
|
||||
for t in 1:T
|
||||
eq_power_balance[t] = @constraint(
|
||||
eq_power_balance[sc.name, t] = @constraint(
|
||||
model,
|
||||
sum(net_injection[b.name, t] for b in model[:instance].buses) == 0
|
||||
sum(net_injection[sc.name, b.name, t] for b in sc.buses) == 0
|
||||
)
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
function _add_spinning_reserve_eqs!(model::JuMP.Model)::Nothing
|
||||
instance = model[:instance]
|
||||
function _add_spinning_reserve_eqs!(model::JuMP.Model, sc::UnitCommitmentScenario)::Nothing
|
||||
T = model[:instance].time
|
||||
eq_min_spinning_reserve = _init(model, :eq_min_spinning_reserve)
|
||||
for r in instance.reserves
|
||||
for r in sc.reserves
|
||||
r.type == "spinning" || continue
|
||||
for t in 1:instance.time
|
||||
for t in 1:T
|
||||
# Equation (68) in Kneuven et al. (2020)
|
||||
# As in Morales-España et al. (2013a)
|
||||
# Akin to the alternative formulation with max_power_avail
|
||||
# from Carrión and Arroyo (2006) and Ostrowski et al. (2012)
|
||||
eq_min_spinning_reserve[r.name, t] = @constraint(
|
||||
eq_min_spinning_reserve[sc.name, r.name, t] = @constraint(
|
||||
model,
|
||||
sum(model[:reserve][r.name, g.name, t] for g in r.units) +
|
||||
model[:reserve_shortfall][r.name, t] >= r.amount[t]
|
||||
sum(model[:reserve][sc.name, r.name, g.name, t] for g in r.units) +
|
||||
model[:reserve_shortfall][sc.name, r.name, t] >= r.amount[t]
|
||||
)
|
||||
|
||||
# Account for shortfall contribution to objective
|
||||
if r.shortfall_penalty >= 0
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
r.shortfall_penalty,
|
||||
model[:reserve_shortfall][r.name, t],
|
||||
r.shortfall_penalty * sc.probability,
|
||||
model[:reserve_shortfall][sc.name, r.name, t],
|
||||
)
|
||||
end
|
||||
end
|
||||
@@ -57,7 +57,7 @@ function _add_spinning_reserve_eqs!(model::JuMP.Model)::Nothing
|
||||
return
|
||||
end
|
||||
|
||||
function _add_flexiramp_reserve_eqs!(model::JuMP.Model)::Nothing
|
||||
function _add_flexiramp_reserve_eqs!(model::JuMP.Model, sc::UnitCommitmentScenario)::Nothing
|
||||
# Note: The flexpramp requirements in Wang & Hobbs (2016) are imposed as hard constraints
|
||||
# through Eq. (17) and Eq. (18). The constraints eq_min_upflexiramp and eq_min_dwflexiramp
|
||||
# provided below are modified versions of Eq. (17) and Eq. (18), respectively, in that
|
||||
@@ -65,31 +65,41 @@ function _add_flexiramp_reserve_eqs!(model::JuMP.Model)::Nothing
|
||||
# objective function.
|
||||
eq_min_upflexiramp = _init(model, :eq_min_upflexiramp)
|
||||
eq_min_dwflexiramp = _init(model, :eq_min_dwflexiramp)
|
||||
instance = model[:instance]
|
||||
for r in instance.reserves
|
||||
r.type == "flexiramp" || continue
|
||||
for t in 1:instance.time
|
||||
# Eq. (17) in Wang & Hobbs (2016)
|
||||
eq_min_upflexiramp[r.name, t] = @constraint(
|
||||
model,
|
||||
sum(model[:upflexiramp][r.name, g.name, t] for g in r.units) + model[:upflexiramp_shortfall][r.name, t] >= r.amount[t]
|
||||
)
|
||||
# Eq. (18) in Wang & Hobbs (2016)
|
||||
eq_min_dwflexiramp[r.name, t] = @constraint(
|
||||
model,
|
||||
sum(model[:dwflexiramp][r.name, g.name, t] for g in r.units) + model[:dwflexiramp_shortfall][r.name, t] >= r.amount[t]
|
||||
)
|
||||
|
||||
# Account for flexiramp shortfall contribution to objective
|
||||
if r.shortfall_penalty >= 0
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
r.shortfall_penalty,
|
||||
(
|
||||
model[:upflexiramp_shortfall][r.name, t] +
|
||||
model[:dwflexiramp_shortfall][r.name, t]
|
||||
),
|
||||
T = model[:instance].time
|
||||
for r in sc.reserves
|
||||
if r.type == "up-frp"
|
||||
for t in 1:T
|
||||
# Eq. (17) in Wang & Hobbs (2016)
|
||||
eq_min_upflexiramp[sc.name, r.name, t] = @constraint(
|
||||
model,
|
||||
sum(model[:upflexiramp][sc.name, r.name, g.name, t] for g in r.units) +
|
||||
model[:upflexiramp_shortfall][sc.name, r.name, t] >= r.amount[t]
|
||||
)
|
||||
# Account for flexiramp shortfall contribution to objective
|
||||
if r.shortfall_penalty >= 0
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
r.shortfall_penalty * sc.probability,
|
||||
