mirror of
https://github.com/ANL-CEEESA/UnitCommitment.jl.git
synced 2025-12-07 16:58:51 -06:00
stochastic extension w/ scenarios
This commit is contained in:
@@ -8,6 +8,7 @@ function _add_ramp_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_ramping::ArrCon2000.Ramping,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
# TODO: Move upper case constants to model[:instance]
|
||||
RESERVES_WHEN_START_UP = true
|
||||
@@ -22,7 +23,7 @@ function _add_ramp_eqs!(
|
||||
eq_ramp_down = _init(model, :eq_ramp_down)
|
||||
eq_ramp_up = _init(model, :eq_ramp_up)
|
||||
is_initially_on = (g.initial_status > 0)
|
||||
reserve = _total_reserves(model, g)
|
||||
reserve = _total_reserves(model, g, sc)
|
||||
|
||||
# Gar1962.ProdVars
|
||||
prod_above = model[:prod_above]
|
||||
@@ -37,10 +38,10 @@ function _add_ramp_eqs!(
|
||||
if t == 1
|
||||
if is_initially_on
|
||||
# min power is _not_ multiplied by is_on because if !is_on, then ramp up is irrelevant
|
||||
eq_ramp_up[gn, t] = @constraint(
|
||||
eq_ramp_up[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
g.min_power[t] +
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
(RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0) <=
|
||||
g.initial_power + RU
|
||||
)
|
||||
@@ -48,16 +49,16 @@ function _add_ramp_eqs!(
|
||||
else
|
||||
max_prod_this_period =
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
(
|
||||
RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ?
|
||||
reserve[t] : 0.0
|
||||
)
|
||||
min_prod_last_period =
|
||||
g.min_power[t-1] * is_on[gn, t-1] + prod_above[gn, t-1]
|
||||
g.min_power[t-1] * is_on[gn, t-1] + prod_above[sc.name, gn, t-1]
|
||||
|
||||
# Equation (24) in Kneuven et al. (2020)
|
||||
eq_ramp_up[gn, t] = @constraint(
|
||||
eq_ramp_up[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_this_period - min_prod_last_period <=
|
||||
RU * is_on[gn, t-1] + SU * switch_on[gn, t]
|
||||
@@ -71,24 +72,24 @@ function _add_ramp_eqs!(
|
||||
# min_power + RD < initial_power < SD
|
||||
# then the generator should be able to shut down at time t = 1,
|
||||
# but the constraint below will force the unit to produce power
|
||||
eq_ramp_down[gn, t] = @constraint(
|
||||
eq_ramp_down[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
g.initial_power - (g.min_power[t] + prod_above[gn, t]) <= RD
|
||||
g.initial_power - (g.min_power[t] + prod_above[sc.name, gn, t]) <= RD
|
||||
)
|
||||
end
|
||||
else
|
||||
max_prod_last_period =
|
||||
g.min_power[t-1] * is_on[gn, t-1] +
|
||||
prod_above[gn, t-1] +
|
||||
prod_above[sc.name, gn, t-1] +
|
||||
(
|
||||
RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN ?
|
||||
reserve[t-1] : 0.0
|
||||
)
|
||||
min_prod_this_period =
|
||||
g.min_power[t] * is_on[gn, t] + prod_above[gn, t]
|
||||
g.min_power[t] * is_on[gn, t] + prod_above[sc.name, gn, t]
|
||||
|
||||
# Equation (25) in Kneuven et al. (2020)
|
||||
eq_ramp_down[gn, t] = @constraint(
|
||||
eq_ramp_down[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_last_period - min_prod_this_period <=
|
||||
RD * is_on[gn, t] + SD * switch_off[gn, t]
|
||||
|
||||
@@ -8,6 +8,7 @@ function _add_production_piecewise_linear_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_pwl_costs::CarArr2006.PwlCosts,
|
||||
formulation_status_vars::StatusVarsFormulation,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
eq_prod_above_def = _init(model, :eq_prod_above_def)
|
||||
eq_segprod_limit = _init(model, :eq_segprod_limit)
|
||||
@@ -26,28 +27,28 @@ function _add_production_piecewise_linear_eqs!(
|
||||
# difference between max power for segments k and k-1 so the
|
||||
# value of cost_segments[k].mw[t] is the max production *for
|
||||
# that segment*
|
||||
eq_segprod_limit[gn, t, k] = @constraint(
|
||||
eq_segprod_limit[sc.name, gn, t, k] = @constraint(
|
||||
model,
|
||||
segprod[gn, t, k] <= g.cost_segments[k].mw[t]
|
||||
segprod[sc.name, gn, t, k] <= g.cost_segments[k].mw[t]
|
||||
)
|
||||
|
||||
# Also add this as an explicit upper bound on segprod to make the
|
||||
# solver's work a bit easier
|
||||
set_upper_bound(segprod[gn, t, k], g.cost_segments[k].mw[t])
|
||||
set_upper_bound(segprod[sc.name, gn, t, k], g.cost_segments[k].mw[t])
|
||||
|
||||
# Definition of production
|
||||
# Equation (43) in Kneuven et al. (2020)
|
||||
eq_prod_above_def[gn, t] = @constraint(
|
||||
eq_prod_above_def[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] == sum(segprod[gn, t, k] for k in 1:K)
|
||||
prod_above[sc.name, gn, t] == sum(segprod[sc.name, gn, t, k] for k in 1:K)
|
||||
)
|
||||
|
||||
# Objective function
|
||||
# Equation (44) in Kneuven et al. (2020)
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
segprod[gn, t, k],
|
||||
g.cost_segments[k].cost[t],
|
||||
segprod[sc.name, gn, t, k],
|
||||
sc.probability * g.cost_segments[k].cost[t],
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
@@ -8,6 +8,7 @@ function _add_ramp_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_ramping::DamKucRajAta2016.Ramping,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
# TODO: Move upper case constants to model[:instance]
|
||||
RESERVES_WHEN_START_UP = true
|
||||
@@ -23,7 +24,7 @@ function _add_ramp_eqs!(
|
||||
gn = g.name
|
||||
eq_str_ramp_down = _init(model, :eq_str_ramp_down)
|
||||
eq_str_ramp_up = _init(model, :eq_str_ramp_up)
|
||||
reserve = _total_reserves(model, g)
|
||||
reserve = _total_reserves(model, g, sc)
|
||||
|
||||
# Gar1962.ProdVars
|
||||
prod_above = model[:prod_above]
|
||||
@@ -48,15 +49,15 @@ function _add_ramp_eqs!(
|
||||
# end
|
||||
|
||||
max_prod_this_period =
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
(RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0)
|
||||
min_prod_last_period = 0.0
|
||||
if t > 1 && time_invariant
|
||||
min_prod_last_period = prod_above[gn, t-1]
|
||||
min_prod_last_period = prod_above[sc.name, gn, t-1]
|
||||
|
||||
# Equation (35) in Kneuven et al. (2020)
|
||||
# Sparser version of (24)
|
||||
eq_str_ramp_up[gn, t] = @constraint(
|
||||
eq_str_ramp_up[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_this_period - min_prod_last_period <=
|
||||
(SU - g.min_power[t] - RU) * switch_on[gn, t] +
|
||||
@@ -65,7 +66,7 @@ function _add_ramp_eqs!(
|
||||
elseif (t == 1 && is_initially_on) || (t > 1 && !time_invariant)
|
||||
if t > 1
|
||||
min_prod_last_period =
|
||||
prod_above[gn, t-1] + g.min_power[t-1] * is_on[gn, t-1]
|
||||
prod_above[sc.name, gn, t-1] + g.min_power[t-1] * is_on[gn, t-1]
|
||||
else
|
||||
min_prod_last_period = max(g.initial_power, 0.0)
|
||||
end
|
||||
@@ -76,7 +77,7 @@ function _add_ramp_eqs!(
|
||||
|
||||
# Modified version of equation (35) in Kneuven et al. (2020)
|
||||
# Equivalent to (24)
|
||||
eq_str_ramp_up[gn, t] = @constraint(
|
||||
eq_str_ramp_up[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_this_period - min_prod_last_period <=
|
||||
(SU - RU) * switch_on[gn, t] + RU * is_on[gn, t]
|
||||
@@ -88,7 +89,7 @@ function _add_ramp_eqs!(
|
||||
t > 1 && (RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN) ?
