stochastic extension w/ scenarios

This commit is contained in:
oyurdakul
2023-02-08 23:46:10 -06:00
parent 8fc84412eb
commit c95b01dadf
27 changed files with 566 additions and 386 deletions

View File

@@ -8,6 +8,7 @@ function _add_ramp_eqs!(
formulation_prod_vars::Gar1962.ProdVars,
formulation_ramping::ArrCon2000.Ramping,
formulation_status_vars::Gar1962.StatusVars,
sc::UnitCommitmentScenario
)::Nothing
# TODO: Move upper case constants to model[:instance]
RESERVES_WHEN_START_UP = true
@@ -22,7 +23,7 @@ function _add_ramp_eqs!(
eq_ramp_down = _init(model, :eq_ramp_down)
eq_ramp_up = _init(model, :eq_ramp_up)
is_initially_on = (g.initial_status > 0)
reserve = _total_reserves(model, g)
reserve = _total_reserves(model, g, sc)
# Gar1962.ProdVars
prod_above = model[:prod_above]
@@ -37,10 +38,10 @@ function _add_ramp_eqs!(
if t == 1
if is_initially_on
# min power is _not_ multiplied by is_on because if !is_on, then ramp up is irrelevant
eq_ramp_up[gn, t] = @constraint(
eq_ramp_up[sc.name, gn, t] = @constraint(
model,
g.min_power[t] +
prod_above[gn, t] +
prod_above[sc.name, gn, t] +
(RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0) <=
g.initial_power + RU
)
@@ -48,16 +49,16 @@ function _add_ramp_eqs!(
else
max_prod_this_period =
g.min_power[t] * is_on[gn, t] +
prod_above[gn, t] +
prod_above[sc.name, gn, t] +
(
RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ?
reserve[t] : 0.0
)
min_prod_last_period =
g.min_power[t-1] * is_on[gn, t-1] + prod_above[gn, t-1]
g.min_power[t-1] * is_on[gn, t-1] + prod_above[sc.name, gn, t-1]
# Equation (24) in Kneuven et al. (2020)
eq_ramp_up[gn, t] = @constraint(
eq_ramp_up[sc.name, gn, t] = @constraint(
model,
max_prod_this_period - min_prod_last_period <=
RU * is_on[gn, t-1] + SU * switch_on[gn, t]
@@ -71,24 +72,24 @@ function _add_ramp_eqs!(
# min_power + RD < initial_power < SD
# then the generator should be able to shut down at time t = 1,
# but the constraint below will force the unit to produce power
eq_ramp_down[gn, t] = @constraint(
eq_ramp_down[sc.name, gn, t] = @constraint(
model,
g.initial_power - (g.min_power[t] + prod_above[gn, t]) <= RD
g.initial_power - (g.min_power[t] + prod_above[sc.name, gn, t]) <= RD
)
end
else
max_prod_last_period =
g.min_power[t-1] * is_on[gn, t-1] +
prod_above[gn, t-1] +
prod_above[sc.name, gn, t-1] +
(
RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN ?
reserve[t-1] : 0.0
)
min_prod_this_period =
g.min_power[t] * is_on[gn, t] + prod_above[gn, t]
g.min_power[t] * is_on[gn, t] + prod_above[sc.name, gn, t]
# Equation (25) in Kneuven et al. (2020)
eq_ramp_down[gn, t] = @constraint(
eq_ramp_down[sc.name, gn, t] = @constraint(
model,
max_prod_last_period - min_prod_this_period <=
RD * is_on[gn, t] + SD * switch_off[gn, t]

View File

@@ -8,6 +8,7 @@ function _add_production_piecewise_linear_eqs!(
formulation_prod_vars::Gar1962.ProdVars,
formulation_pwl_costs::CarArr2006.PwlCosts,
formulation_status_vars::StatusVarsFormulation,
sc::UnitCommitmentScenario
)::Nothing
eq_prod_above_def = _init(model, :eq_prod_above_def)
eq_segprod_limit = _init(model, :eq_segprod_limit)
@@ -26,28 +27,28 @@ function _add_production_piecewise_linear_eqs!(
# difference between max power for segments k and k-1 so the
# value of cost_segments[k].mw[t] is the max production *for
# that segment*
eq_segprod_limit[gn, t, k] = @constraint(
eq_segprod_limit[sc.name, gn, t, k] = @constraint(
model,
segprod[gn, t, k] <= g.cost_segments[k].mw[t]
segprod[sc.name, gn, t, k] <= g.cost_segments[k].mw[t]
)
# Also add this as an explicit upper bound on segprod to make the
# solver's work a bit easier
set_upper_bound(segprod[gn, t, k], g.cost_segments[k].mw[t])
set_upper_bound(segprod[sc.name, gn, t, k], g.cost_segments[k].mw[t])
# Definition of production
# Equation (43) in Kneuven et al. (2020)
eq_prod_above_def[gn, t] = @constraint(
eq_prod_above_def[sc.name, gn, t] = @constraint(
model,
prod_above[gn, t] == sum(segprod[gn, t, k] for k in 1:K)
prod_above[sc.name, gn, t] == sum(segprod[sc.name, gn, t, k] for k in 1:K)
)
# Objective function
# Equation (44) in Kneuven et al. (2020)
add_to_expression!(
model[:obj],
segprod[gn, t, k],
g.cost_segments[k].cost[t],
segprod[sc.name, gn, t, k],
sc.probability * g.cost_segments[k].cost[t],
)
end
end

