Docs: Rewrite model customization

m2m
Alinson S. Xavier 1 year ago
parent de0339f7be
commit c638aaf4ec

3
.gitignore vendored

@ -36,4 +36,5 @@ instances/**/*.json
instances/_source
local
notebooks
docs/src/tutorials/usage.md
docs/src/tutorials/usage.md
docs/src/tutorials/customizing.md

@ -7,7 +7,8 @@ using Literate
function make()
literate_sources = [
"src/tutorials/usage.jl"
"src/tutorials/usage.jl",
"src/tutorials/customizing.jl"
]
for src in literate_sources
Literate.markdown(

@ -0,0 +1,136 @@
# # Model customization
# In the previous tutorial, we used UnitCommitment.jl to solve benchmark and user-provided instances using a default mathematical formulation for the problem. In this tutorial, we will explore how to customize this formulation.
# !!! warning
# This tutorial is not required for using UnitCommitment.jl, unless you plan to make changes to the problem formulation. In this page, we assume familiarity with the JuMP modeling language. Please see [JuMP's official documentation](https://jump.dev/JuMP.jl/stable/) for resources on getting started with JuMP.
# ## Selecting modeling components
# By default, `UnitCommitment.build_model` uses a formulation that combines modeling components from different publications, and that has been carefully tested, using our own benchmark scripts, to provide good performance across a wide variety of instances. This default formulation is expected to change over time, as new methods are proposed in the literature. You can, however, construct your own formulation, based on the modeling components that you choose, as shown in the next example.
# We start by importing the necessary packages and reading a benchmark instance:
using HiGHS
using JuMP
using UnitCommitment
instance = UnitCommitment.read_benchmark("matpower/case14/2017-01-01");
# Next, instead of calling `UnitCommitment.build_model` with default arguments, we can provide a `UnitCommitment.Formulation` object, which describes what modeling components to use, and how should they be configured. For a complete list of modeling components available in UnitCommitment.jl, see the [API docs](../api.md).
# In the example below, we switch to piecewise-linear cost modeling as defined in [KnuOstWat2018](https://doi.org/10.1109/TPWRS.2017.2783850), as well as ramping and startup costs formulation as defined in [MorLatRam2013](https://doi.org/10.1109/TPWRS.2013.2251373). In addition, we specify custom cutoffs for the shift factors formulation.
model = UnitCommitment.build_model(
instance = instance,
optimizer = HiGHS.Optimizer,
formulation = UnitCommitment.Formulation(
pwl_costs = UnitCommitment.KnuOstWat2018.PwlCosts(),
ramping = UnitCommitment.MorLatRam2013.Ramping(),
startup_costs = UnitCommitment.MorLatRam2013.StartupCosts(),
transmission = UnitCommitment.ShiftFactorsFormulation(
isf_cutoff = 0.008,
lodf_cutoff = 0.003,
),
),
);
# ## Accessing decision variables
# In the previous tutorial, we saw how to access the optimal solution through `UnitCommitment.solution`. While this approach works well for basic usage, it is also possible to get a direct reference to the JuMP decision variables and query their values, as the next example illustrates.
# First, we load a benchmark instance and solve it, as before.
instance = UnitCommitment.read_benchmark("matpower/case14/2017-01-01");
model = UnitCommitment.build_model(
instance=instance,
optimizer=HiGHS.Optimizer,
);
UnitCommitment.optimize!(model)