|
||||
reserve[t-1] : 0.0
|
||||
)
|
||||
min_prod_this_period = prod_above[gn, t]
|
||||
min_prod_this_period = prod_above[sc.name, gn, t]
|
||||
on_last_period = 0.0
|
||||
if t > 1
|
||||
on_last_period = is_on[gn, t-1]
|
||||
@@ -98,7 +99,7 @@ function _add_ramp_eqs!(
|
||||
|
||||
if t > 1 && time_invariant
|
||||
# Equation (36) in Kneuven et al. (2020)
|
||||
eq_str_ramp_down[gn, t] = @constraint(
|
||||
eq_str_ramp_down[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_last_period - min_prod_this_period <=
|
||||
(SD - g.min_power[t] - RD) * switch_off[gn, t] +
|
||||
@@ -110,7 +111,7 @@ function _add_ramp_eqs!(
|
||||
|
||||
# Modified version of equation (36) in Kneuven et al. (2020)
|
||||
# Equivalent to (25)
|
||||
eq_str_ramp_down[gn, t] = @constraint(
|
||||
eq_str_ramp_down[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_last_period - min_prod_this_period <=
|
||||
(SD - RD) * switch_off[gn, t] + RD * on_last_period
|
||||
|
||||
@@ -6,14 +6,15 @@ function _add_production_vars!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
prod_above = _init(model, :prod_above)
|
||||
segprod = _init(model, :segprod)
|
||||
for t in 1:model[:instance].time
|
||||
for k in 1:length(g.cost_segments)
|
||||
segprod[g.name, t, k] = @variable(model, lower_bound = 0)
|
||||
segprod[sc.name, g.name, t, k] = @variable(model, lower_bound = 0)
|
||||
end
|
||||
prod_above[g.name, t] = @variable(model, lower_bound = 0)
|
||||
prod_above[sc.name, g.name, t] = @variable(model, lower_bound = 0)
|
||||
end
|
||||
return
|
||||
end
|
||||
@@ -22,16 +23,20 @@ function _add_production_limit_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
eq_prod_limit = _init(model, :eq_prod_limit)
|
||||
is_on = model[:is_on]
|
||||
prod_above = model[:prod_above]
|
||||
reserve = _total_reserves(model, g)
|
||||
reserve = _total_reserves(model, g, sc)
|
||||
gn = g.name
|
||||
for t in 1:model[:instance].time
|
||||
# Objective function terms for production costs
|
||||
# Part of (69) of Kneuven et al. (2020) as C^R_g * u_g(t) term
|
||||
add_to_expression!(model[:obj], is_on[gn, t], g.min_power_cost[t])
|
||||
|
||||
### Moving this term to another function
|
||||
# add_to_expression!(model[:obj], is_on[gn, t], g.min_power_cost[t])
|
||||
###
|
||||
|
||||
# Production limit
|
||||
# Equation (18) in Kneuven et al. (2020)
|
||||
@@ -42,9 +47,9 @@ function _add_production_limit_eqs!(
|
||||
if power_diff < 1e-7
|
||||
power_diff = 0.0
|
||||
end
|
||||
eq_prod_limit[gn, t] = @constraint(
|
||||
eq_prod_limit[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] + reserve[t] <= power_diff * is_on[gn, t]
|
||||
prod_above[sc.name, gn, t] + reserve[t] <= power_diff * is_on[gn, t]
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
@@ -8,6 +8,7 @@ function _add_production_piecewise_linear_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_pwl_costs::Gar1962.PwlCosts,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
eq_prod_above_def = _init(model, :eq_prod_above_def)
|
||||
eq_segprod_limit = _init(model, :eq_segprod_limit)
|
||||
@@ -24,9 +25,9 @@ function _add_production_piecewise_linear_eqs!(
|
||||
for t in 1:model[:instance].time
|
||||
# Definition of production
|
||||
# Equation (43) in Kneuven et al. (2020)
|
||||
eq_prod_above_def[gn, t] = @constraint(
|
||||
eq_prod_above_def[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] == sum(segprod[gn, t, k] for k in 1:K)
|
||||
prod_above[sc.name, gn, t] == sum(segprod[sc.name, gn, t, k] for k in 1:K)
|
||||
)
|
||||
|
||||
for k in 1:K
|
||||
@@ -37,21 +38,21 @@ function _add_production_piecewise_linear_eqs!(
|
||||
# difference between max power for segments k and k-1 so the
|
||||
# value of cost_segments[k].mw[t] is the max production *for
|
||||
# that segment*
|
||||
eq_segprod_limit[gn, t, k] = @constraint(
|
||||
eq_segprod_limit[sc.name, gn, t, k] = @constraint(
|
||||
model,
|
||||
segprod[gn, t, k] <= g.cost_segments[k].mw[t] * is_on[gn, t]
|
||||
segprod[sc.name, gn, t, k] <= g.cost_segments[k].mw[t] * is_on[gn, t]
|
||||
)
|
||||
|
||||
# Also add this as an explicit upper bound on segprod to make the
|
||||
# solver's work a bit easier
|
||||
set_upper_bound(segprod[gn, t, k], g.cost_segments[k].mw[t])
|
||||
set_upper_bound(segprod[sc.name, gn, t, k], g.cost_segments[k].mw[t])
|
||||
|
||||
# Objective function
|
||||
# Equation (44) in Kneuven et al. (2020)
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
segprod[gn, t, k],
|
||||
g.cost_segments[k].cost[t],
|
||||
segprod[sc.name, gn, t, k],
|
||||
sc.probability * g.cost_segments[k].cost[t],
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
@@ -20,6 +20,7 @@ function _add_status_vars!(
|
||||
switch_on[g.name, t] = @variable(model, binary = true)
|
||||
switch_off[g.name, t] = @variable(model, binary = true)
|
||||
end
|
||||
add_to_expression!(model[:obj], is_on[g.name, t], g.min_power_cost[t])
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
@@ -8,6 +8,7 @@ function _add_production_piecewise_linear_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_pwl_costs::KnuOstWat2018.PwlCosts,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
eq_prod_above_def = _init(model, :eq_prod_above_def)
|
||||
eq_segprod_limit_a = _init(model, :eq_segprod_limit_a)
|
||||
@@ -58,27 +59,27 @@ function _add_production_piecewise_linear_eqs!(