View File

@@ -8,6 +8,7 @@ function _add_ramp_eqs!(
formulation_prod_vars::Gar1962.ProdVars,
formulation_ramping::DamKucRajAta2016.Ramping,
formulation_status_vars::Gar1962.StatusVars,
sc::UnitCommitmentScenario
)::Nothing
# TODO: Move upper case constants to model[:instance]
RESERVES_WHEN_START_UP = true
@@ -23,7 +24,7 @@ function _add_ramp_eqs!(
gn = g.name
eq_str_ramp_down = _init(model, :eq_str_ramp_down)
eq_str_ramp_up = _init(model, :eq_str_ramp_up)
reserve = _total_reserves(model, g)
reserve = _total_reserves(model, g, sc)
# Gar1962.ProdVars
prod_above = model[:prod_above]
@@ -48,15 +49,15 @@ function _add_ramp_eqs!(
# end
max_prod_this_period =
prod_above[gn, t] +
prod_above[sc.name, gn, t] +
(RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0)
min_prod_last_period = 0.0
if t > 1 && time_invariant
min_prod_last_period = prod_above[gn, t-1]
min_prod_last_period = prod_above[sc.name, gn, t-1]
# Equation (35) in Kneuven et al. (2020)
# Sparser version of (24)
eq_str_ramp_up[gn, t] = @constraint(
eq_str_ramp_up[sc.name, gn, t] = @constraint(
model,
max_prod_this_period - min_prod_last_period <=
(SU - g.min_power[t] - RU) * switch_on[gn, t] +
@@ -65,7 +66,7 @@ function _add_ramp_eqs!(
elseif (t == 1 && is_initially_on) || (t > 1 && !time_invariant)
if t > 1
min_prod_last_period =
prod_above[gn, t-1] + g.min_power[t-1] * is_on[gn, t-1]
prod_above[sc.name, gn, t-1] + g.min_power[t-1] * is_on[gn, t-1]
else
min_prod_last_period = max(g.initial_power, 0.0)
end
@@ -76,7 +77,7 @@ function _add_ramp_eqs!(
# Modified version of equation (35) in Kneuven et al. (2020)
# Equivalent to (24)
eq_str_ramp_up[gn, t] = @constraint(
eq_str_ramp_up[sc.name, gn, t] = @constraint(
model,
max_prod_this_period - min_prod_last_period <=
(SU - RU) * switch_on[gn, t] + RU * is_on[gn, t]
@@ -88,7 +89,7 @@ function _add_ramp_eqs!(
t > 1 && (RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN) ?
reserve[t-1] : 0.0
)
min_prod_this_period = prod_above[gn, t]
min_prod_this_period = prod_above[sc.name, gn, t]
on_last_period = 0.0
if t > 1
on_last_period = is_on[gn, t-1]
@@ -98,7 +99,7 @@ function _add_ramp_eqs!(
if t > 1 && time_invariant
# Equation (36) in Kneuven et al. (2020)
eq_str_ramp_down[gn, t] = @constraint(
eq_str_ramp_down[sc.name, gn, t] = @constraint(
model,
max_prod_last_period - min_prod_this_period <=
(SD - g.min_power[t] - RD) * switch_off[gn, t] +
@@ -110,7 +111,7 @@ function _add_ramp_eqs!(
# Modified version of equation (36) in Kneuven et al. (2020)
# Equivalent to (25)
eq_str_ramp_down[gn, t] = @constraint(
eq_str_ramp_down[sc.name, gn, t] = @constraint(
model,
max_prod_last_period - min_prod_this_period <=
(SD - RD) * switch_off[gn, t] + RD * on_last_period

View File

@@ -6,14 +6,15 @@ function _add_production_vars!(
model::JuMP.Model,
g::Unit,
formulation_prod_vars::Gar1962.ProdVars,
sc::UnitCommitmentScenario
)::Nothing
prod_above = _init(model, :prod_above)
segprod = _init(model, :segprod)
for t in 1:model[:instance].time
for k in 1:length(g.cost_segments)
segprod[g.name, t, k] = @variable(model, lower_bound = 0)
segprod[sc.name, g.name, t, k] = @variable(model, lower_bound = 0)
end
prod_above[g.name, t] = @variable(model, lower_bound = 0)
prod_above[sc.name, g.name, t] = @variable(model, lower_bound = 0)
end
return
end
@@ -22,16 +23,20 @@ function _add_production_limit_eqs!(
model::JuMP.Model,
g::Unit,
formulation_prod_vars::Gar1962.ProdVars,
sc::UnitCommitmentScenario
)::Nothing
eq_prod_limit = _init(model, :eq_prod_limit)
is_on = model[:is_on]
prod_above = model[:prod_above]
reserve = _total_reserves(model, g)
reserve = _total_reserves(model, g, sc)
gn = g.name
for t in 1:model[:instance].time
# Objective function terms for production costs
# Part of (69) of Kneuven et al. (2020) as C^R_g * u_g(t) term
add_to_expression!(model[:obj], is_on[gn, t], g.min_power_cost[t])
### Moving this term to another function
# add_to_expression!(model[:obj], is_on[gn, t], g.min_power_cost[t])
###
# Production limit
# Equation (18) in Kneuven et al. (2020)
@@ -42,9 +47,9 @@ function _add_production_limit_eqs!(
if power_diff < 1e-7
power_diff = 0.0
end
eq_prod_limit[gn, t] = @constraint(
eq_prod_limit[sc.name, gn, t] = @constraint(
model,
prod_above[gn, t] + reserve[t] <= power_diff * is_on[gn, t]
prod_above[sc.name, gn, t] + reserve[t] <= power_diff * is_on[gn, t]
)
end
end

View File

@@ -8,6 +8,7 @@ function _add_production_piecewise_linear_eqs!(
formulation_prod_vars::Gar1962.ProdVars,
formulation_pwl_costs::Gar1962.PwlCosts,
formulation_status_vars::Gar1962.StatusVars,
sc::UnitCommitmentScenario
)::Nothing
eq_prod_above_def = _init(model, :eq_prod_above_def)
eq_segprod_limit = _init(model, :eq_segprod_limit)
@@ -24,9 +25,9 @@ function _add_production_piecewise_linear_eqs!(
for t in 1:model[:instance].time
# Definition of production
# Equation (43) in Kneuven et al. (2020)
eq_prod_above_def[gn, t] = @constraint(
eq_prod_above_def[sc.name, gn, t] = @constraint(
model,
prod_above[gn, t] == sum(segprod[gn, t, k] for k in 1:K)
prod_above[sc.name, gn, t] == sum(segprod[sc.name, gn, t, k] for k in 1:K)
)
for k in 1:K
@@ -37,21 +38,21 @@ function _add_production_piecewise_linear_eqs!(
# difference between max power for segments k and k-1 so the
# value of cost_segments[k].mw[t] is the max production *for
# that segment*
eq_segprod_limit[gn, t, k] = @constraint(
eq_segprod_limit[sc.name, gn, t, k] = @constraint(
model,
segprod[gn, t, k] <= g.cost_segments[k].mw[t] * is_on[gn, t]
segprod[sc.name, gn, t, k] <= g.cost_segments[k].mw[t] * is_on[gn, t]
)
# Also add this as an explicit upper bound on segprod to make the
# solver's work a bit easier
set_upper_bound(segprod[gn, t, k], g.cost_segments[k].mw[t])
set_upper_bound(segprod[sc.name, gn, t, k], g.cost_segments[k].mw[t])
# Objective function
# Equation (44) in Kneuven et al. (2020)
add_to_expression!(
model[:obj],
segprod[gn, t, k],
g.cost_segments[k].cost[t],
segprod[sc.name, gn, t, k],
sc.probability * g.cost_segments[k].cost[t],
)
end
end

View File

@@ -20,6 +20,7 @@ function _add_status_vars!(
switch_on[g.name, t] = @variable(model, binary = true)
switch_off[g.name, t] = @variable(model, binary = true)
end
add_to_expression!(model[:obj], is_on[g.name, t], g.min_power_cost[t])
end
return
end