model[:upflexiramp_shortfall][sc.name, r.name, t]
|
||||
)
|
||||
end
|
||||
end
|
||||
elseif r.type == "down-frp"
|
||||
for t in 1:T
|
||||
# Eq. (18) in Wang & Hobbs (2016)
|
||||
eq_min_dwflexiramp[sc.name, r.name, t] = @constraint(
|
||||
model,
|
||||
sum(model[:dwflexiramp][sc.name, r.name, g.name, t] for g in r.units) +
|
||||
model[:dwflexiramp_shortfall][sc.name, r.name, t] >= r.amount[t]
|
||||
)
|
||||
# Account for flexiramp shortfall contribution to objective
|
||||
if r.shortfall_penalty >= 0
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
r.shortfall_penalty * sc.probability,
|
||||
model[:dwflexiramp_shortfall][sc.name, r.name, t]
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
function _add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation)
|
||||
function _add_unit_first_stage!(model::JuMP.Model, g::Unit, formulation::Formulation)
|
||||
if !all(g.must_run) && any(g.must_run)
|
||||
error("Partially must-run units are not currently supported")
|
||||
end
|
||||
@@ -11,22 +11,34 @@ function _add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation)
|
||||
end
|
||||
|
||||
# Variables
|
||||
_add_production_vars!(model, g, formulation.prod_vars)
|
||||
_add_spinning_reserve_vars!(model, g)
|
||||
_add_flexiramp_reserve_vars!(model, g)
|
||||
_add_startup_shutdown_vars!(model, g)
|
||||
_add_status_vars!(model, g, formulation.status_vars)
|
||||
|
||||
# Constraints and objective function
|
||||
_add_min_uptime_downtime_eqs!(model, g)
|
||||
_add_net_injection_eqs!(model, g)
|
||||
_add_production_limit_eqs!(model, g, formulation.prod_vars)
|
||||
_add_startup_cost_eqs!(model, g, formulation.startup_costs)
|
||||
_add_status_eqs!(model, g, formulation.status_vars)
|
||||
return
|
||||
end
|
||||
|
||||
function _add_unit_second_stage!(model::JuMP.Model, g::Unit, formulation::Formulation,
|
||||
scenario::UnitCommitmentScenario)
|
||||
|
||||
# Variables
|
||||
_add_production_vars!(model, g, formulation.prod_vars, scenario)
|
||||
_add_spinning_reserve_vars!(model, g, scenario)
|
||||
_add_flexiramp_reserve_vars!(model, g, scenario)
|
||||
|
||||
# Constraints and objective function
|
||||
_add_net_injection_eqs!(model, g, scenario)
|
||||
_add_production_limit_eqs!(model, g, formulation.prod_vars, scenario)
|
||||
_add_production_piecewise_linear_eqs!(
|
||||
model,
|
||||
g,
|
||||
formulation.prod_vars,
|
||||
formulation.pwl_costs,
|
||||
formulation.status_vars,
|
||||
scenario
|
||||
)
|
||||
_add_ramp_eqs!(
|
||||
model,
|
||||
@@ -34,26 +46,64 @@ function _add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation)
|
||||
formulation.prod_vars,
|
||||
formulation.ramping,
|
||||
formulation.status_vars,
|
||||
scenario
|
||||
)
|
||||
_add_startup_cost_eqs!(model, g, formulation.startup_costs)
|
||||
_add_startup_shutdown_limit_eqs!(model, g)
|
||||
_add_status_eqs!(model, g, formulation.status_vars)
|
||||
_add_startup_shutdown_limit_eqs!(model, g, scenario)
|
||||
return
|
||||
end
|
||||
|
||||
# function _add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation)
|
||||
# if !all(g.must_run) && any(g.must_run)
|
||||
# error("Partially must-run units are not currently supported")
|
||||
# end
|
||||
# if g.initial_power === nothing || g.initial_status === nothing
|
||||
# error("Initial conditions for $(g.name) must be provided")
|
||||
# end
|
||||
|
||||
# # Variables
|
||||
# _add_production_vars!(model, g, formulation.prod_vars)
|
||||
# _add_spinning_reserve_vars!(model, g)
|
||||
# _add_flexiramp_reserve_vars!(model, g)
|
||||
# _add_startup_shutdown_vars!(model, g)
|
||||
# _add_status_vars!(model, g, formulation.status_vars)
|
||||
|
||||
# # Constraints and objective function
|
||||
# _add_min_uptime_downtime_eqs!(model, g)
|
||||
# _add_net_injection_eqs!(model, g)
|
||||
# _add_production_limit_eqs!(model, g, formulation.prod_vars)
|
||||
# _add_production_piecewise_linear_eqs!(
|
||||
# model,
|
||||
# g,
|
||||
# formulation.prod_vars,
|
||||
# formulation.pwl_costs,
|
||||
# formulation.status_vars,
|
||||
# )
|
||||
# _add_ramp_eqs!(
|
||||
# model,
|
||||
# g,
|
||||
# formulation.prod_vars,
|
||||