|
||||
|
||||
if g.min_uptime > 1
|
||||
# Equation (46) in Kneuven et al. (2020)
|
||||
eq_segprod_limit_a[gn, t, k] = @constraint(
|
||||
eq_segprod_limit_a[sc.name, gn, t, k] = @constraint(
|
||||
model,
|
||||
segprod[gn, t, k] <=
|
||||
segprod[sc.name, gn, t, k] <=
|
||||
g.cost_segments[k].mw[t] * is_on[gn, t] -
|
||||
Cv * switch_on[gn, t] -
|
||||
(t < T ? Cw * switch_off[gn, t+1] : 0.0)
|
||||
)
|
||||
else
|
||||
# Equation (47a)/(48a) in Kneuven et al. (2020)
|
||||
eq_segprod_limit_b[gn, t, k] = @constraint(
|
||||
eq_segprod_limit_b[sc.name, gn, t, k] = @constraint(
|
||||
model,
|
||||
segprod[gn, t, k] <=
|
||||
segprod[sc.name, gn, t, k] <=
|
||||
g.cost_segments[k].mw[t] * is_on[gn, t] -
|
||||
Cv * switch_on[gn, t] -
|
||||
(t < T ? max(0, Cv - Cw) * switch_off[gn, t+1] : 0.0)
|
||||
)
|
||||
|
||||
# Equation (47b)/(48b) in Kneuven et al. (2020)
|
||||
eq_segprod_limit_c[gn, t, k] = @constraint(
|
||||
eq_segprod_limit_c[sc.name, gn, t, k] = @constraint(
|
||||
model,
|
||||
segprod[gn, t, k] <=
|
||||
segprod[sc.name, gn, t, k] <=
|
||||
g.cost_segments[k].mw[t] * is_on[gn, t] -
|
||||
max(0, Cw - Cv) * switch_on[gn, t] -
|
||||
(t < T ? Cw * switch_off[gn, t+1] : 0.0)
|
||||
@@ -87,22 +88,22 @@ function _add_production_piecewise_linear_eqs!(
|
||||
|
||||
# Definition of production
|
||||
# Equation (43) in Kneuven et al. (2020)
|
||||
eq_prod_above_def[gn, t] = @constraint(
|
||||
eq_prod_above_def[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] == sum(segprod[gn, t, k] for k in 1:K)
|
||||
prod_above[sc.name, gn, t] == sum(segprod[sc.name, gn, t, k] for k in 1:K)
|
||||
)
|
||||
|
||||
# Objective function
|
||||
# Equation (44) in Kneuven et al. (2020)
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
segprod[gn, t, k],
|
||||
segprod[sc.name, gn, t, k],
|
||||
g.cost_segments[k].cost[t],
|
||||
)
|
||||
|
||||
# Also add an explicit upper bound on segprod to make the solver's
|
||||
# work a bit easier
|
||||
set_upper_bound(segprod[gn, t, k], g.cost_segments[k].mw[t])
|
||||
set_upper_bound(segprod[sc.name, gn, t, k], g.cost_segments[k].mw[t])
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
@@ -8,6 +8,7 @@ function _add_ramp_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_ramping::MorLatRam2013.Ramping,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
# TODO: Move upper case constants to model[:instance]
|
||||
RESERVES_WHEN_START_UP = true
|
||||
@@ -22,7 +23,7 @@ function _add_ramp_eqs!(
|
||||
gn = g.name
|
||||
eq_ramp_down = _init(model, :eq_ramp_down)
|
||||
eq_ramp_up = _init(model, :eq_str_ramp_up)
|
||||
reserve = _total_reserves(model, g)
|
||||
reserve = _total_reserves(model, g, sc)
|
||||
|
||||
# Gar1962.ProdVars
|
||||
prod_above = model[:prod_above]
|
||||
@@ -39,10 +40,10 @@ function _add_ramp_eqs!(
|
||||
# Ramp up limit
|
||||
if t == 1
|
||||
if is_initially_on
|
||||
eq_ramp_up[gn, t] = @constraint(
|
||||
eq_ramp_up[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
g.min_power[t] +
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
(RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0) <=
|
||||
g.initial_power + RU
|
||||
)
|
||||
@@ -58,13 +59,13 @@ function _add_ramp_eqs!(
|
||||
SU = g.startup_limit
|
||||
max_prod_this_period =
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
(
|
||||
RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ?
|
||||
reserve[t] : 0.0
|
||||
)
|
||||
min_prod_last_period =
|
||||
g.min_power[t-1] * is_on[gn, t-1] + prod_above[gn, t-1]
|
||||
g.min_power[t-1] * is_on[gn, t-1] + prod_above[sc.name, gn, t-1]
|
||||
eq_ramp_up[gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_this_period - min_prod_last_period <=
|
||||
@@ -74,11 +75,11 @@ function _add_ramp_eqs!(
|
||||
# Equation (26) in Kneuven et al. (2020)
|
||||
# TODO: what if RU < SU? places too stringent upper bound
|
||||
# prod_above[gn, t] when starting up, and creates diff with (24).
|
||||
eq_ramp_up[gn, t] = @constraint(
|
||||
eq_ramp_up[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
(RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0) -
|
||||
prod_above[gn, t-1] <= RU
|
||||
prod_above[sc.name, gn, t-1] <= RU
|
||||
)
|
||||
end
|
||||
end
|
||||
@@ -90,9 +91,9 @@ function _add_ramp_eqs!(
|
||||
# min_power + RD < initial_power < SD
|
||||
# then the generator should be able to shut down at time t = 1,
|
||||
# but the constraint below will force the unit to produce power
|
||||
eq_ramp_down[gn, t] = @constraint(
|
||||
eq_ramp_down[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
g.initial_power - (g.min_power[t] + prod_above[gn, t]) <= RD
|
||||
g.initial_power - (g.min_power[t] + prod_above[sc.name, gn, t]) <= RD
|
||||
)
|
||||
end
|
||||
else
|
||||
@@ -102,13 +103,13 @@ function _add_ramp_eqs!(
|
||||
SD = g.shutdown_limit
|
||||
max_prod_last_period =
|
||||
g.min_power[t-1] * is_on[gn, t-1] +
|
||||
prod_above[gn, t-1] +
|
||||
prod_above[sc.name, gn, t-1] +
|
||||
(
|
||||
RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN ?
|
||||
reserve[t-1] : 0.0
|
||||
)
|
||||
min_prod_this_period =
|
||||
g.min_power[t] * is_on[gn, t] + prod_above[gn, t]
|
||||
g.min_power[t] * is_on[gn, t] + prod_above[sc.name, gn, t]
|
||||
eq_ramp_down[gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_last_period - min_prod_this_period <=