View File

@@ -8,6 +8,7 @@ function _add_production_piecewise_linear_eqs!(
formulation_prod_vars::Gar1962.ProdVars,
formulation_pwl_costs::KnuOstWat2018.PwlCosts,
formulation_status_vars::Gar1962.StatusVars,
sc::UnitCommitmentScenario
)::Nothing
eq_prod_above_def = _init(model, :eq_prod_above_def)
eq_segprod_limit_a = _init(model, :eq_segprod_limit_a)
@@ -58,27 +59,27 @@ function _add_production_piecewise_linear_eqs!(
if g.min_uptime > 1
# Equation (46) in Kneuven et al. (2020)
eq_segprod_limit_a[gn, t, k] = @constraint(
eq_segprod_limit_a[sc.name, gn, t, k] = @constraint(
model,
segprod[gn, t, k] <=
segprod[sc.name, gn, t, k] <=
g.cost_segments[k].mw[t] * is_on[gn, t] -
Cv * switch_on[gn, t] -
(t < T ? Cw * switch_off[gn, t+1] : 0.0)
)
else
# Equation (47a)/(48a) in Kneuven et al. (2020)
eq_segprod_limit_b[gn, t, k] = @constraint(
eq_segprod_limit_b[sc.name, gn, t, k] = @constraint(
model,
segprod[gn, t, k] <=
segprod[sc.name, gn, t, k] <=
g.cost_segments[k].mw[t] * is_on[gn, t] -
Cv * switch_on[gn, t] -
(t < T ? max(0, Cv - Cw) * switch_off[gn, t+1] : 0.0)
)
# Equation (47b)/(48b) in Kneuven et al. (2020)
eq_segprod_limit_c[gn, t, k] = @constraint(
eq_segprod_limit_c[sc.name, gn, t, k] = @constraint(
model,
segprod[gn, t, k] <=
segprod[sc.name, gn, t, k] <=
g.cost_segments[k].mw[t] * is_on[gn, t] -
max(0, Cw - Cv) * switch_on[gn, t] -
(t < T ? Cw * switch_off[gn, t+1] : 0.0)
@@ -87,22 +88,22 @@ function _add_production_piecewise_linear_eqs!(
# Definition of production
# Equation (43) in Kneuven et al. (2020)
eq_prod_above_def[gn, t] = @constraint(
eq_prod_above_def[sc.name, gn, t] = @constraint(
model,
prod_above[gn, t] == sum(segprod[gn, t, k] for k in 1:K)
prod_above[sc.name, gn, t] == sum(segprod[sc.name, gn, t, k] for k in 1:K)
)
# Objective function
# Equation (44) in Kneuven et al. (2020)
add_to_expression!(
model[:obj],
segprod[gn, t, k],
segprod[sc.name, gn, t, k],
g.cost_segments[k].cost[t],
)
# Also add an explicit upper bound on segprod to make the solver's
# work a bit easier
set_upper_bound(segprod[gn, t, k], g.cost_segments[k].mw[t])
set_upper_bound(segprod[sc.name, gn, t, k], g.cost_segments[k].mw[t])
end
end
end

View File

@@ -8,6 +8,7 @@ function _add_ramp_eqs!(
formulation_prod_vars::Gar1962.ProdVars,
formulation_ramping::MorLatRam2013.Ramping,
formulation_status_vars::Gar1962.StatusVars,
sc::UnitCommitmentScenario
)::Nothing
# TODO: Move upper case constants to model[:instance]
RESERVES_WHEN_START_UP = true
@@ -22,7 +23,7 @@ function _add_ramp_eqs!(
gn = g.name
eq_ramp_down = _init(model, :eq_ramp_down)
eq_ramp_up = _init(model, :eq_str_ramp_up)
reserve = _total_reserves(model, g)
reserve = _total_reserves(model, g, sc)
# Gar1962.ProdVars
prod_above = model[:prod_above]
@@ -39,10 +40,10 @@ function _add_ramp_eqs!(
# Ramp up limit
if t == 1
if is_initially_on
eq_ramp_up[gn, t] = @constraint(
eq_ramp_up[sc.name, gn, t] = @constraint(
model,
g.min_power[t] +
prod_above[gn, t] +
prod_above[sc.name, gn, t] +
(RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0) <=
g.initial_power + RU
)
@@ -58,13 +59,13 @@ function _add_ramp_eqs!(
SU = g.startup_limit
max_prod_this_period =
g.min_power[t] * is_on[gn, t] +
prod_above[gn, t] +
prod_above[sc.name, gn, t] +
(
RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ?
reserve[t] : 0.0
)
min_prod_last_period =
g.min_power[t-1] * is_on[gn, t-1] + prod_above[gn, t-1]
g.min_power[t-1] * is_on[gn, t-1] + prod_above[sc.name, gn, t-1]
eq_ramp_up[gn, t] = @constraint(
model,
max_prod_this_period - min_prod_last_period <=
@@ -74,11 +75,11 @@ function _add_ramp_eqs!(
# Equation (26) in Kneuven et al. (2020)
# TODO: what if RU < SU? places too stringent upper bound
# prod_above[gn, t] when starting up, and creates diff with (24).
eq_ramp_up[gn, t] = @constraint(
eq_ramp_up[sc.name, gn, t] = @constraint(
model,
prod_above[gn, t] +
prod_above[sc.name, gn, t] +
(RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0) -
prod_above[gn, t-1] <= RU
prod_above[sc.name, gn, t-1] <= RU
)
end
end
@@ -90,9 +91,9 @@ function _add_ramp_eqs!(
# min_power + RD < initial_power < SD
# then the generator should be able to shut down at time t = 1,
# but the constraint below will force the unit to produce power
eq_ramp_down[gn, t] = @constraint(
eq_ramp_down[sc.name, gn, t] = @constraint(
model,
g.initial_power - (g.min_power[t] + prod_above[gn, t]) <= RD
g.initial_power - (g.min_power[t] + prod_above[sc.name, gn, t]) <= RD
)
end
else
@@ -102,13 +103,13 @@ function _add_ramp_eqs!(
SD = g.shutdown_limit
max_prod_last_period =
g.min_power[t-1] * is_on[gn, t-1] +
prod_above[gn, t-1] +
prod_above[sc.name, gn, t-1] +
(
RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN ?
reserve[t-1] : 0.0
)
min_prod_this_period =
g.min_power[t] * is_on[gn, t] + prod_above[gn, t]
g.min_power[t] * is_on[gn, t] + prod_above[sc.name, gn, t]
eq_ramp_down[gn, t] = @constraint(
model,
max_prod_last_period - min_prod_this_period <=
@@ -118,11 +119,11 @@ function _add_ramp_eqs!(
# Equation (27) in Kneuven et al. (2020)
# TODO: Similar to above, what to do if shutting down in time t
# and RD < SD? There is a difference with (25).
eq_ramp_down[gn, t] = @constraint(
eq_ramp_down[sc.name, gn, t] = @constraint(
model,
prod_above[gn, t-1] +
prod_above[sc.name, gn, t-1] +
(RESERVES_WHEN_RAMP_DOWN ? reserve[t-1] : 0.0) -
prod_above[gn, t] <= RD
prod_above[sc.name, gn, t] <= RD
)
end
end