# At this point, it is possible to obtain a reference to the decision variables by calling `model[:varname][index]`. For example, `model[:is_on]["g1",1]` returns a direct reference to the JuMP variable indicating whether generator named "g1" is on at time 1. For a complete list of decision variables available, and how are they indexed, see the [problem definition](../guides/problem.md).
@show JuMP.value(model[:is_on]["g1",1])
# To access second-stage decisions, it is necessary to specify the scenario name. UnitCommitment.jl models deterministic instances as a particular case in which there is a single scenario named "s1", so we need to use this key.
@show JuMP.value(model[:prod_above]["s1", "g1", 1])
# ## Modifying variables and constraints
# When testing variations of the unit commitment problem, it is often necessary to modify the objective function, variables and constraints of the formulation. UnitCommitment.jl makes this process relatively easy. The first step is to construct the standard model using `UnitCommitment.build_model`:
instance = UnitCommitment.read_benchmark("matpower/case14/2017-01-01");
model = UnitCommitment.build_model(
instance=instance,
optimizer=HiGHS.Optimizer,
);
# Now, before calling `UnitCommitment.optimize`, we can make any desired changes to the formulation. In the previous section, we saw how to obtain a direct reference to the decision variables. It is possible to modify them by using standard JuMP methods. For example, to fix the commitment status of a particular generator, we can use `JuMP.fix`:
JuMP.fix(model[:is_on]["g1",1], 1.0, force=true)
# To modify the cost coefficient of a particular variable, we can use `JuMP.set_objective_coefficient`:
JuMP.set_objective_coefficient(
model,
model[:switch_on]["g1",1],
1000.0,
)
# It is also possible to make changes to the set of constraints. For example, we can add a custom constraint, using the `JuMP.@constraint` macro:
@constraint(
model,
model[:is_on]["g3",1] + model[:is_on]["g4",1] <= 1,
);
# We can also remove an existing model constraint using `JuMP.delete`. See the [problem definition](../guides/problem.md) for a list of constraint names and indices.
JuMP.delete(model, model[:eq_min_uptime]["g1",1])
# After we are done with all changes, we can call `UnitCommitment.optimize` and extract the optimal solution:
UnitCommitment.optimize!(model)
@show UnitCommitment.solution(model)
# ## Modeling new grid components
# In this section we demonstrate how to add a new grid component to a particular bus in the network. This is useful, for example, when developing formulations for a new type of generator, energy storage, or any other grid device. We start by reading the instance data and buliding a standard model:
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
model = UnitCommitment.build_model(
instance=instance,
optimizer=HiGHS.Optimizer,
);
# Next, we create decision variables for the new grid component. In this example, we assume that the new component can inject up to 10 MW of power at each time step, so we create new continuous variables $0 \leq x_t \leq 10$.
T = instance.time
@variable(model, x[1:T], lower_bound=0.0, upper_bound=10.0);
# Next, we add the production costs to the objective function. In this example, we assume a generation cost of \$5/MW:
for t in 1:T
set_objective_coefficient(model, x[t], 5.0)
end
# We then attach the new component to bus `b1` by modifying the net injection constraint (`eq_net_injection`):
for t in 1:T
set_normalized_coefficient(
model[:eq_net_injection]["s1", "b1", t],
x[t],
1.0,
)
end
# Next, we solve the model:
UnitCommitment.optimize!(model)
# We then finally extract the optimal value of the $x$ variables:
@show value.(x)