# formulation.ramping,
|
||||
# formulation.status_vars,
|
||||
# )
|
||||
# _add_startup_cost_eqs!(model, g, formulation.startup_costs)
|
||||
# _add_startup_shutdown_limit_eqs!(model, g)
|
||||
# _add_status_eqs!(model, g, formulation.status_vars)
|
||||
# return
|
||||
# end
|
||||
|
||||
_is_initially_on(g::Unit)::Float64 = (g.initial_status > 0 ? 1.0 : 0.0)
|
||||
|
||||
function _add_spinning_reserve_vars!(model::JuMP.Model, g::Unit)::Nothing
|
||||
function _add_spinning_reserve_vars!(model::JuMP.Model, g::Unit, sc::UnitCommitmentScenario)::Nothing
|
||||
reserve = _init(model, :reserve)
|
||||
reserve_shortfall = _init(model, :reserve_shortfall)
|
||||
for r in g.reserves
|
||||
r.type == "spinning" || continue
|
||||
for t in 1:model[:instance].time
|
||||
reserve[r.name, g.name, t] = @variable(model, lower_bound = 0)
|
||||
if (r.name, t) ∉ keys(reserve_shortfall)
|
||||
reserve_shortfall[r.name, t] = @variable(model, lower_bound = 0)
|
||||
reserve[sc.name, r.name, g.name, t] = @variable(model, lower_bound = 0)
|
||||
if (sc.name, r.name, t) ∉ keys(reserve_shortfall)
|
||||
reserve_shortfall[sc.name, r.name, t] = @variable(model, lower_bound = 0)
|
||||
if r.shortfall_penalty < 0
|
||||
set_upper_bound(reserve_shortfall[r.name, t], 0.0)
|
||||
set_upper_bound(reserve_shortfall[sc.name, r.name, t], 0.0)
|
||||
end
|
||||
end
|
||||
end
|
||||
@@ -61,27 +111,35 @@ function _add_spinning_reserve_vars!(model::JuMP.Model, g::Unit)::Nothing
|
||||
return
|
||||
end
|
||||
|
||||
function _add_flexiramp_reserve_vars!(model::JuMP.Model, g::Unit)::Nothing
|
||||
function _add_flexiramp_reserve_vars!(model::JuMP.Model, g::Unit, sc::UnitCommitmentScenario)::Nothing
|
||||
upflexiramp = _init(model, :upflexiramp)
|
||||
upflexiramp_shortfall = _init(model, :upflexiramp_shortfall)
|
||||
mfg = _init(model, :mfg)
|
||||
dwflexiramp = _init(model, :dwflexiramp)
|
||||
dwflexiramp_shortfall = _init(model, :dwflexiramp_shortfall)
|
||||
for r in g.reserves
|
||||
r.type == "flexiramp" || continue
|
||||
for t in 1:model[:instance].time
|
||||
# maximum feasible generation, \bar{g_{its}} in Wang & Hobbs (2016)
|
||||
mfg[r.name, g.name, t] = @variable(model, lower_bound = 0)
|
||||
upflexiramp[r.name, g.name, t] = @variable(model) # up-flexiramp, ur_{it} in Wang & Hobbs (2016)
|
||||
dwflexiramp[r.name, g.name, t] = @variable(model) # down-flexiramp, dr_{it} in Wang & Hobbs (2016)
|
||||
if (r.name, t) ∉ keys(upflexiramp_shortfall)
|
||||
upflexiramp_shortfall[r.name, t] =
|
||||
@variable(model, lower_bound = 0)
|
||||
dwflexiramp_shortfall[r.name, t] =
|
||||
@variable(model, lower_bound = 0)
|
||||
if r.shortfall_penalty < 0
|
||||
set_upper_bound(upflexiramp_shortfall[r.name, t], 0.0)
|
||||
set_upper_bound(dwflexiramp_shortfall[r.name, t], 0.0)
|
||||
if r.type == "up-frp"
|
||||
for t in 1:model[:instance].time
|
||||
# maximum feasible generation, \bar{g_{its}} in Wang & Hobbs (2016)
|
||||
mfg[sc.name, r.name, g.name, t] = @variable(model, lower_bound = 0)
|
||||
upflexiramp[sc.name, r.name, g.name, t] = @variable(model) # up-flexiramp, ur_{it} in Wang & Hobbs (2016)
|
||||
if (sc.name, r.name, t) ∉ keys(upflexiramp_shortfall)
|
||||
upflexiramp_shortfall[sc.name, r.name, t] =
|
||||
@variable(model, lower_bound = 0)
|
||||
if r.shortfall_penalty < 0
|
||||
set_upper_bound(upflexiramp_shortfall[sc.name, r.name, t], 0.0)
|
||||
end
|
||||
end
|
||||
end
|
||||
elseif r.type == "down-frp"
|
||||
for t in 1:model[:instance].time
|
||||
dwflexiramp[sc.name, r.name, g.name, t] = @variable(model) # down-flexiramp, dr_{it} in Wang & Hobbs (2016)
|
||||
if (sc.name, r.name, t) ∉ keys(dwflexiramp_shortfall)
|
||||
dwflexiramp_shortfall[sc.name, r.name, t] =
|
||||
@variable(model, lower_bound = 0)
|
||||
if r.shortfall_penalty < 0
|
||||
set_upper_bound(dwflexiramp_shortfall[sc.name, r.name, t], 0.0)
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
@@ -99,32 +157,32 @@ function _add_startup_shutdown_vars!(model::JuMP.Model, g::Unit)::Nothing
|
||||
return
|
||||
end
|
||||
|
||||
function _add_startup_shutdown_limit_eqs!(model::JuMP.Model, g::Unit)::Nothing
|