View File

@@ -8,11 +8,12 @@ function _add_ramp_eqs!(
formulation_prod_vars::Gar1962.ProdVars,
formulation_ramping::PanGua2016.Ramping,
formulation_status_vars::Gar1962.StatusVars,
sc::UnitCommitmentScenario
)::Nothing
# TODO: Move upper case constants to model[:instance]
RESERVES_WHEN_SHUT_DOWN = true
gn = g.name
reserve = _total_reserves(model, g)
reserve = _total_reserves(model, g, sc)
eq_str_prod_limit = _init(model, :eq_str_prod_limit)
eq_prod_limit_ramp_up_extra_period =
_init(model, :eq_prod_limit_ramp_up_extra_period)
@@ -52,9 +53,9 @@ function _add_ramp_eqs!(
# Generalization of (20)
# Necessary that if any of the switch_on = 1 in the sum,
# then switch_off[gn, t+1] = 0
eq_str_prod_limit[gn, t] = @constraint(
eq_str_prod_limit[sc.name, gn, t] = @constraint(
model,
prod_above[gn, t] +
prod_above[sc.name, gn, t] +
g.min_power[t] * is_on[gn, t] +
reserve[t] <=
Pbar * is_on[gn, t] -
@@ -67,9 +68,9 @@ function _add_ramp_eqs!(
if UT - 2 < TRU
# Equation (40) in Kneuven et al. (2020)
# Covers an additional time period of the ramp-up trajectory, compared to (38)
eq_prod_limit_ramp_up_extra_period[gn, t] = @constraint(
eq_prod_limit_ramp_up_extra_period[sc.name, gn, t] = @constraint(
model,
prod_above[gn, t] +
prod_above[sc.name, gn, t] +
g.min_power[t] * is_on[gn, t] +
reserve[t] <=
Pbar * is_on[gn, t] - sum(
@@ -84,9 +85,9 @@ function _add_ramp_eqs!(
if KSD > 0
KSU = min(TRU, UT - 2 - KSD, t - 1)
# Equation (41) in Kneuven et al. (2020)
eq_prod_limit_shutdown_trajectory[gn, t] = @constraint(
eq_prod_limit_shutdown_trajectory[sc.name, gn, t] = @constraint(
model,
prod_above[gn, t] +
prod_above[sc.name, gn, t] +
g.min_power[t] * is_on[gn, t] +
(RESERVES_WHEN_SHUT_DOWN ? reserve[t] : 0.0) <=
Pbar * is_on[gn, t] - sum(

View File

@@ -8,6 +8,7 @@ function _add_ramp_eqs!(
::Gar1962.ProdVars,
::WanHob2016.Ramping,
::Gar1962.StatusVars,
sc::UnitCommitmentScenario
)::Nothing
is_initially_on = (g.initial_status > 0)
SU = g.startup_limit
@@ -29,7 +30,7 @@ function _add_ramp_eqs!(
error("Each generator may only provide one flexiramp reserve")
end
for r in g.reserves
if r.type !== "flexiramp"
if r.type !== "up-frp" && r.type !== "down-frp"
error(
"This formulation only supports flexiramp reserves, not $(r.type)",
)
@@ -38,41 +39,41 @@ function _add_ramp_eqs!(
for t in 1:model[:instance].time
@constraint(
model,
prod_above[gn, t] + (is_on[gn, t] * minp[t]) <= mfg[rn, gn, t]
prod_above[sc.name, gn, t] + (is_on[gn, t] * minp[t]) <= mfg[sc.name, rn, gn, t]
) # Eq. (19) in Wang & Hobbs (2016)
@constraint(model, mfg[rn, gn, t] <= is_on[gn, t] * maxp[t]) # Eq. (22) in Wang & Hobbs (2016)
@constraint(model, mfg[sc.name, rn, gn, t] <= is_on[gn, t] * maxp[t]) # Eq. (22) in Wang & Hobbs (2016)
if t != model[:instance].time
@constraint(
model,
minp[t] * (is_on[gn, t+1] + is_on[gn, t] - 1) <=
prod_above[gn, t] - dwflexiramp[rn, gn, t] +
prod_above[sc.name, gn, t] - dwflexiramp[sc.name, rn, gn, t] +
(is_on[gn, t] * minp[t])
) # first inequality of Eq. (20) in Wang & Hobbs (2016)
@constraint(
model,
prod_above[gn, t] - dwflexiramp[rn, gn, t] +
prod_above[sc.name, gn, t] - dwflexiramp[sc.name, rn, gn, t] +
(is_on[gn, t] * minp[t]) <=
mfg[rn, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
mfg[sc.name, rn, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
) # second inequality of Eq. (20) in Wang & Hobbs (2016)
@constraint(
model,
minp[t] * (is_on[gn, t+1] + is_on[gn, t] - 1) <=
prod_above[gn, t] +
upflexiramp[rn, gn, t] +
prod_above[sc.name, gn, t] +
upflexiramp[sc.name, rn, gn, t] +
(is_on[gn, t] * minp[t])
) # first inequality of Eq. (21) in Wang & Hobbs (2016)
@constraint(
model,
prod_above[gn, t] +
upflexiramp[rn, gn, t] +
prod_above[sc.name, gn, t] +
upflexiramp[sc.name, rn, gn, t] +
(is_on[gn, t] * minp[t]) <=
mfg[rn, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
mfg[sc.name, rn, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
) # second inequality of Eq. (21) in Wang & Hobbs (2016)
if t != 1
@constraint(
model,
mfg[rn, gn, t] <=
prod_above[gn, t-1] +
mfg[sc.name, rn, gn, t] <=
prod_above[sc.name, gn, t-1] +
(is_on[gn, t-1] * minp[t]) +
(RU * is_on[gn, t-1]) +
(SU * (is_on[gn, t] - is_on[gn, t-1])) +
@@ -80,8 +81,8 @@ function _add_ramp_eqs!(
) # Eq. (23) in Wang & Hobbs (2016)
@constraint(
model,
(prod_above[gn, t-1] + (is_on[gn, t-1] * minp[t])) -
(prod_above[gn, t] + (is_on[gn, t] * minp[t])) <=
(prod_above[sc.name, gn, t-1] + (is_on[gn, t-1] * minp[t])) -
(prod_above[sc.name, gn, t] + (is_on[gn, t] * minp[t])) <=
RD * is_on[gn, t] +
SD * (is_on[gn, t-1] - is_on[gn, t]) +
maxp[t] * (1 - is_on[gn, t-1])
@@ -89,7 +90,7 @@ function _add_ramp_eqs!(
else
@constraint(
model,
mfg[rn, gn, t] <=
mfg[sc.name, rn, gn, t] <=
initial_power +
(RU * is_initially_on) +
(SU * (is_on[gn, t] - is_initially_on)) +
@@ -98,7 +99,7 @@ function _add_ramp_eqs!(
@constraint(
model,
initial_power -
(prod_above[gn, t] + (is_on[gn, t] * minp[t])) <=
(prod_above[sc.name, gn, t] + (is_on[gn, t] * minp[t])) <=
RD * is_on[gn, t] +
SD * (is_initially_on - is_on[gn, t]) +
maxp[t] * (1 - is_initially_on)
@@ -106,7 +107,7 @@ function _add_ramp_eqs!(
end
@constraint(
model,
mfg[rn, gn, t] <=
mfg[sc.name, rn, gn, t] <=
(SD * (is_on[gn, t] - is_on[gn, t+1])) +
(maxp[t] * is_on[gn, t+1])
) # Eq. (24) in Wang & Hobbs (2016)
@@ -114,11 +115,11 @@ function _add_ramp_eqs!(
model,
-RD * is_on[gn, t+1] -
SD * (is_on[gn, t] - is_on[gn, t+1]) -
maxp[t] * (1 - is_on[gn, t]) <= upflexiramp[rn, gn, t]
maxp[t] * (1 - is_on[gn, t]) <= upflexiramp[sc.name, rn, gn, t]
) # first inequality of Eq. (26) in Wang & Hobbs (2016)
@constraint(
model,
upflexiramp[rn, gn, t] <=
upflexiramp[sc.name, rn, gn, t] <=
RU * is_on[gn, t] +
SU * (is_on[gn, t+1] - is_on[gn, t]) +
maxp[t] * (1 - is_on[gn, t+1])
@@ -126,11 +127,11 @@ function _add_ramp_eqs!(
@constraint(
model,
-RU * is_on[gn, t] - SU * (is_on[gn, t+1] - is_on[gn, t]) -
maxp[t] * (1 - is_on[gn, t+1]) <= dwflexiramp[rn, gn, t]
maxp[t] * (1 - is_on[gn, t+1]) <= dwflexiramp[sc.name, rn, gn, t]
) # first inequality of Eq. (27) in Wang & Hobbs (2016)
@constraint(
model,
dwflexiramp[rn, gn, t] <=
dwflexiramp[sc.name, rn, gn, t] <=
RD * is_on[gn, t+1] +
SD * (is_on[gn, t] - is_on[gn, t+1]) +
maxp[t] * (1 - is_on[gn, t])
@@ -138,26 +139,26 @@ function _add_ramp_eqs!(
@constraint(
model,
-maxp[t] * is_on[gn, t] + minp[t] * is_on[gn, t+1] <=
upflexiramp[rn, gn, t]
upflexiramp[sc.name, rn, gn, t]
) # first inequality of Eq. (28) in Wang & Hobbs (2016)
@constraint(
model,
upflexiramp[rn, gn, t] <= maxp[t] * is_on[gn, t+1]
upflexiramp[sc.name, rn, gn, t] <= maxp[t] * is_on[gn, t+1]
) # second inequality of Eq. (28) in Wang & Hobbs (2016)
@constraint(
model,
-maxp[t] * is_on[gn, t+1] <= dwflexiramp[rn, gn, t]
-maxp[t] * is_on[gn, t+1] <= dwflexiramp[sc.name, rn, gn, t]
) # first inequality of Eq. (29) in Wang & Hobbs (2016)
@constraint(
model,
dwflexiramp[rn, gn, t] <=
dwflexiramp[sc.name, rn, gn, t] <=
(maxp[t] * is_on[gn, t]) - (minp[t] * is_on[gn, t+1])
) # second inequality of Eq. (29) in Wang & Hobbs (2016)
else
@constraint(
model,
mfg[rn, gn, t] <=
prod_above[gn, t-1] +
mfg[sc.name, rn, gn, t] <=
prod_above[sc.name, gn, t-1] +
(is_on[gn, t-1] * minp[t]) +
(RU * is_on[gn, t-1]) +
(SU * (is_on[gn, t] - is_on[gn, t-1])) +
@@ -165,8 +166,8 @@ function _add_ramp_eqs!(
) # Eq. (23) in Wang & Hobbs (2016) for the last time period
@constraint(
model,
(prod_above[gn, t-1] + (is_on[gn, t-1] * minp[t])) -
(prod_above[gn, t] + (is_on[gn, t] * minp[t])) <=
(prod_above[sc.name, gn, t-1] + (is_on[gn, t-1] * minp[t])) -
(prod_above[sc.name, gn, t] + (is_on[gn, t] * minp[t])) <=
RD * is_on[gn, t] +
SD * (is_on[gn, t-1] - is_on[gn, t]) +
maxp[t] * (1 - is_on[gn, t-1])