|
||||
@@ -118,11 +119,11 @@ function _add_ramp_eqs!(
|
||||
# Equation (27) in Kneuven et al. (2020)
|
||||
# TODO: Similar to above, what to do if shutting down in time t
|
||||
# and RD < SD? There is a difference with (25).
|
||||
eq_ramp_down[gn, t] = @constraint(
|
||||
eq_ramp_down[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t-1] +
|
||||
prod_above[sc.name, gn, t-1] +
|
||||
(RESERVES_WHEN_RAMP_DOWN ? reserve[t-1] : 0.0) -
|
||||
prod_above[gn, t] <= RD
|
||||
prod_above[sc.name, gn, t] <= RD
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
@@ -8,11 +8,12 @@ function _add_ramp_eqs!(
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_ramping::PanGua2016.Ramping,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
# TODO: Move upper case constants to model[:instance]
|
||||
RESERVES_WHEN_SHUT_DOWN = true
|
||||
gn = g.name
|
||||
reserve = _total_reserves(model, g)
|
||||
reserve = _total_reserves(model, g, sc)
|
||||
eq_str_prod_limit = _init(model, :eq_str_prod_limit)
|
||||
eq_prod_limit_ramp_up_extra_period =
|
||||
_init(model, :eq_prod_limit_ramp_up_extra_period)
|
||||
@@ -52,9 +53,9 @@ function _add_ramp_eqs!(
|
||||
# Generalization of (20)
|
||||
# Necessary that if any of the switch_on = 1 in the sum,
|
||||
# then switch_off[gn, t+1] = 0
|
||||
eq_str_prod_limit[gn, t] = @constraint(
|
||||
eq_str_prod_limit[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
reserve[t] <=
|
||||
Pbar * is_on[gn, t] -
|
||||
@@ -67,9 +68,9 @@ function _add_ramp_eqs!(
|
||||
if UT - 2 < TRU
|
||||
# Equation (40) in Kneuven et al. (2020)
|
||||
# Covers an additional time period of the ramp-up trajectory, compared to (38)
|
||||
eq_prod_limit_ramp_up_extra_period[gn, t] = @constraint(
|
||||
eq_prod_limit_ramp_up_extra_period[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
reserve[t] <=
|
||||
Pbar * is_on[gn, t] - sum(
|
||||
@@ -84,9 +85,9 @@ function _add_ramp_eqs!(
|
||||
if KSD > 0
|
||||
KSU = min(TRU, UT - 2 - KSD, t - 1)
|
||||
# Equation (41) in Kneuven et al. (2020)
|
||||
eq_prod_limit_shutdown_trajectory[gn, t] = @constraint(
|
||||
eq_prod_limit_shutdown_trajectory[sc.name, gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
(RESERVES_WHEN_SHUT_DOWN ? reserve[t] : 0.0) <=
|
||||
Pbar * is_on[gn, t] - sum(
|
||||
|
||||
@@ -8,6 +8,7 @@ function _add_ramp_eqs!(
|
||||
::Gar1962.ProdVars,
|
||||
::WanHob2016.Ramping,
|
||||
::Gar1962.StatusVars,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
is_initially_on = (g.initial_status > 0)
|
||||
SU = g.startup_limit
|
||||
@@ -29,7 +30,7 @@ function _add_ramp_eqs!(
|
||||
error("Each generator may only provide one flexiramp reserve")
|
||||
end
|
||||
for r in g.reserves
|
||||
if r.type !== "flexiramp"
|
||||
if r.type !== "up-frp" && r.type !== "down-frp"
|
||||
error(
|
||||
"This formulation only supports flexiramp reserves, not $(r.type)",
|
||||
)
|
||||
@@ -38,41 +39,41 @@ function _add_ramp_eqs!(
|
||||
for t in 1:model[:instance].time
|
||||
@constraint(
|
||||
model,
|
||||
prod_above[gn, t] + (is_on[gn, t] * minp[t]) <= mfg[rn, gn, t]
|
||||
prod_above[sc.name, gn, t] + (is_on[gn, t] * minp[t]) <= mfg[sc.name, rn, gn, t]
|
||||
) # Eq. (19) in Wang & Hobbs (2016)
|
||||
@constraint(model, mfg[rn, gn, t] <= is_on[gn, t] * maxp[t]) # Eq. (22) in Wang & Hobbs (2016)
|
||||
@constraint(model, mfg[sc.name, rn, gn, t] <= is_on[gn, t] * maxp[t]) # Eq. (22) in Wang & Hobbs (2016)
|
||||
if t != model[:instance].time
|
||||
@constraint(
|
||||
model,
|
||||
minp[t] * (is_on[gn, t+1] + is_on[gn, t] - 1) <=
|
||||
prod_above[gn, t] - dwflexiramp[rn, gn, t] +
|
||||
prod_above[sc.name, gn, t] - dwflexiramp[sc.name, rn, gn, t] +
|
||||
(is_on[gn, t] * minp[t])
|
||||
) # first inequality of Eq. (20) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
prod_above[gn, t] - dwflexiramp[rn, gn, t] +
|
||||
prod_above[sc.name, gn, t] - dwflexiramp[sc.name, rn, gn, t] +
|
||||
(is_on[gn, t] * minp[t]) <=
|
||||
mfg[rn, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
|
||||
mfg[sc.name, rn, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
|
||||
) # second inequality of Eq. (20) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
minp[t] * (is_on[gn, t+1] + is_on[gn, t] - 1) <=
|
||||
prod_above[gn, t] +
|
||||
upflexiramp[rn, gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
upflexiramp[sc.name, rn, gn, t] +
|
||||
(is_on[gn, t] * minp[t])
|
||||
) # first inequality of Eq. (21) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
prod_above[gn, t] +
|
||||
upflexiramp[rn, gn, t] +
|
||||
prod_above[sc.name, gn, t] +
|
||||
upflexiramp[sc.name, rn, gn, t] +
|
||||
(is_on[gn, t] * minp[t]) <=
|
||||
mfg[rn, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
|
||||
mfg[sc.name, rn, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
|
||||
) # second inequality of Eq. (21) in Wang & Hobbs (2016)
|
||||
if t != 1
|
||||
@constraint(
|
||||
model,
|
||||
mfg[rn, gn, t] <=
|
||||
prod_above[gn, t-1] +
|
||||
mfg[sc.name, rn, gn, t] <=
|
||||
prod_above[sc.name, gn, t-1] +
|
||||
(is_on[gn, t-1] * minp[t]) +
|
||||
(RU * is_on[gn, t-1]) +
|
||||
(SU * (is_on[gn, t] - is_on[gn, t-1])) +
|
||||
@@ -80,8 +81,8 @@ function _add_ramp_eqs!(
|
||||
) # Eq. (23) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
(prod_above[gn, t-1] + (is_on[gn, t-1] * minp[t])) -
|
||||
(prod_above[gn, t] + (is_on[gn, t] * minp[t])) <=
|
||||
(prod_above[sc.name, gn, t-1] + (is_on[gn, t-1] * minp[t])) -
|
||||
(prod_above[sc.name, gn, t] + (is_on[gn, t] * minp[t])) <=
|
||||
RD * is_on[gn, t] +
|
||||
SD * (is_on[gn, t-1] - is_on[gn, t]) +
|
||||
maxp[t] * (1 - is_on[gn, t-1])
|
||||
@@ -89,7 +90,7 @@ function _add_ramp_eqs!(
|
||||
else
|
||||
@constraint(
|
||||
model,
|
||||
mfg[rn, gn, t] <=
|
||||
mfg[sc.name, rn, gn, t] <=
|
||||
initial_power +
|
||||
(RU * is_initially_on) +
|
||||
(SU * (is_on[gn, t] - is_initially_on)) +
|
||||
@@ -98,7 +99,7 @@ function _add_ramp_eqs!(
|
||||
@constraint(
|
||||
model,
|