||||
function _add_startup_shutdown_limit_eqs!(model::JuMP.Model, g::Unit, sc::UnitCommitmentScenario)::Nothing
|
||||
eq_shutdown_limit = _init(model, :eq_shutdown_limit)
|
||||
eq_startup_limit = _init(model, :eq_startup_limit)
|
||||
is_on = model[:is_on]
|
||||
prod_above = model[:prod_above]
|
||||
reserve = _total_reserves(model, g)
|
||||
reserve = _total_reserves(model, g, sc)
|
||||
switch_off = model[:switch_off]
|
||||
switch_on = model[:switch_on]
|
||||
T = model[:instance].time
|
||||
for t in 1:T
|
||||
# Startup limit
|
||||
eq_startup_limit[g.name, t] = @constraint(
|
||||
eq_startup_limit[sc.name, g.name, t] = @constraint(
|
||||
model,
|
||||
prod_above[g.name, t] + reserve[t] <=
|
||||
prod_above[sc.name, g.name, t] + reserve[t] <=
|
||||
(g.max_power[t] - g.min_power[t]) * is_on[g.name, t] -
|
||||
max(0, g.max_power[t] - g.startup_limit) * switch_on[g.name, t]
|
||||
)
|
||||
# Shutdown limit
|
||||
if g.initial_power > g.shutdown_limit
|
||||
eq_shutdown_limit[g.name, 0] =
|
||||
eq_shutdown_limit[sc.name, g.name, 0] =
|
||||
@constraint(model, switch_off[g.name, 1] <= 0)
|
||||
end
|
||||
if t < T
|
||||
eq_shutdown_limit[g.name, t] = @constraint(
|
||||
eq_shutdown_limit[sc.name, g.name, t] = @constraint(
|
||||
model,
|
||||
prod_above[g.name, t] <=
|
||||
prod_above[sc.name, g.name, t] <=
|
||||
(g.max_power[t] - g.min_power[t]) * is_on[g.name, t] -
|
||||
max(0, g.max_power[t] - g.shutdown_limit) *
|
||||
switch_off[g.name, t+1]
|
||||
@@ -138,43 +196,44 @@ function _add_ramp_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation::RampingFormulation,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
prod_above = model[:prod_above]
|
||||
reserve = _total_reserves(model, g)
|
||||
reserve = _total_reserves(model, g, sc)
|
||||
eq_ramp_up = _init(model, :eq_ramp_up)
|
||||
eq_ramp_down = _init(model, :eq_ramp_down)
|
||||
for t in 1:model[:instance].time
|
||||
# Ramp up limit
|
||||
if t == 1
|
||||
if _is_initially_on(g) == 1
|
||||
eq_ramp_up[g.name, t] = @constraint(
|
||||
eq_ramp_up[sc.name, g.name, t] = @constraint(
|
||||
model,
|
||||
prod_above[g.name, t] + reserve[t] <=
|
||||
prod_above[sc.name, g.name, t] + reserve[t] <=
|
||||
(g.initial_power - g.min_power[t]) + g.ramp_up_limit
|
||||
)
|
||||
end
|
||||
else
|
||||
eq_ramp_up[g.name, t] = @constraint(
|
||||
eq_ramp_up[sc.name, g.name, t] = @constraint(
|
||||
model,
|
||||
prod_above[g.name, t] + reserve[t] <=
|
||||
prod_above[g.name, t-1] + g.ramp_up_limit
|
||||
prod_above[sc.name, g.name, t] + reserve[t] <=
|
||||
prod_above[sc.name, g.name, t-1] + g.ramp_up_limit
|
||||
)
|
||||
end
|
||||
|
||||
# Ramp down limit
|
||||
if t == 1
|
||||
if _is_initially_on(g) == 1
|
||||
eq_ramp_down[g.name, t] = @constraint(
|
||||
eq_ramp_down[sc.name, g.name, t] = @constraint(
|
||||
model,
|
||||
prod_above[g.name, t] >=
|
||||
prod_above[sc.name, g.name, t] >=
|
||||
(g.initial_power - g.min_power[t]) - g.ramp_down_limit
|
||||
)
|
||||
end
|
||||
else
|
||||
eq_ramp_down[g.name, t] = @constraint(
|
||||
eq_ramp_down[sc.name, g.name, t] = @constraint(
|
||||
model,
|
||||
prod_above[g.name, t] >=
|
||||
prod_above[g.name, t-1] - g.ramp_down_limit
|
||||
prod_above[sc.name, g.name, t] >=
|
||||
prod_above[sc.name, g.name, t-1] - g.ramp_down_limit
|
||||
)
|
||||
end
|
||||
end
|
||||
@@ -223,30 +282,30 @@ function _add_min_uptime_downtime_eqs!(model::JuMP.Model, g::Unit)::Nothing
|
||||
end
|
||||
end
|
||||
|
||||
function _add_net_injection_eqs!(model::JuMP.Model, g::Unit)::Nothing
|
||||
function _add_net_injection_eqs!(model::JuMP.Model, g::Unit, sc::UnitCommitmentScenario)::Nothing
|
||||
expr_net_injection = model[:expr_net_injection]
|
||||
for t in 1:model[:instance].time
|
||||
# Add to net injection expression
|
||||
add_to_expression!(
|
||||
expr_net_injection[g.bus.name, t],
|
||||
model[:prod_above][g.name, t],
|
||||
expr_net_injection[sc.name, g.bus.name, t],
|
||||
model[:prod_above][sc.name, g.name, t],
|
||||
1.0,
|
||||
)
|
||||
add_to_expression!(
|
||||
expr_net_injection[g.bus.name, t],
|
||||
expr_net_injection[sc.name, g.bus.name, t],
|
||||