View File

@@ -2,22 +2,22 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function _add_bus!(model::JuMP.Model, b::Bus)::Nothing
function _add_bus!(model::JuMP.Model, b::Bus, sc::UnitCommitmentScenario)::Nothing
net_injection = _init(model, :expr_net_injection)
curtail = _init(model, :curtail)
for t in 1:model[:instance].time
# Fixed load
net_injection[b.name, t] = AffExpr(-b.load[t])
net_injection[sc.name, b.name, t] = AffExpr(-b.load[t])
# Load curtailment
curtail[b.name, t] =
curtail[sc.name, b.name, t] =
@variable(model, lower_bound = 0, upper_bound = b.load[t])
add_to_expression!(net_injection[b.name, t], curtail[b.name, t], 1.0)
add_to_expression!(net_injection[sc.name, b.name, t], curtail[sc.name, b.name, t], 1.0)
add_to_expression!(
model[:obj],
curtail[b.name, t],
model[:instance].power_balance_penalty[t],
curtail[sc.name, b.name, t],
sc.power_balance_penalty[t] * sc.probability,
)
end
return

View File

@@ -6,14 +6,15 @@ function _add_transmission_line!(
model::JuMP.Model,
lm::TransmissionLine,
f::ShiftFactorsFormulation,
sc::UnitCommitmentScenario
)::Nothing
overflow = _init(model, :overflow)
for t in 1:model[:instance].time
overflow[lm.name, t] = @variable(model, lower_bound = 0)
overflow[sc.name, lm.name, t] = @variable(model, lower_bound = 0)
add_to_expression!(
model[:obj],
overflow[lm.name, t],
lm.flow_limit_penalty[t],
overflow[sc.name, lm.name, t],
lm.flow_limit_penalty[t] * sc.probability,
)
end
return
@@ -22,27 +23,28 @@ end
function _setup_transmission(
model::JuMP.Model,
formulation::ShiftFactorsFormulation,
scenario::UnitCommitmentScenario
)::Nothing
instance = model[:instance]
isf = formulation.precomputed_isf
lodf = formulation.precomputed_lodf
if length(instance.buses) == 1
if length(scenario.buses) == 1
isf = zeros(0, 0)
lodf = zeros(0, 0)
elseif isf === nothing
@info "Computing injection shift factors..."
time_isf = @elapsed begin
isf = UnitCommitment._injection_shift_factors(
lines = instance.lines,
buses = instance.buses,
lines = scenario.lines,
buses = scenario.buses,
)
end
@info @sprintf("Computed ISF in %.2f seconds", time_isf)
@info "Computing line outage factors..."
time_lodf = @elapsed begin
lodf = UnitCommitment._line_outage_factors(
lines = instance.lines,
buses = instance.buses,
lines = scenario.lines,
buses = scenario.buses,
isf = isf,
)
end
@@ -55,7 +57,7 @@ function _setup_transmission(
isf[abs.(isf).<formulation.isf_cutoff] .= 0
lodf[abs.(lodf).<formulation.lodf_cutoff] .= 0
end
model[:isf] = isf
model[:lodf] = lodf
scenario.isf = isf
scenario.lodf = lodf
return
end