||||
initial_power -
|
||||
(prod_above[gn, t] + (is_on[gn, t] * minp[t])) <=
|
||||
(prod_above[sc.name, gn, t] + (is_on[gn, t] * minp[t])) <=
|
||||
RD * is_on[gn, t] +
|
||||
SD * (is_initially_on - is_on[gn, t]) +
|
||||
maxp[t] * (1 - is_initially_on)
|
||||
@@ -106,7 +107,7 @@ function _add_ramp_eqs!(
|
||||
end
|
||||
@constraint(
|
||||
model,
|
||||
mfg[rn, gn, t] <=
|
||||
mfg[sc.name, rn, gn, t] <=
|
||||
(SD * (is_on[gn, t] - is_on[gn, t+1])) +
|
||||
(maxp[t] * is_on[gn, t+1])
|
||||
) # Eq. (24) in Wang & Hobbs (2016)
|
||||
@@ -114,11 +115,11 @@ function _add_ramp_eqs!(
|
||||
model,
|
||||
-RD * is_on[gn, t+1] -
|
||||
SD * (is_on[gn, t] - is_on[gn, t+1]) -
|
||||
maxp[t] * (1 - is_on[gn, t]) <= upflexiramp[rn, gn, t]
|
||||
maxp[t] * (1 - is_on[gn, t]) <= upflexiramp[sc.name, rn, gn, t]
|
||||
) # first inequality of Eq. (26) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
upflexiramp[rn, gn, t] <=
|
||||
upflexiramp[sc.name, rn, gn, t] <=
|
||||
RU * is_on[gn, t] +
|
||||
SU * (is_on[gn, t+1] - is_on[gn, t]) +
|
||||
maxp[t] * (1 - is_on[gn, t+1])
|
||||
@@ -126,11 +127,11 @@ function _add_ramp_eqs!(
|
||||
@constraint(
|
||||
model,
|
||||
-RU * is_on[gn, t] - SU * (is_on[gn, t+1] - is_on[gn, t]) -
|
||||
maxp[t] * (1 - is_on[gn, t+1]) <= dwflexiramp[rn, gn, t]
|
||||
maxp[t] * (1 - is_on[gn, t+1]) <= dwflexiramp[sc.name, rn, gn, t]
|
||||
) # first inequality of Eq. (27) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
dwflexiramp[rn, gn, t] <=
|
||||
dwflexiramp[sc.name, rn, gn, t] <=
|
||||
RD * is_on[gn, t+1] +
|
||||
SD * (is_on[gn, t] - is_on[gn, t+1]) +
|
||||
maxp[t] * (1 - is_on[gn, t])
|
||||
@@ -138,26 +139,26 @@ function _add_ramp_eqs!(
|
||||
@constraint(
|
||||
model,
|
||||
-maxp[t] * is_on[gn, t] + minp[t] * is_on[gn, t+1] <=
|
||||
upflexiramp[rn, gn, t]
|
||||
upflexiramp[sc.name, rn, gn, t]
|
||||
) # first inequality of Eq. (28) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
upflexiramp[rn, gn, t] <= maxp[t] * is_on[gn, t+1]
|
||||
upflexiramp[sc.name, rn, gn, t] <= maxp[t] * is_on[gn, t+1]
|
||||
) # second inequality of Eq. (28) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
-maxp[t] * is_on[gn, t+1] <= dwflexiramp[rn, gn, t]
|
||||
-maxp[t] * is_on[gn, t+1] <= dwflexiramp[sc.name, rn, gn, t]
|
||||
) # first inequality of Eq. (29) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
dwflexiramp[rn, gn, t] <=
|
||||
dwflexiramp[sc.name, rn, gn, t] <=
|
||||
(maxp[t] * is_on[gn, t]) - (minp[t] * is_on[gn, t+1])
|
||||
) # second inequality of Eq. (29) in Wang & Hobbs (2016)
|
||||
else
|
||||
@constraint(
|
||||
model,
|
||||
mfg[rn, gn, t] <=
|
||||
prod_above[gn, t-1] +
|
||||
mfg[sc.name, rn, gn, t] <=
|
||||
prod_above[sc.name, gn, t-1] +
|
||||
(is_on[gn, t-1] * minp[t]) +
|
||||
(RU * is_on[gn, t-1]) +
|
||||
(SU * (is_on[gn, t] - is_on[gn, t-1])) +
|
||||
@@ -165,8 +166,8 @@ function _add_ramp_eqs!(
|
||||
) # Eq. (23) in Wang & Hobbs (2016) for the last time period
|
||||
@constraint(
|
||||
model,
|
||||
(prod_above[gn, t-1] + (is_on[gn, t-1] * minp[t])) -
|
||||
(prod_above[gn, t] + (is_on[gn, t] * minp[t])) <=
|
||||
(prod_above[sc.name, gn, t-1] + (is_on[gn, t-1] * minp[t])) -
|
||||
(prod_above[sc.name, gn, t] + (is_on[gn, t] * minp[t])) <=
|
||||
RD * is_on[gn, t] +
|
||||
SD * (is_on[gn, t-1] - is_on[gn, t]) +
|
||||
maxp[t] * (1 - is_on[gn, t-1])
|
||||
|
||||
@@ -2,22 +2,22 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
function _add_bus!(model::JuMP.Model, b::Bus)::Nothing
|
||||
function _add_bus!(model::JuMP.Model, b::Bus, sc::UnitCommitmentScenario)::Nothing
|
||||
net_injection = _init(model, :expr_net_injection)
|
||||
curtail = _init(model, :curtail)
|
||||
for t in 1:model[:instance].time
|
||||
# Fixed load
|
||||
net_injection[b.name, t] = AffExpr(-b.load[t])
|
||||
net_injection[sc.name, b.name, t] = AffExpr(-b.load[t])
|
||||
|
||||
# Load curtailment
|
||||
curtail[b.name, t] =
|
||||
curtail[sc.name, b.name, t] =
|
||||
@variable(model, lower_bound = 0, upper_bound = b.load[t])
|
||||
|
||||
add_to_expression!(net_injection[b.name, t], curtail[b.name, t], 1.0)
|
||||
add_to_expression!(net_injection[sc.name, b.name, t], curtail[sc.name, b.name, t], 1.0)
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
curtail[b.name, t],
|
||||
model[:instance].power_balance_penalty[t],
|
||||
curtail[sc.name, b.name, t],
|
||||
sc.power_balance_penalty[t] * sc.probability,
|
||||
)
|
||||
end
|
||||
return
|
||||
|
||||
@@ -6,14 +6,15 @@ function _add_transmission_line!(
|
||||
model::JuMP.Model,
|
||||
lm::TransmissionLine,
|
||||
f::ShiftFactorsFormulation,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
overflow = _init(model, :overflow)
|
||||
for t in 1:model[:instance].time
|
||||
overflow[lm.name, t] = @variable(model, lower_bound = 0)
|
||||
overflow[sc.name, lm.name, t] = @variable(model, lower_bound = 0)
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
overflow[lm.name, t],
|
||||
lm.flow_limit_penalty[t],
|
||||
overflow[sc.name, lm.name, t],
|
||||
lm.flow_limit_penalty[t] * sc.probability,
|
||||
)
|
||||
end
|
||||
return
|
||||
@@ -22,27 +23,28 @@ end
|
||||
function _setup_transmission(
|
||||
model::JuMP.Model,
|
||||
formulation::ShiftFactorsFormulation,
|
||||
scenario::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
instance = model[:instance]
|
||||
isf = formulation.precomputed_isf
|
||||
lodf = formulation.precomputed_lodf
|
||||
if length(instance.buses) == 1
|
||||
if length(scenario.buses) == 1
|
||||
isf = zeros(0, 0)
|
||||
lodf = zeros(0, 0)
|
||||
elseif isf === nothing
|
||||
@info "Computing injection shift factors..."
|
||||
time_isf = @elapsed begin
|
||||
isf = UnitCommitment._injection_shift_factors(
|
||||
lines = instance.lines,
|
||||
buses = instance.buses,
|
||||
lines = scenario.lines,
|
||||
buses = scenario.buses,
|
||||
)
|
||||
end
|
||||
@info @sprintf("Computed ISF in %.2f seconds", time_isf)
|
||||
@info "Computing line outage factors..."