model[:is_on][g.name, t],
|
||||
g.min_power[t],
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
function _total_reserves(model, g)::Vector
|
||||
function _total_reserves(model, g, sc)::Vector
|
||||
T = model[:instance].time
|
||||
reserve = [0.0 for _ in 1:T]
|
||||
spinning_reserves = [r for r in g.reserves if r.type == "spinning"]
|
||||
if !isempty(spinning_reserves)
|
||||
reserve += [
|
||||
sum(model[:reserve][r.name, g.name, t] for r in spinning_reserves) for t in 1:model[:instance].time
|
||||
sum(model[:reserve][sc.name, r.name, g.name, t] for r in spinning_reserves) for t in 1:model[:instance].time
|
||||
]
|
||||
end
|
||||
return reserve
|
||||
|
||||
@@ -5,13 +5,15 @@
|
||||
function _enforce_transmission(
|
||||
model::JuMP.Model,
|
||||
violations::Vector{_Violation},
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
for v in violations
|
||||
_enforce_transmission(
|
||||
model = model,
|
||||
sc = sc,
|
||||
violation = v,
|
||||
isf = model[:isf],
|
||||
lodf = model[:lodf],
|
||||
isf = sc.isf,
|
||||
lodf = sc.lodf,
|
||||
)
|
||||
end
|
||||
return
|
||||
@@ -19,6 +21,7 @@ end
|
||||
|
||||
function _enforce_transmission(;
|
||||
model::JuMP.Model,
|
||||
sc::UnitCommitmentScenario,
|
||||
violation::_Violation,
|
||||
isf::Matrix{Float64},
|
||||
lodf::Matrix{Float64},
|
||||
@@ -51,7 +54,7 @@ function _enforce_transmission(;
|
||||
t = violation.time
|
||||
flow = @variable(model, base_name = "flow[$fm,$t]")
|
||||
|
||||
v = overflow[violation.monitored_line.name, violation.time]
|
||||
v = overflow[sc.name, violation.monitored_line.name, violation.time]
|
||||
@constraint(model, flow <= limit + v)
|
||||
@constraint(model, -flow <= limit + v)
|
||||
|
||||
@@ -59,23 +62,23 @@ function _enforce_transmission(;
|
||||
@constraint(
|
||||
model,
|
||||
flow == sum(
|
||||
net_injection[b.name, violation.time] *
|
||||
net_injection[sc.name, b.name, violation.time] *
|
||||
isf[violation.monitored_line.offset, b.offset] for
|
||||
b in instance.buses if b.offset > 0
|
||||
b in sc.buses if b.offset > 0
|
||||
)
|
||||
)
|
||||
else
|
||||
@constraint(
|
||||
model,
|
||||
flow == sum(
|
||||
net_injection[b.name, violation.time] * (
|
||||
net_injection[sc.name, b.name, violation.time] * (
|
||||
isf[violation.monitored_line.offset, b.offset] + (
|
||||
lodf[
|
||||
violation.monitored_line.offset,
|
||||
violation.outage_line.offset,
|
||||
] * isf[violation.outage_line.offset, b.offset]
|
||||
)
|
||||
) for b in instance.buses if b.offset > 0
|
||||
) for b in sc.buses if b.offset > 0
|
||||
)
|
||||
)
|
||||
end
|
||||
|
||||
@@ -5,32 +5,34 @@
|
||||
import Base.Threads: @threads
|
||||
|
||||
function _find_violations(
|
||||
model::JuMP.Model;
|
||||
model::JuMP.Model,
|
||||
sc::UnitCommitmentScenario;
|
||||
max_per_line::Int,
|
||||
max_per_period::Int,
|
||||
)
|
||||
instance = model[:instance]
|
||||
net_injection = model[:net_injection]
|
||||
overflow = model[:overflow]
|
||||
length(instance.buses) > 1 || return []
|
||||
length(sc.buses) > 1 || return []
|
||||
violations = []
|
||||
@info "Verifying transmission limits..."
|
||||
time_screening = @elapsed begin
|
||||
non_slack_buses = [b for b in instance.buses if b.offset > 0]
|
||||
non_slack_buses = [b for b in sc.buses if b.offset > 0]
|
||||
net_injection_values = [
|
||||
value(net_injection[b.name, t]) for b in non_slack_buses,
|
||||
value(net_injection[sc.name, b.name, t]) for b in non_slack_buses,
|
||||
t in 1:instance.time
|
||||
]
|
||||
overflow_values = [
|
||||
value(overflow[lm.name, t]) for lm in instance.lines,
|
||||
value(overflow[sc.name, lm.name, t]) for lm in sc.lines,
|
||||
t in 1:instance.time
|
||||
]
|
||||
violations = UnitCommitment._find_violations(
|
||||
instance = instance,
|
||||
sc = sc,
|
||||
net_injections = net_injection_values,
|
||||
overflow = overflow_values,
|
||||
isf = model[:isf],
|
||||
lodf = model[:lodf],
|
||||
isf = sc.isf,
|
||||
lodf = sc.lodf,
|
||||
max_per_line = max_per_line,
|
||||
max_per_period = max_per_period,
|
||||
)
|
||||
@@ -64,15 +66,16 @@ matrix, where L is the number of transmission lines.