View File

@@ -5,21 +5,23 @@
function _add_price_sensitive_load!(
model::JuMP.Model,
ps::PriceSensitiveLoad,
sc::UnitCommitmentScenario
)::Nothing
loads = _init(model, :loads)
net_injection = _init(model, :expr_net_injection)
for t in 1:model[:instance].time
# Decision variable
loads[ps.name, t] =
loads[sc.name, ps.name, t] =
@variable(model, lower_bound = 0, upper_bound = ps.demand[t])
# Objective function terms
add_to_expression!(model[:obj], loads[ps.name, t], -ps.revenue[t])
add_to_expression!(model[:obj], loads[ps.name, t],
-ps.revenue[t] * sc.probability)
# Net injection
add_to_expression!(
net_injection[ps.bus.name, t],
loads[ps.name, t],
net_injection[sc.name, ps.bus.name, t],
loads[sc.name, ps.name, t],
-1.0,
)
end

View File

@@ -18,7 +18,7 @@ function _injection_shift_factors(;
lines::Array{TransmissionLine},
)
susceptance = _susceptance_matrix(lines)
incidence = _reduced_incidence_matrix(lines = lines, buses = buses)
incidence = _reduced_incidence_matrix(buses = buses, lines = lines)
laplacian = transpose(incidence) * susceptance * incidence
isf = susceptance * incidence * inv(Array(laplacian))
return isf

View File

@@ -2,54 +2,54 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function _add_system_wide_eqs!(model::JuMP.Model)::Nothing
_add_net_injection_eqs!(model)
_add_spinning_reserve_eqs!(model)
_add_flexiramp_reserve_eqs!(model)
function _add_system_wide_eqs!(model::JuMP.Model, sc::UnitCommitmentScenario)::Nothing
_add_net_injection_eqs!(model, sc)
_add_spinning_reserve_eqs!(model, sc)
_add_flexiramp_reserve_eqs!(model, sc)
return
end
function _add_net_injection_eqs!(model::JuMP.Model)::Nothing
function _add_net_injection_eqs!(model::JuMP.Model, sc::UnitCommitmentScenario)::Nothing
T = model[:instance].time
net_injection = _init(model, :net_injection)
eq_net_injection = _init(model, :eq_net_injection)
eq_power_balance = _init(model, :eq_power_balance)
for t in 1:T, b in model[:instance].buses
n = net_injection[b.name, t] = @variable(model)
eq_net_injection[b.name, t] =
@constraint(model, -n + model[:expr_net_injection][b.name, t] == 0)
for t in 1:T, b in sc.buses
n = net_injection[sc.name, b.name, t] = @variable(model)
eq_net_injection[sc.name, b.name, t] =
@constraint(model, -n + model[:expr_net_injection][sc.name, b.name, t] == 0)
end
for t in 1:T
eq_power_balance[t] = @constraint(
eq_power_balance[sc.name, t] = @constraint(
model,
sum(net_injection[b.name, t] for b in model[:instance].buses) == 0
sum(net_injection[sc.name, b.name, t] for b in sc.buses) == 0
)
end
return
end
function _add_spinning_reserve_eqs!(model::JuMP.Model)::Nothing
instance = model[:instance]
function _add_spinning_reserve_eqs!(model::JuMP.Model, sc::UnitCommitmentScenario)::Nothing
T = model[:instance].time
eq_min_spinning_reserve = _init(model, :eq_min_spinning_reserve)
for r in instance.reserves
for r in sc.reserves
r.type == "spinning" || continue
for t in 1:instance.time
for t in 1:T
# Equation (68) in Kneuven et al. (2020)
# As in Morales-España et al. (2013a)
# Akin to the alternative formulation with max_power_avail
# from Carrión and Arroyo (2006) and Ostrowski et al. (2012)
eq_min_spinning_reserve[r.name, t] = @constraint(
eq_min_spinning_reserve[sc.name, r.name, t] = @constraint(
model,
sum(model[:reserve][r.name, g.name, t] for g in r.units) +
model[:reserve_shortfall][r.name, t] >= r.amount[t]
sum(model[:reserve][sc.name, r.name, g.name, t] for g in r.units) +
model[:reserve_shortfall][sc.name, r.name, t] >= r.amount[t]
)
# Account for shortfall contribution to objective
if r.shortfall_penalty >= 0
add_to_expression!(
model[:obj],
r.shortfall_penalty,
model[:reserve_shortfall][r.name, t],
r.shortfall_penalty * sc.probability,
model[:reserve_shortfall][sc.name, r.name, t],
)
end
end
@@ -57,7 +57,7 @@ function _add_spinning_reserve_eqs!(model::JuMP.Model)::Nothing
return
end
function _add_flexiramp_reserve_eqs!(model::JuMP.Model)::Nothing
function _add_flexiramp_reserve_eqs!(model::JuMP.Model, sc::UnitCommitmentScenario)::Nothing
# Note: The flexpramp requirements in Wang & Hobbs (2016) are imposed as hard constraints
# through Eq. (17) and Eq. (18). The constraints eq_min_upflexiramp and eq_min_dwflexiramp
# provided below are modified versions of Eq. (17) and Eq. (18), respectively, in that
@@ -65,31 +65,41 @@ function _add_flexiramp_reserve_eqs!(model::JuMP.Model)::Nothing
# objective function.
eq_min_upflexiramp = _init(model, :eq_min_upflexiramp)
eq_min_dwflexiramp = _init(model, :eq_min_dwflexiramp)
instance = model[:instance]
for r in instance.reserves
r.type == "flexiramp" || continue
for t in 1:instance.time
# Eq. (17) in Wang & Hobbs (2016)
eq_min_upflexiramp[r.name, t] = @constraint(
model,
sum(model[:upflexiramp][r.name, g.name, t] for g in r.units) + model[:upflexiramp_shortfall][r.name, t] >= r.amount[t]
)
# Eq. (18) in Wang & Hobbs (2016)
eq_min_dwflexiramp[r.name, t] = @constraint(
model,
sum(model[:dwflexiramp][r.name, g.name, t] for g in r.units) + model[:dwflexiramp_shortfall][r.name, t] >= r.amount[t]
)
# Account for flexiramp shortfall contribution to objective
if r.shortfall_penalty >= 0
add_to_expression!(
model[:obj],
r.shortfall_penalty,
(
model[:upflexiramp_shortfall][r.name, t] +
model[:dwflexiramp_shortfall][r.name, t]
),
T = model[:instance].time
for r in sc.reserves
if r.type == "up-frp"
for t in 1:T
# Eq. (17) in Wang & Hobbs (2016)
eq_min_upflexiramp[sc.name, r.name, t] = @constraint(
model,
sum(model[:upflexiramp][sc.name, r.name, g.name, t] for g in r.units) +
model[:upflexiramp_shortfall][sc.name, r.name, t] >= r.amount[t]
)
# Account for flexiramp shortfall contribution to objective
if r.shortfall_penalty >= 0
add_to_expression!(
model[:obj],
r.shortfall_penalty * sc.probability,
model[:upflexiramp_shortfall][sc.name, r.name, t]
)
end
end
elseif r.type == "down-frp"
for t in 1:T
# Eq. (18) in Wang & Hobbs (2016)
eq_min_dwflexiramp[sc.name, r.name, t] = @constraint(
model,
sum(model[:dwflexiramp][sc.name, r.name, g.name, t] for g in r.units) +
model[:dwflexiramp_shortfall][sc.name, r.name, t] >= r.amount[t]
)
# Account for flexiramp shortfall contribution to objective
if r.shortfall_penalty >= 0
add_to_expression!(
model[:obj],
r.shortfall_penalty * sc.probability,
model[:dwflexiramp_shortfall][sc.name, r.name, t]
)
end
end
end
end