|
||||
time_lodf = @elapsed begin
|
||||
lodf = UnitCommitment._line_outage_factors(
|
||||
lines = instance.lines,
|
||||
buses = instance.buses,
|
||||
lines = scenario.lines,
|
||||
buses = scenario.buses,
|
||||
isf = isf,
|
||||
)
|
||||
end
|
||||
@@ -55,7 +57,7 @@ function _setup_transmission(
|
||||
isf[abs.(isf).<formulation.isf_cutoff] .= 0
|
||||
lodf[abs.(lodf).<formulation.lodf_cutoff] .= 0
|
||||
end
|
||||
model[:isf] = isf
|
||||
model[:lodf] = lodf
|
||||
scenario.isf = isf
|
||||
scenario.lodf = lodf
|
||||
return
|
||||
end
|
||||
|
||||
@@ -5,21 +5,23 @@
|
||||
function _add_price_sensitive_load!(
|
||||
model::JuMP.Model,
|
||||
ps::PriceSensitiveLoad,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
loads = _init(model, :loads)
|
||||
net_injection = _init(model, :expr_net_injection)
|
||||
for t in 1:model[:instance].time
|
||||
# Decision variable
|
||||
loads[ps.name, t] =
|
||||
loads[sc.name, ps.name, t] =
|
||||
@variable(model, lower_bound = 0, upper_bound = ps.demand[t])
|
||||
|
||||
# Objective function terms
|
||||
add_to_expression!(model[:obj], loads[ps.name, t], -ps.revenue[t])
|
||||
add_to_expression!(model[:obj], loads[ps.name, t],
|
||||
-ps.revenue[t] * sc.probability)
|
||||
|
||||
# Net injection
|
||||
add_to_expression!(
|
||||
net_injection[ps.bus.name, t],
|
||||
loads[ps.name, t],
|
||||
net_injection[sc.name, ps.bus.name, t],
|
||||
loads[sc.name, ps.name, t],
|
||||
-1.0,
|
||||
)
|
||||
end
|
||||
|
||||
@@ -18,7 +18,7 @@ function _injection_shift_factors(;
|
||||
lines::Array{TransmissionLine},
|
||||
)
|
||||
susceptance = _susceptance_matrix(lines)
|
||||
incidence = _reduced_incidence_matrix(lines = lines, buses = buses)
|
||||
incidence = _reduced_incidence_matrix(buses = buses, lines = lines)
|
||||
laplacian = transpose(incidence) * susceptance * incidence
|
||||
isf = susceptance * incidence * inv(Array(laplacian))
|
||||
return isf
|
||||
|
||||
@@ -2,54 +2,54 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
function _add_system_wide_eqs!(model::JuMP.Model)::Nothing
|
||||
_add_net_injection_eqs!(model)
|
||||
_add_spinning_reserve_eqs!(model)
|
||||
_add_flexiramp_reserve_eqs!(model)
|
||||
function _add_system_wide_eqs!(model::JuMP.Model, sc::UnitCommitmentScenario)::Nothing
|
||||
_add_net_injection_eqs!(model, sc)
|
||||
_add_spinning_reserve_eqs!(model, sc)
|
||||
_add_flexiramp_reserve_eqs!(model, sc)
|
||||
return
|
||||
end
|
||||
|
||||
function _add_net_injection_eqs!(model::JuMP.Model)::Nothing
|
||||
function _add_net_injection_eqs!(model::JuMP.Model, sc::UnitCommitmentScenario)::Nothing
|
||||
T = model[:instance].time
|
||||
net_injection = _init(model, :net_injection)
|
||||
eq_net_injection = _init(model, :eq_net_injection)
|
||||
eq_power_balance = _init(model, :eq_power_balance)
|
||||
for t in 1:T, b in model[:instance].buses
|
||||
n = net_injection[b.name, t] = @variable(model)
|
||||
eq_net_injection[b.name, t] =
|
||||
@constraint(model, -n + model[:expr_net_injection][b.name, t] == 0)
|
||||
for t in 1:T, b in sc.buses
|
||||
n = net_injection[sc.name, b.name, t] = @variable(model)
|
||||
eq_net_injection[sc.name, b.name, t] =
|
||||
@constraint(model, -n + model[:expr_net_injection][sc.name, b.name, t] == 0)
|
||||
end
|
||||
for t in 1:T
|
||||
eq_power_balance[t] = @constraint(
|
||||
eq_power_balance[sc.name, t] = @constraint(
|
||||
model,
|
||||
sum(net_injection[b.name, t] for b in model[:instance].buses) == 0
|
||||
sum(net_injection[sc.name, b.name, t] for b in sc.buses) == 0
|
||||
)
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
function _add_spinning_reserve_eqs!(model::JuMP.Model)::Nothing
|
||||
instance = model[:instance]
|
||||
function _add_spinning_reserve_eqs!(model::JuMP.Model, sc::UnitCommitmentScenario)::Nothing
|
||||
T = model[:instance].time
|
||||
eq_min_spinning_reserve = _init(model, :eq_min_spinning_reserve)
|
||||
for r in instance.reserves
|
||||
for r in sc.reserves
|
||||
r.type == "spinning" || continue
|
||||
for t in 1:instance.time
|
||||
for t in 1:T
|
||||
# Equation (68) in Kneuven et al. (2020)
|
||||
# As in Morales-España et al. (2013a)
|
||||
# Akin to the alternative formulation with max_power_avail
|
||||
# from Carrión and Arroyo (2006) and Ostrowski et al. (2012)
|
||||
eq_min_spinning_reserve[r.name, t] = @constraint(
|
||||
eq_min_spinning_reserve[sc.name, r.name, t] = @constraint(
|
||||
model,
|
||||
sum(model[:reserve][r.name, g.name, t] for g in r.units) +
|
||||
model[:reserve_shortfall][r.name, t] >= r.amount[t]
|
||||
sum(model[:reserve][sc.name, r.name, g.name, t] for g in r.units) +
|
||||
model[:reserve_shortfall][sc.name, r.name, t] >= r.amount[t]
|
||||
)
|
||||
|
||||
# Account for shortfall contribution to objective
|
||||
if r.shortfall_penalty >= 0
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
r.shortfall_penalty,
|
||||
model[:reserve_shortfall][r.name, t],
|
||||
r.shortfall_penalty * sc.probability,
|
||||
model[:reserve_shortfall][sc.name, r.name, t],
|
||||
)
|
||||
end
|
||||
end
|
||||
@@ -57,7 +57,7 @@ function _add_spinning_reserve_eqs!(model::JuMP.Model)::Nothing
|
||||
return
|
||||
end
|
||||
|
||||
function _add_flexiramp_reserve_eqs!(model::JuMP.Model)::Nothing
|
||||
function _add_flexiramp_reserve_eqs!(model::JuMP.Model, sc::UnitCommitmentScenario)::Nothing
|
||||
# Note: The flexpramp requirements in Wang & Hobbs (2016) are imposed as hard constraints
|
||||
# through Eq. (17) and Eq. (18). The constraints eq_min_upflexiramp and eq_min_dwflexiramp
|
||||
# provided below are modified versions of Eq. (17) and Eq. (18), respectively, in that
|
||||
@@ -65,31 +65,41 @@ function _add_flexiramp_reserve_eqs!(model::JuMP.Model)::Nothing