|
||||
"""
|
||||
function _find_violations(;
|
||||
instance::UnitCommitmentInstance,
|
||||
sc::UnitCommitmentScenario,
|
||||
net_injections::Array{Float64,2},
|
||||
overflow::Array{Float64,2},
|
||||
isf::Array{Float64,2},
|
||||
lodf::Array{Float64,2},
|
||||
max_per_line::Int,
|
||||
max_per_period::Int,
|
||||
max_per_period::Int
|
||||
)::Array{_Violation,1}
|
||||
B = length(instance.buses) - 1
|
||||
L = length(instance.lines)
|
||||
B = length(sc.buses) - 1
|
||||
L = length(sc.lines)
|
||||
T = instance.time
|
||||
K = nthreads()
|
||||
|
||||
@@ -94,16 +97,16 @@ function _find_violations(;
|
||||
|
||||
normal_limits::Array{Float64,2} = [
|
||||
l.normal_flow_limit[t] + overflow[l.offset, t] for
|
||||
l in instance.lines, t in 1:T
|
||||
l in sc.lines, t in 1:T
|
||||
]
|
||||
|
||||
emergency_limits::Array{Float64,2} = [
|
||||
l.emergency_flow_limit[t] + overflow[l.offset, t] for
|
||||
l in instance.lines, t in 1:T
|
||||
l in sc.lines, t in 1:T
|
||||
]
|
||||
|
||||
is_vulnerable::Array{Bool} = zeros(Bool, L)
|
||||
for c in instance.contingencies
|
||||
for c in sc.contingencies
|
||||
is_vulnerable[c.lines[1].offset] = true
|
||||
end
|
||||
|
||||
@@ -111,7 +114,7 @@ function _find_violations(;
|
||||
k = threadid()
|
||||
|
||||
# Pre-contingency flows
|
||||
pre_flow[:, k] = isf * net_injections[:, t]
|
||||
pre_flow[:, k] = isf * net_injections[ :, t]
|
||||
|
||||
# Post-contingency flows
|
||||
for lc in 1:L, lm in 1:L
|
||||
@@ -144,7 +147,7 @@ function _find_violations(;
|
||||
filters[t],
|
||||
_Violation(
|
||||
time = t,
|
||||
monitored_line = instance.lines[lm],
|
||||
monitored_line = sc.lines[lm],
|
||||
outage_line = nothing,
|
||||
amount = pre_v[lm, k],
|
||||
),
|
||||
@@ -159,8 +162,8 @@ function _find_violations(;
|
||||
filters[t],
|
||||
_Violation(
|
||||
time = t,
|
||||
monitored_line = instance.lines[lm],
|
||||
outage_line = instance.lines[lc],
|
||||
monitored_line = sc.lines[lm],
|
||||
outage_line = sc.lines[lc],
|
||||
amount = post_v[lm, lc, k],
|
||||
),
|
||||
)
|
||||
|
||||
@@ -10,43 +10,47 @@ function optimize!(model::JuMP.Model, method::XavQiuWanThi2019.Method)::Nothing
|
||||
JuMP.set_optimizer_attribute(model, "MIPGap", gap)
|
||||
@info @sprintf("MIP gap tolerance set to %f", gap)
|
||||
end
|
||||
initial_time = time()
|
||||
large_gap = false
|
||||
has_transmission = (length(model[:isf]) > 0)
|
||||
if has_transmission && method.two_phase_gap
|
||||
set_gap(1e-2)
|
||||
large_gap = true
|
||||
end
|
||||
while true
|
||||
time_elapsed = time() - initial_time
|
||||
time_remaining = method.time_limit - time_elapsed
|
||||
if time_remaining < 0
|
||||
@info "Time limit exceeded"
|
||||
break
|
||||
for scenario in model[:instance].scenarios
|
||||
large_gap = false
|
||||
has_transmission = (length(scenario.isf) > 0)
|
||||
if has_transmission && method.two_phase_gap
|
||||
set_gap(1e-2)
|
||||
large_gap = true
|
||||
end
|
||||
@info @sprintf(
|
||||
"Setting MILP time limit to %.2f seconds",
|
||||
time_remaining
|
||||
)
|
||||
JuMP.set_time_limit_sec(model, time_remaining)
|
||||
@info "Solving MILP..."
|
||||
JuMP.optimize!(model)
|
||||
has_transmission || break
|
||||
violations = _find_violations(
|
||||
model,
|
||||
max_per_line = method.max_violations_per_line,
|
||||
max_per_period = method.max_violations_per_period,
|
||||
)
|
||||
if isempty(violations)
|
||||
@info "No violations found"
|
||||
if large_gap
|
||||
large_gap = false
|
||||
set_gap(method.gap_limit)
|
||||
else
|
||||
while true
|
||||
initial_time = time()
|
||||
time_elapsed = time() - initial_time
|
||||
time_remaining = method.time_limit - time_elapsed
|
||||
if time_remaining < 0
|
||||
@info "Time limit exceeded"
|
||||
break
|
||||
end
|
||||
else
|
||||
_enforce_transmission(model, violations)
|
||||
@info @sprintf(
|
||||
"Setting MILP time limit to %.2f seconds",
|
||||
time_remaining
|
||||
)
|
||||
JuMP.set_time_limit_sec(model, time_remaining)
|
||||
@info "Solving MILP..."