View File

@@ -2,7 +2,7 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function _add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation)
function _add_unit_first_stage!(model::JuMP.Model, g::Unit, formulation::Formulation)
if !all(g.must_run) && any(g.must_run)
error("Partially must-run units are not currently supported")
end
@@ -11,22 +11,34 @@ function _add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation)
end
# Variables
_add_production_vars!(model, g, formulation.prod_vars)
_add_spinning_reserve_vars!(model, g)
_add_flexiramp_reserve_vars!(model, g)
_add_startup_shutdown_vars!(model, g)
_add_status_vars!(model, g, formulation.status_vars)
# Constraints and objective function
_add_min_uptime_downtime_eqs!(model, g)
_add_net_injection_eqs!(model, g)
_add_production_limit_eqs!(model, g, formulation.prod_vars)
_add_startup_cost_eqs!(model, g, formulation.startup_costs)
_add_status_eqs!(model, g, formulation.status_vars)
return
end
function _add_unit_second_stage!(model::JuMP.Model, g::Unit, formulation::Formulation,
scenario::UnitCommitmentScenario)
# Variables
_add_production_vars!(model, g, formulation.prod_vars, scenario)
_add_spinning_reserve_vars!(model, g, scenario)
_add_flexiramp_reserve_vars!(model, g, scenario)
# Constraints and objective function
_add_net_injection_eqs!(model, g, scenario)
_add_production_limit_eqs!(model, g, formulation.prod_vars, scenario)
_add_production_piecewise_linear_eqs!(
model,
g,
formulation.prod_vars,
formulation.pwl_costs,
formulation.status_vars,
scenario
)
_add_ramp_eqs!(
model,
@@ -34,26 +46,64 @@ function _add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation)
formulation.prod_vars,
formulation.ramping,
formulation.status_vars,
scenario
)
_add_startup_cost_eqs!(model, g, formulation.startup_costs)
_add_startup_shutdown_limit_eqs!(model, g)
_add_status_eqs!(model, g, formulation.status_vars)
_add_startup_shutdown_limit_eqs!(model, g, scenario)
return
end
# function _add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation)
# if !all(g.must_run) && any(g.must_run)
# error("Partially must-run units are not currently supported")
# end
# if g.initial_power === nothing || g.initial_status === nothing
# error("Initial conditions for $(g.name) must be provided")
# end
# # Variables
# _add_production_vars!(model, g, formulation.prod_vars)
# _add_spinning_reserve_vars!(model, g)
# _add_flexiramp_reserve_vars!(model, g)
# _add_startup_shutdown_vars!(model, g)
# _add_status_vars!(model, g, formulation.status_vars)
# # Constraints and objective function
# _add_min_uptime_downtime_eqs!(model, g)
# _add_net_injection_eqs!(model, g)
# _add_production_limit_eqs!(model, g, formulation.prod_vars)
# _add_production_piecewise_linear_eqs!(
# model,
# g,
# formulation.prod_vars,
# formulation.pwl_costs,
# formulation.status_vars,
# )
# _add_ramp_eqs!(
# model,
# g,
# formulation.prod_vars,
# formulation.ramping,
# formulation.status_vars,
# )
# _add_startup_cost_eqs!(model, g, formulation.startup_costs)
# _add_startup_shutdown_limit_eqs!(model, g)
# _add_status_eqs!(model, g, formulation.status_vars)
# return
# end
_is_initially_on(g::Unit)::Float64 = (g.initial_status > 0 ? 1.0 : 0.0)
function _add_spinning_reserve_vars!(model::JuMP.Model, g::Unit)::Nothing
function _add_spinning_reserve_vars!(model::JuMP.Model, g::Unit, sc::UnitCommitmentScenario)::Nothing
reserve = _init(model, :reserve)
reserve_shortfall = _init(model, :reserve_shortfall)
for r in g.reserves
r.type == "spinning" || continue
for t in 1:model[:instance].time
reserve[r.name, g.name, t] = @variable(model, lower_bound = 0)
if (r.name, t) keys(reserve_shortfall)
reserve_shortfall[r.name, t] = @variable(model, lower_bound = 0)
reserve[sc.name, r.name, g.name, t] = @variable(model, lower_bound = 0)
if (sc.name, r.name, t) keys(reserve_shortfall)
reserve_shortfall[sc.name, r.name, t] = @variable(model, lower_bound = 0)
if r.shortfall_penalty < 0
set_upper_bound(reserve_shortfall[r.name, t], 0.0)
set_upper_bound(reserve_shortfall[sc.name, r.name, t], 0.0)
end
end
end
@@ -61,27 +111,35 @@ function _add_spinning_reserve_vars!(model::JuMP.Model, g::Unit)::Nothing
return
end
function _add_flexiramp_reserve_vars!(model::JuMP.Model, g::Unit)::Nothing
function _add_flexiramp_reserve_vars!(model::JuMP.Model, g::Unit, sc::UnitCommitmentScenario)::Nothing
upflexiramp = _init(model, :upflexiramp)
upflexiramp_shortfall = _init(model, :upflexiramp_shortfall)
mfg = _init(model, :mfg)
dwflexiramp = _init(model, :dwflexiramp)
dwflexiramp_shortfall = _init(model, :dwflexiramp_shortfall)
for r in g.reserves
r.type == "flexiramp" || continue
for t in 1:model[:instance].time
# maximum feasible generation, \bar{g_{its}} in Wang & Hobbs (2016)
mfg[r.name, g.name, t] = @variable(model, lower_bound = 0)
upflexiramp[r.name, g.name, t] = @variable(model) # up-flexiramp, ur_{it} in Wang & Hobbs (2016)
dwflexiramp[r.name, g.name, t] = @variable(model) # down-flexiramp, dr_{it} in Wang & Hobbs (2016)
if (r.name, t) keys(upflexiramp_shortfall)
upflexiramp_shortfall[r.name, t] =
@variable(model, lower_bound = 0)
dwflexiramp_shortfall[r.name, t] =
@variable(model, lower_bound = 0)