@ -1,182 +0,0 @@
# Customizing the model
By default, `build_model` uses a formulation that combines modeling components from different publications, and that has been carefully tested, using our own benchmark scripts, to provide good performance across a wide variety of instances. This default formulation is expected to change over time, as new methods are proposed in the literature. You can, however, construct your own formulation, based on the modeling components that you choose, as shown in the next example.
```julia
using HiGHS
using UnitCommitment
import UnitCommitment:
Formulation,
KnuOstWat2018,
MorLatRam2013,
ShiftFactorsFormulation
instance = UnitCommitment.read_benchmark(
"matpower/case118/2017-02-01",
)
model = UnitCommitment.build_model(
instance = instance,
optimizer = HiGHS.Optimizer,
formulation = Formulation(
pwl_costs = KnuOstWat2018.PwlCosts(),
ramping = MorLatRam2013.Ramping(),
startup_costs = MorLatRam2013.StartupCosts(),
transmission = ShiftFactorsFormulation(
isf_cutoff = 0.005,
lodf_cutoff = 0.001,
),
),
)
```
## Inspecting and modifying the model
### Accessing decision variables
After building a model using `UnitCommitment.build_model`, it is possible to obtain a reference to the decision variables by calling `model[:varname][index]`. For example, `model[:is_on]["g1",1]` returns a direct reference to the JuMP variable indicating whether generator named "g1" is on at time 1. The script below illustrates how to build a model, solve it and display the solution without using the function `UnitCommitment.solution`.
```julia
using Cbc
using Printf
using JuMP
using UnitCommitment
# Load benchmark instance
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
# Build JuMP model
model = UnitCommitment.build_model(
instance=instance,
optimizer=Cbc.Optimizer,
)
# Solve the model
UnitCommitment.optimize!(model)
# Display commitment status
for g in instance.units
for t in 1:instance.time
@printf(
"%-10s %5d %5.1f %5.1f %5.1f\n",
g.name,
t,
value(model[:is_on][g.name, t]),
value(model[:switch_on][g.name, t]),
value(model[:switch_off][g.name, t]),
)
end
end
```
### Fixing variables, modifying objective function and adding constraints
Since we now have a direct reference to the JuMP decision variables, it is possible to fix variables, change the coefficients in the objective function, or even add new constraints to the model before solving it.
!!! warning
It is important to take into account the stage of the decision variables in modifying the optimization model. In changing a deterministic SCUC model, modifying the second-stage decision variables requires adding the term `s1`, which is the default scenario name assigned to the second-stage decision variables in the SCUC model. For an SUC model, the package permits the modification of the second-stage decision variables individually for each scenario.
The script below shows how the JuMP model can be modified after it is created. For more information on modifying an existing model, [see the JuMP documentation](https://jump.dev/JuMP.jl/stable/manual/variables/).
```julia
using Cbc
using JuMP
using UnitCommitment
# Load benchmark instance
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
# Construct JuMP model
model = UnitCommitment.build_model(
instance=instance,
optimizer=Cbc.Optimizer,
)
# Fix the commitment status of the generator "g1" in time period 1 to 1.0
JuMP.fix(
model[:is_on]["g1",1],
1.0,
force=true,
)
# Fix the production level of the generator "g1" above its minimum level in time period 1 and
# in scenario "s1" to 20.0 MW. Observe that the three-tuple dictionary key involves the scenario
# index "s1", as production above minimum is a second-stage decision variable.
JuMP.fix(
model[:prod_above]["s1", "g1", 1],
20.0,
force=true,
)
# Enforce the curtailment of 20.0 MW of load at bus "b2" in time period 4 in scenario "s1".
JuMP.fix(
curtail["s1", "b2", 4] =
20.0,
force=true,
)
# Change the objective function
JuMP.set_objective_coefficient(
model,
model[:switch_on]["g2",1],
1000.0,
)
# Create a new constraint
@constraint(
model,
model[:is_on]["g3",1] + model[:is_on]["g4",1] <= 1,
)
# Solve the model
UnitCommitment.optimize!(model)
```
### Adding new component to a bus
The following snippet shows how to add a new grid component to a particular bus. For each time step, we create decision variables for the new grid component, add these variables to the objective function, then attach the component to a particular bus by modifying some existing model constraints.
```julia
using Cbc
using JuMP
using UnitCommitment
# Load instance and build base model
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
model = UnitCommitment.build_model(
instance=instance,
optimizer=Cbc.Optimizer,
)
# Get the number of time steps in the original instance
T = instance.time
# Create decision variables for the new grid component.
# In this example, we assume that the new component can
# inject up to 10 MW of power at each time step, so we
# create new continuous variables 0 ≤ x[t] ≤ 10.
@variable(model, x[1:T], lower_bound=0.0, upper_bound=10.0)
# For each time step
for t in 1:T
# Add production costs to the objective function.
# In this example, we assume a cost of $5/MW.
set_objective_coefficient(model, x[t], 5.0)
# Attach the new component to bus b1 in scenario s1, by modifying the
# constraint `eq_net_injection`.
set_normalized_coefficient(
model[:eq_net_injection]["s1", "b1", t],
x[t],
1.0,
)
end
# Solve the model
UnitCommitment.optimize!(model)
# Show optimal values for the x variables
@show value.(x)
```
Loading…
Cancel
Save