|
||||
# objective function.
|
||||
eq_min_upflexiramp = _init(model, :eq_min_upflexiramp)
|
||||
eq_min_dwflexiramp = _init(model, :eq_min_dwflexiramp)
|
||||
instance = model[:instance]
|
||||
for r in instance.reserves
|
||||
r.type == "flexiramp" || continue
|
||||
for t in 1:instance.time
|
||||
# Eq. (17) in Wang & Hobbs (2016)
|
||||
eq_min_upflexiramp[r.name, t] = @constraint(
|
||||
model,
|
||||
sum(model[:upflexiramp][r.name, g.name, t] for g in r.units) + model[:upflexiramp_shortfall][r.name, t] >= r.amount[t]
|
||||
)
|
||||
# Eq. (18) in Wang & Hobbs (2016)
|
||||
eq_min_dwflexiramp[r.name, t] = @constraint(
|
||||
model,
|
||||
sum(model[:dwflexiramp][r.name, g.name, t] for g in r.units) + model[:dwflexiramp_shortfall][r.name, t] >= r.amount[t]
|
||||
)
|
||||
|
||||
# Account for flexiramp shortfall contribution to objective
|
||||
if r.shortfall_penalty >= 0
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
r.shortfall_penalty,
|
||||
(
|
||||
model[:upflexiramp_shortfall][r.name, t] +
|
||||
model[:dwflexiramp_shortfall][r.name, t]
|
||||
),
|
||||
T = model[:instance].time
|
||||
for r in sc.reserves
|
||||
if r.type == "up-frp"
|
||||
for t in 1:T
|
||||
# Eq. (17) in Wang & Hobbs (2016)
|
||||
eq_min_upflexiramp[sc.name, r.name, t] = @constraint(
|
||||
model,
|
||||
sum(model[:upflexiramp][sc.name, r.name, g.name, t] for g in r.units) +
|
||||
model[:upflexiramp_shortfall][sc.name, r.name, t] >= r.amount[t]
|
||||
)
|
||||
# Account for flexiramp shortfall contribution to objective
|
||||
if r.shortfall_penalty >= 0
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
r.shortfall_penalty * sc.probability,
|
||||
model[:upflexiramp_shortfall][sc.name, r.name, t]
|
||||
)
|
||||
end
|
||||
end
|
||||
elseif r.type == "down-frp"
|
||||
for t in 1:T
|
||||
# Eq. (18) in Wang & Hobbs (2016)
|
||||
eq_min_dwflexiramp[sc.name, r.name, t] = @constraint(
|
||||
model,
|
||||
sum(model[:dwflexiramp][sc.name, r.name, g.name, t] for g in r.units) +
|
||||
model[:dwflexiramp_shortfall][sc.name, r.name, t] >= r.amount[t]
|
||||
)
|
||||
# Account for flexiramp shortfall contribution to objective
|
||||
if r.shortfall_penalty >= 0
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
r.shortfall_penalty * sc.probability,
|
||||
model[:dwflexiramp_shortfall][sc.name, r.name, t]
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
function _add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation)
|
||||
function _add_unit_first_stage!(model::JuMP.Model, g::Unit, formulation::Formulation)
|
||||
if !all(g.must_run) && any(g.must_run)
|
||||
error("Partially must-run units are not currently supported")
|
||||
end
|
||||
@@ -11,22 +11,34 @@ function _add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation)
|
||||
end
|
||||
|
||||
# Variables
|
||||
_add_production_vars!(model, g, formulation.prod_vars)
|
||||
_add_spinning_reserve_vars!(model, g)
|
||||
_add_flexiramp_reserve_vars!(model, g)
|
||||
_add_startup_shutdown_vars!(model, g)
|
||||
_add_status_vars!(model, g, formulation.status_vars)
|
||||
|
||||
# Constraints and objective function
|
||||
_add_min_uptime_downtime_eqs!(model, g)
|
||||
_add_net_injection_eqs!(model, g)
|
||||
_add_production_limit_eqs!(model, g, formulation.prod_vars)
|
||||
_add_startup_cost_eqs!(model, g, formulation.startup_costs)
|
||||
_add_status_eqs!(model, g, formulation.status_vars)
|
||||
return
|
||||
end
|
||||
|
||||
function _add_unit_second_stage!(model::JuMP.Model, g::Unit, formulation::Formulation,
|
||||
scenario::UnitCommitmentScenario)
|
||||
|
||||
# Variables
|
||||
_add_production_vars!(model, g, formulation.prod_vars, scenario)
|
||||
_add_spinning_reserve_vars!(model, g, scenario)
|
||||
_add_flexiramp_reserve_vars!(model, g, scenario)
|
||||
|
||||
# Constraints and objective function
|
||||
_add_net_injection_eqs!(model, g, scenario)
|
||||
_add_production_limit_eqs!(model, g, formulation.prod_vars, scenario)
|
||||
_add_production_piecewise_linear_eqs!(
|
||||
model,
|
||||
g,
|
||||
formulation.prod_vars,
|
||||
formulation.pwl_costs,
|
||||
formulation.status_vars,
|
||||
scenario
|
||||
)
|
||||
_add_ramp_eqs!(
|
||||
model,
|
||||
@@ -34,26 +46,64 @@ function _add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation)
|
||||
formulation.prod_vars,
|
||||
formulation.ramping,
|
||||
formulation.status_vars,
|
||||
scenario
|
||||
)
|
||||
_add_startup_cost_eqs!(model, g, formulation.startup_costs)
|
||||
_add_startup_shutdown_limit_eqs!(model, g)
|
||||
_add_status_eqs!(model, g, formulation.status_vars)
|
||||
_add_startup_shutdown_limit_eqs!(model, g, scenario)
|
||||
return
|
||||
end
|
||||
|
||||
# function _add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation)
|
||||
# if !all(g.must_run) && any(g.must_run)
|
||||
# error("Partially must-run units are not currently supported")
|
||||
# end
|
||||
# if g.initial_power === nothing || g.initial_status === nothing
|
||||
# error("Initial conditions for $(g.name) must be provided")
|
||||
# end
|
||||
|
||||
# # Variables
|
||||
# _add_production_vars!(model, g, formulation.prod_vars)
|
||||
# _add_spinning_reserve_vars!(model, g)
|
||||
# _add_flexiramp_reserve_vars!(model, g)
|
||||
# _add_startup_shutdown_vars!(model, g)
|
||||
# _add_status_vars!(model, g, formulation.status_vars)
|
||||
|
||||
# # Constraints and objective function
|
||||
# _add_min_uptime_downtime_eqs!(model, g)
|
||||
# _add_net_injection_eqs!(model, g)
|
||||
# _add_production_limit_eqs!(model, g, formulation.prod_vars)
|
||||
# _add_production_piecewise_linear_eqs!(
|
||||
# model,
|
||||
# g,
|
||||
# formulation.prod_vars,
|
||||
# formulation.pwl_costs,
|
||||
# formulation.status_vars,
|
||||
# )
|
||||
# _add_ramp_eqs!(
|
||||
# model,
|
||||
# g,
|
||||
# formulation.prod_vars,
|
||||
# formulation.ramping,
|
||||
# formulation.status_vars,
|
||||
# )
|
||||
# _add_startup_cost_eqs!(model, g, formulation.startup_costs)
|
||||
# _add_startup_shutdown_limit_eqs!(model, g)
|
||||
# _add_status_eqs!(model, g, formulation.status_vars)
|
||||
# return
|
||||
# end
|
||||
|
||||
_is_initially_on(g::Unit)::Float64 = (g.initial_status > 0 ? 1.0 : 0.0)
|
||||
|
||||
function _add_spinning_reserve_vars!(model::JuMP.Model, g::Unit)::Nothing
|
||||
function _add_spinning_reserve_vars!(model::JuMP.Model, g::Unit, sc::UnitCommitmentScenario)::Nothing
|
||||
reserve = _init(model, :reserve)
|
||||
reserve_shortfall = _init(model, :reserve_shortfall)
|
||||
for r in g.reserves
|
||||
r.type == "spinning" || continue
|
||||
for t in 1:model[:instance].time
|
||||
reserve[r.name, g.name, t] = @variable(model, lower_bound = 0)
|
||||