if r.shortfall_penalty < 0
set_upper_bound(upflexiramp_shortfall[r.name, t], 0.0)
set_upper_bound(dwflexiramp_shortfall[r.name, t], 0.0)
if r.type == "up-frp"
for t in 1:model[:instance].time
# maximum feasible generation, \bar{g_{its}} in Wang & Hobbs (2016)
mfg[sc.name, r.name, g.name, t] = @variable(model, lower_bound = 0)
upflexiramp[sc.name, r.name, g.name, t] = @variable(model) # up-flexiramp, ur_{it} in Wang & Hobbs (2016)
if (sc.name, r.name, t) keys(upflexiramp_shortfall)
upflexiramp_shortfall[sc.name, r.name, t] =
@variable(model, lower_bound = 0)
if r.shortfall_penalty < 0
set_upper_bound(upflexiramp_shortfall[sc.name, r.name, t], 0.0)
end
end
end
elseif r.type == "down-frp"
for t in 1:model[:instance].time
dwflexiramp[sc.name, r.name, g.name, t] = @variable(model) # down-flexiramp, dr_{it} in Wang & Hobbs (2016)
if (sc.name, r.name, t) keys(dwflexiramp_shortfall)
dwflexiramp_shortfall[sc.name, r.name, t] =
@variable(model, lower_bound = 0)
if r.shortfall_penalty < 0
set_upper_bound(dwflexiramp_shortfall[sc.name, r.name, t], 0.0)
end
end
end
end
@@ -99,32 +157,32 @@ function _add_startup_shutdown_vars!(model::JuMP.Model, g::Unit)::Nothing
return
end
function _add_startup_shutdown_limit_eqs!(model::JuMP.Model, g::Unit)::Nothing
function _add_startup_shutdown_limit_eqs!(model::JuMP.Model, g::Unit, sc::UnitCommitmentScenario)::Nothing
eq_shutdown_limit = _init(model, :eq_shutdown_limit)
eq_startup_limit = _init(model, :eq_startup_limit)
is_on = model[:is_on]
prod_above = model[:prod_above]
reserve = _total_reserves(model, g)
reserve = _total_reserves(model, g, sc)
switch_off = model[:switch_off]
switch_on = model[:switch_on]
T = model[:instance].time
for t in 1:T
# Startup limit
eq_startup_limit[g.name, t] = @constraint(
eq_startup_limit[sc.name, g.name, t] = @constraint(
model,
prod_above[g.name, t] + reserve[t] <=
prod_above[sc.name, g.name, t] + reserve[t] <=
(g.max_power[t] - g.min_power[t]) * is_on[g.name, t] -
max(0, g.max_power[t] - g.startup_limit) * switch_on[g.name, t]
)
# Shutdown limit
if g.initial_power > g.shutdown_limit
eq_shutdown_limit[g.name, 0] =
eq_shutdown_limit[sc.name, g.name, 0] =
@constraint(model, switch_off[g.name, 1] <= 0)
end
if t < T
eq_shutdown_limit[g.name, t] = @constraint(
eq_shutdown_limit[sc.name, g.name, t] = @constraint(
model,
prod_above[g.name, t] <=
prod_above[sc.name, g.name, t] <=
(g.max_power[t] - g.min_power[t]) * is_on[g.name, t] -
max(0, g.max_power[t] - g.shutdown_limit) *
switch_off[g.name, t+1]
@@ -138,43 +196,44 @@ function _add_ramp_eqs!(
model::JuMP.Model,
g::Unit,
formulation::RampingFormulation,
sc::UnitCommitmentScenario
)::Nothing
prod_above = model[:prod_above]
reserve = _total_reserves(model, g)
reserve = _total_reserves(model, g, sc)
eq_ramp_up = _init(model, :eq_ramp_up)
eq_ramp_down = _init(model, :eq_ramp_down)
for t in 1:model[:instance].time
# Ramp up limit
if t == 1
if _is_initially_on(g) == 1
eq_ramp_up[g.name, t] = @constraint(
eq_ramp_up[sc.name, g.name, t] = @constraint(
model,
prod_above[g.name, t] + reserve[t] <=
prod_above[sc.name, g.name, t] + reserve[t] <=
(g.initial_power - g.min_power[t]) + g.ramp_up_limit
)
end
else
eq_ramp_up[g.name, t] = @constraint(
eq_ramp_up[sc.name, g.name, t] = @constraint(
model,
prod_above[g.name, t] + reserve[t] <=
prod_above[g.name, t-1] + g.ramp_up_limit
prod_above[sc.name, g.name, t] + reserve[t] <=
prod_above[sc.name, g.name, t-1] + g.ramp_up_limit
)
end
# Ramp down limit
if t == 1
if _is_initially_on(g) == 1
eq_ramp_down[g.name, t] = @constraint(
eq_ramp_down[sc.name, g.name, t] = @constraint(
model,
prod_above[g.name, t] >=
prod_above[sc.name, g.name, t] >=
(g.initial_power - g.min_power[t]) - g.ramp_down_limit
)
end
else
eq_ramp_down[g.name, t] = @constraint(
eq_ramp_down[sc.name, g.name, t] = @constraint(
model,
prod_above[g.name, t] >=
prod_above[g.name, t-1] - g.ramp_down_limit
prod_above[sc.name, g.name, t] >=
prod_above[sc.name, g.name, t-1] - g.ramp_down_limit
)
end
end
@@ -223,30 +282,30 @@ function _add_min_uptime_downtime_eqs!(model::JuMP.Model, g::Unit)::Nothing
end
end
function _add_net_injection_eqs!(model::JuMP.Model, g::Unit)::Nothing
function _add_net_injection_eqs!(model::JuMP.Model, g::Unit, sc::UnitCommitmentScenario)::Nothing
expr_net_injection = model[:expr_net_injection]
for t in 1:model[:instance].time
# Add to net injection expression
add_to_expression!(
expr_net_injection[g.bus.name, t],
model[:prod_above][g.name, t],
expr_net_injection[sc.name, g.bus.name, t],
model[:prod_above][sc.name, g.name, t],
1.0,
)
add_to_expression!(
expr_net_injection[g.bus.name, t],
expr_net_injection[sc.name, g.bus.name, t],
model[:is_on][g.name, t],
g.min_power[t],
)
end
end
function _total_reserves(model, g)::Vector
function _total_reserves(model, g, sc)::Vector
T = model[:instance].time
reserve = [0.0 for _ in 1:T]
spinning_reserves = [r for r in g.reserves if r.type == "spinning"]
if !isempty(spinning_reserves)
reserve += [
sum(model[:reserve][r.name, g.name, t] for r in spinning_reserves) for t in 1:model[:instance].time
sum(model[:reserve][sc.name, r.name, g.name, t] for r in spinning_reserves) for t in 1:model[:instance].time
]
end
return reserve