|
||||
JuMP.optimize!(model)
|
||||
has_transmission || break
|
||||
violations = _find_violations(
|
||||
model,
|
||||
scenario,
|
||||
max_per_line = method.max_violations_per_line,
|
||||
max_per_period = method.max_violations_per_period,
|
||||
)
|
||||
if isempty(violations)
|
||||
@info "No violations found"
|
||||
if large_gap
|
||||
large_gap = false
|
||||
set_gap(method.gap_limit)
|
||||
else
|
||||
break
|
||||
end
|
||||
else
|
||||
_enforce_transmission(model, violations, scenario)
|
||||
end
|
||||
end
|
||||
end
|
||||
return
|
||||
|
||||
@@ -16,34 +16,40 @@ solution = UnitCommitment.solution(model)
|
||||
"""
|
||||
function solution(model::JuMP.Model)::OrderedDict
|
||||
instance, T = model[:instance], model[:instance].time
|
||||
function timeseries(vars, collection)
|
||||
function timeseries_first_stage(vars, collection)
|
||||
return OrderedDict(
|
||||
b.name => [round(value(vars[b.name, t]), digits = 5) for t in 1:T]
|
||||
for b in collection
|
||||
)
|
||||
end
|
||||
function production_cost(g)
|
||||
function timeseries_second_stage(vars, collection, sc)
|
||||
return OrderedDict(
|
||||
b.name => [round(value(vars[sc.name, b.name, t]), digits = 5) for t in 1:T]
|
||||
for b in collection
|
||||
)
|
||||
end
|
||||
function production_cost(g, sc)
|
||||
return [
|
||||
value(model[:is_on][g.name, t]) * g.min_power_cost[t] + sum(
|
||||
Float64[
|
||||
value(model[:segprod][g.name, t, k]) *
|
||||
value(model[:segprod][sc.name, g.name, t, k]) *
|
||||
g.cost_segments[k].cost[t] for
|
||||
k in 1:length(g.cost_segments)
|
||||
],
|
||||
) for t in 1:T
|
||||
]
|
||||
end
|
||||
function production(g)
|
||||
function production(g, sc)
|
||||
return [
|
||||
value(model[:is_on][g.name, t]) * g.min_power[t] + sum(
|
||||
Float64[
|
||||
value(model[:segprod][g.name, t, k]) for
|
||||
value(model[:segprod][sc.name, g.name, t, k]) for
|
||||
k in 1:length(g.cost_segments)
|
||||
],
|
||||
) for t in 1:T
|
||||
]
|
||||
end
|
||||
function startup_cost(g)
|
||||
function startup_cost(g, sc)
|
||||
S = length(g.startup_categories)
|
||||
return [
|
||||
sum(
|
||||
@@ -53,66 +59,70 @@ function solution(model::JuMP.Model)::OrderedDict
|
||||
]
|
||||
end
|
||||
sol = OrderedDict()
|
||||
sol["Production (MW)"] =
|
||||
OrderedDict(g.name => production(g) for g in instance.units)
|
||||
sol["Production cost (\$)"] =
|
||||
OrderedDict(g.name => production_cost(g) for g in instance.units)
|
||||
sol["Startup cost (\$)"] =
|
||||
OrderedDict(g.name => startup_cost(g) for g in instance.units)
|
||||
sol["Is on"] = timeseries(model[:is_on], instance.units)
|
||||
sol["Switch on"] = timeseries(model[:switch_on], instance.units)
|
||||
sol["Switch off"] = timeseries(model[:switch_off], instance.units)
|
||||
sol["Net injection (MW)"] =
|
||||
timeseries(model[:net_injection], instance.buses)
|
||||
sol["Load curtail (MW)"] = timeseries(model[:curtail], instance.buses)
|
||||
if !isempty(instance.lines)
|
||||
sol["Line overflow (MW)"] = timeseries(model[:overflow], instance.lines)
|
||||
for sc in instance.scenarios
|
||||
sol[sc.name] = OrderedDict()
|
||||
sol[sc.name]["Production (MW)"] =
|
||||
OrderedDict(g.name => production(g, sc) for g in sc.units)
|
||||
sol[sc.name]["Production cost (\$)"] =
|
||||
OrderedDict(g.name => production_cost(g, sc) for g in sc.units)
|
||||
sol[sc.name]["Startup cost (\$)"] =
|
||||
OrderedDict(g.name => startup_cost(g, sc) for g in sc.units)
|
||||
sol[sc.name]["Is on"] = timeseries_first_stage(model[:is_on], sc.units)
|
||||
sol[sc.name]["Switch on"] = timeseries_first_stage(model[:switch_on], sc.units)
|
||||
sol[sc.name]["Switch off"] = timeseries_first_stage(model[:switch_off], sc.units)
|
||||
sol[sc.name]["Net injection (MW)"] =
|
||||
timeseries_second_stage(model[:net_injection], sc.buses, sc)
|
||||
sol[sc.name]["Load curtail (MW)"] = timeseries_second_stage(model[:curtail], sc.buses, sc)
|
||||
if !isempty(sc.lines)
|
||||
sol[sc.name]["Line overflow (MW)"] = timeseries_second_stage(model[:overflow], sc.lines, sc)
|
||||
end
|
||||
if !isempty(sc.price_sensitive_loads)
|
||||
sol[sc.name]["Price-sensitive loads (MW)"] =
|
||||
timeseries_second_stage(model[:loads], sc.price_sensitive_loads, sc)
|
||||
end
|
||||
sol[sc.name]["Spinning reserve (MW)"] = OrderedDict(
|
||||
r.name => OrderedDict(
|
||||
g.name => [
|
||||
value(model[:reserve][sc.name, r.name, g.name, t]) for
|
||||
t in 1:instance.time
|
||||
] for g in r.units
|
||||
) for r in sc.reserves if r.type == "spinning"
|
||||
)
|
||||
sol[sc.name]["Spinning reserve shortfall (MW)"] = OrderedDict(
|
||||
r.name => [
|
||||
value(model[:reserve_shortfall][sc.name, r.name, t]) for
|
||||
t in 1:instance.time
|
||||
] for r in sc.reserves if r.type == "spinning"
|
||||
)
|
||||
sol[sc.name]["Up-flexiramp (MW)"] = OrderedDict(
|
||||
r.name => OrderedDict(
|
||||
g.name => [
|
||||
value(model[:upflexiramp][sc.name, r.name, g.name, t]) for
|
||||
t in 1:instance.time
|
||||
] for g in r.units
|
||||
) for r in sc.reserves if r.type == "up-frp"
|
||||
)
|
||||
sol[sc.name]["Up-flexiramp shortfall (MW)"] = OrderedDict(
|
||||
r.name => [
|
||||
value(model[:upflexiramp_shortfall][sc.name, r.name, t]) for
|
||||
t in 1:instance.time
|
||||
] for r in sc.reserves if r.type == "up-frp"
|
||||
)
|
||||
sol[sc.name]["Down-flexiramp (MW)"] = OrderedDict(
|
||||
r.name => OrderedDict(
|
||||
g.name => [
|
||||
value(model[:dwflexiramp][sc.name, r.name, g.name, t]) for
|
||||
t in 1:instance.time
|
||||
] for g in r.units
|
||||
) for r in sc.reserves if r.type == "down-frp"
|
||||
)
|
||||
sol[sc.name]["Down-flexiramp shortfall (MW)"] = OrderedDict(
|
||||
r.name => [
|
||||
value(model[:dwflexiramp_shortfall][sc.name, r.name, t]) for
|
||||
t in 1:instance.time
|
||||
] for r in sc.reserves if r.type == "down-frp"
|
||||
)
|
||||
end
|
||||
if !isempty(instance.price_sensitive_loads)
|
||||
sol["Price-sensitive loads (MW)"] =
|
||||
timeseries(model[:loads], instance.price_sensitive_loads)
|
||||
end
|
||||
sol["Spinning reserve (MW)"] = OrderedDict(
|
||||
r.name => OrderedDict(
|
||||
g.name => [
|
||||
value(model[:reserve][r.name, g.name, t]) for
|
||||
t in 1:instance.time
|
||||
] for g in r.units
|
||||
) for r in instance.reserves if r.type == "spinning"
|
||||
)
|
||||
sol["Spinning reserve shortfall (MW)"] = OrderedDict(
|
||||
r.name => [
|
||||
value(model[:reserve_shortfall][r.name, t]) for
|
||||
t in 1:instance.time
|
||||
] for r in instance.reserves if r.type == "spinning"
|
||||
)
|
||||
sol["Up-flexiramp (MW)"] = OrderedDict(
|
||||
r.name => OrderedDict(
|
||||
g.name => [
|
||||
value(model[:upflexiramp][r.name, g.name, t]) for
|
||||
t in 1:instance.time
|
||||
] for g in r.units
|
||||
) for r in instance.reserves if r.type == "flexiramp"
|
||||
)
|
||||
sol["Up-flexiramp shortfall (MW)"] = OrderedDict(
|
||||
r.name => [
|
||||
value(model[:upflexiramp_shortfall][r.name, t]) for
|
||||
t in 1:instance.time
|
||||
] for r in instance.reserves if r.type == "flexiramp"
|
||||
)
|
||||
sol["Down-flexiramp (MW)"] = OrderedDict(
|
||||
r.name => OrderedDict(
|
||||
g.name => [
|
||||
value(model[:dwflexiramp][r.name, g.name, t]) for
|
||||
t in 1:instance.time
|
||||
] for g in r.units
|
||||
) for r in instance.reserves if r.type == "flexiramp"
|
||||
)
|
||||
sol["Down-flexiramp shortfall (MW)"] = OrderedDict(
|
||||
r.name => [
|
||||
value(model[:upflexiramp_shortfall][r.name, t]) for
|
||||
t in 1:instance.time
|
||||
] for r in instance.reserves if r.type == "flexiramp"
|
||||
)
|
||||
length(keys(sol)) > 1 ? nothing : sol = Dict(sol_key => sol_val for scen_key in keys(sol) for (sol_key, sol_val) in sol[scen_key])
|
||||
return sol
|
||||
end
|
||||
|
||||
@@ -3,19 +3,19 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
"""
|
||||
repair!(instance)
|
||||
repair!(sc)
|
||||
|
||||
Verifies that the given unit commitment instance is valid and automatically
|
||||
Verifies that the given unit commitment scenario is valid and automatically
|
||||
fixes some validation errors if possible, issuing a warning for each error
|
||||
found. If a validation error cannot be automatically fixed, issues an
|
||||
exception.
|
||||
|
||||
Returns the number of validation errors found.
|
||||
"""
|
||||
function repair!(instance::UnitCommitmentInstance)::Int
|
||||
function repair!(sc::UnitCommitmentScenario)::Int
|
||||
n_errors = 0
|
||||
|
||||
for g in instance.units
|
||||
for g in sc.units
|
||||
|
||||
# Startup costs and delays must be increasing
|
||||
for s in 2:length(g.startup_categories)
|
||||
@@ -38,7 +38,7 @@ function repair!(instance::UnitCommitmentInstance)::Int
|
||||
end
|
||||
end
|
||||
|
||||
for t in 1:instance.time
|
||||
for t in 1:sc.time
|
||||
# Production cost curve should be convex
|
||||
for k in 2:length(g.cost_segments)
|
||||
cost = g.cost_segments[k].cost[t]
|
||||
|
||||
@@ -356,7 +356,7 @@ function _validate_reserve_and_demand(instance, solution, tol = 0.01)
|
||||
required,
|
||||
)
|
||||
end
|
||||
elseif r.type == "flexiramp"
|
||||
elseif r.type == "up-frp"
|
||||
upflexiramp = sum(
|
||||
solution["Up-flexiramp (MW)"][r.name][g.name][t] for
|
||||
g in r.units
|
||||
@@ -374,7 +374,7 @@ function _validate_reserve_and_demand(instance, solution, tol = 0.01)
|
||||
)
|
||||
err_count += 1
|
||||
end
|
||||
|
||||
elseif r.type == "down-frp"
|
||||
dwflexiramp = sum(
|
||||
solution["Down-flexiramp (MW)"][r.name][g.name][t] for
|
||||
g in r.units
|
||||
|
||||
Reference in New Issue
Block a user