if (r.name, t) ∉ keys(reserve_shortfall)
|
||||
reserve_shortfall[r.name, t] = @variable(model, lower_bound = 0)
|
||||
reserve[sc.name, r.name, g.name, t] = @variable(model, lower_bound = 0)
|
||||
if (sc.name, r.name, t) ∉ keys(reserve_shortfall)
|
||||
reserve_shortfall[sc.name, r.name, t] = @variable(model, lower_bound = 0)
|
||||
if r.shortfall_penalty < 0
|
||||
set_upper_bound(reserve_shortfall[r.name, t], 0.0)
|
||||
set_upper_bound(reserve_shortfall[sc.name, r.name, t], 0.0)
|
||||
end
|
||||
end
|
||||
end
|
||||
@@ -61,27 +111,35 @@ function _add_spinning_reserve_vars!(model::JuMP.Model, g::Unit)::Nothing
|
||||
return
|
||||
end
|
||||
|
||||
function _add_flexiramp_reserve_vars!(model::JuMP.Model, g::Unit)::Nothing
|
||||
function _add_flexiramp_reserve_vars!(model::JuMP.Model, g::Unit, sc::UnitCommitmentScenario)::Nothing
|
||||
upflexiramp = _init(model, :upflexiramp)
|
||||
upflexiramp_shortfall = _init(model, :upflexiramp_shortfall)
|
||||
mfg = _init(model, :mfg)
|
||||
dwflexiramp = _init(model, :dwflexiramp)
|
||||
dwflexiramp_shortfall = _init(model, :dwflexiramp_shortfall)
|
||||
for r in g.reserves
|
||||
r.type == "flexiramp" || continue
|
||||
for t in 1:model[:instance].time
|
||||
# maximum feasible generation, \bar{g_{its}} in Wang & Hobbs (2016)
|
||||
mfg[r.name, g.name, t] = @variable(model, lower_bound = 0)
|
||||
upflexiramp[r.name, g.name, t] = @variable(model) # up-flexiramp, ur_{it} in Wang & Hobbs (2016)
|
||||
dwflexiramp[r.name, g.name, t] = @variable(model) # down-flexiramp, dr_{it} in Wang & Hobbs (2016)
|
||||
if (r.name, t) ∉ keys(upflexiramp_shortfall)
|
||||
upflexiramp_shortfall[r.name, t] =
|
||||
@variable(model, lower_bound = 0)
|
||||
dwflexiramp_shortfall[r.name, t] =
|
||||
@variable(model, lower_bound = 0)
|
||||
if r.shortfall_penalty < 0
|
||||
set_upper_bound(upflexiramp_shortfall[r.name, t], 0.0)
|
||||
set_upper_bound(dwflexiramp_shortfall[r.name, t], 0.0)
|
||||
if r.type == "up-frp"
|
||||
for t in 1:model[:instance].time
|
||||
# maximum feasible generation, \bar{g_{its}} in Wang & Hobbs (2016)
|
||||
mfg[sc.name, r.name, g.name, t] = @variable(model, lower_bound = 0)
|
||||
upflexiramp[sc.name, r.name, g.name, t] = @variable(model) # up-flexiramp, ur_{it} in Wang & Hobbs (2016)
|
||||
if (sc.name, r.name, t) ∉ keys(upflexiramp_shortfall)
|
||||
upflexiramp_shortfall[sc.name, r.name, t] =
|
||||
@variable(model, lower_bound = 0)
|
||||
if r.shortfall_penalty < 0
|
||||
set_upper_bound(upflexiramp_shortfall[sc.name, r.name, t], 0.0)
|
||||
end
|
||||
end
|
||||
end
|
||||
elseif r.type == "down-frp"
|
||||
for t in 1:model[:instance].time
|
||||
dwflexiramp[sc.name, r.name, g.name, t] = @variable(model) # down-flexiramp, dr_{it} in Wang & Hobbs (2016)
|
||||
if (sc.name, r.name, t) ∉ keys(dwflexiramp_shortfall)
|
||||
dwflexiramp_shortfall[sc.name, r.name, t] =
|
||||
@variable(model, lower_bound = 0)
|
||||
if r.shortfall_penalty < 0
|
||||
set_upper_bound(dwflexiramp_shortfall[sc.name, r.name, t], 0.0)
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
@@ -99,32 +157,32 @@ function _add_startup_shutdown_vars!(model::JuMP.Model, g::Unit)::Nothing
|
||||
return
|
||||
end
|
||||
|
||||
function _add_startup_shutdown_limit_eqs!(model::JuMP.Model, g::Unit)::Nothing
|
||||
function _add_startup_shutdown_limit_eqs!(model::JuMP.Model, g::Unit, sc::UnitCommitmentScenario)::Nothing
|
||||
eq_shutdown_limit = _init(model, :eq_shutdown_limit)
|
||||
eq_startup_limit = _init(model, :eq_startup_limit)
|
||||
is_on = model[:is_on]
|
||||
prod_above = model[:prod_above]
|
||||
reserve = _total_reserves(model, g)
|
||||
reserve = _total_reserves(model, g, sc)
|
||||
switch_off = model[:switch_off]
|
||||
switch_on = model[:switch_on]
|
||||
T = model[:instance].time
|
||||
for t in 1:T
|
||||
# Startup limit
|
||||
eq_startup_limit[g.name, t] = @constraint(
|
||||
eq_startup_limit[sc.name, g.name, t] = @constraint(
|
||||
model,
|
||||
prod_above[g.name, t] + reserve[t] <=
|
||||
prod_above[sc.name, g.name, t] + reserve[t] <=
|
||||
(g.max_power[t] - g.min_power[t]) * is_on[g.name, t] -
|
||||
max(0, g.max_power[t] - g.startup_limit) * switch_on[g.name, t]
|
||||
)
|
||||
# Shutdown limit
|
||||
if g.initial_power > g.shutdown_limit
|
||||
eq_shutdown_limit[g.name, 0] =
|
||||
eq_shutdown_limit[sc.name, g.name, 0] =
|
||||
@constraint(model, switch_off[g.name, 1] <= 0)
|
||||
end
|
||||
if t < T
|
||||
eq_shutdown_limit[g.name, t] = @constraint(
|
||||
eq_shutdown_limit[sc.name, g.name, t] = @constraint(
|
||||
model,
|
||||
prod_above[g.name, t] <=
|
||||
prod_above[sc.name, g.name, t] <=
|
||||
(g.max_power[t] - g.min_power[t]) * is_on[g.name, t] -
|
||||
max(0, g.max_power[t] - g.shutdown_limit) *
|
||||
switch_off[g.name, t+1]
|
||||
@@ -138,43 +196,44 @@ function _add_ramp_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation::RampingFormulation,
|
||||
sc::UnitCommitmentScenario
|
||||
)::Nothing
|
||||
prod_above = model[:prod_above]
|
||||
reserve = _total_reserves(model, g)
|
||||
reserve = _total_reserves(model, g, sc)
|
||||
eq_ramp_up = _init(model, :eq_ramp_up)
|
||||
eq_ramp_down = _init(model, :eq_ramp_down)
|
||||
for t in 1:model[:instance].time
|
||||
# Ramp up limit
|
||||
if t == 1
|
||||
if _is_initially_on(g) == 1
|
||||
eq_ramp_up[g.name, t] = @constraint(
|
||||
eq_ramp_up[sc.name, g.name, t] = @constraint(
|
||||
model,
|
||||
prod_above[g.name, t] + reserve[t] <=
|
||||
prod_above[sc.name, g.name, t] + reserve[t] <=
|
||||
(g.initial_power - g.min_power[t]) + g.ramp_up_limit
|
||||
)
|
||||
end
|
||||
else
|
||||
eq_ramp_up[g.name, t] = @constraint(
|
||||
eq_ramp_up[sc.name, g.name, t] = @constraint(
|
||||
model,
|
||||
prod_above[g.name, t] + reserve[t] <=
|
||||
prod_above[g.name, t-1] + g.ramp_up_limit
|
||||
prod_above[sc.name, g.name, t] + reserve[t] <=
|
||||
prod_above[sc.name, g.name, t-1] + g.ramp_up_limit
|
||||
)
|
||||
end
|
||||
|
||||
# Ramp down limit
|
||||
if t == 1
|
||||
if _is_initially_on(g) == 1
|
||||
eq_ramp_down[g.name, t] = @constraint(
|
||||
eq_ramp_down[sc.name, g.name, t] = @constraint(
|
||||
model,
|
||||
prod_above[g.name, t] >=
|
||||
prod_above[sc.name, g.name, t] >=
|
||||
(g.initial_power - g.min_power[t]) - g.ramp_down_limit
|
||||
)
|
||||
end
|
||||
else
|
||||
eq_ramp_down[g.name, t] = @constraint(
|
||||
eq_ramp_down[sc.name, g.name, t] = @constraint(
|
||||
model,
|
||||
prod_above[g.name, t] >=
|
||||
prod_above[g.name, t-1] - g.ramp_down_limit
|
||||
prod_above[sc.name, g.name, t] >=
|
||||
prod_above[sc.name, g.name, t-1] - g.ramp_down_limit
|
||||
)
|
||||
end
|
||||
end
|
||||
@@ -223,30 +282,30 @@ function _add_min_uptime_downtime_eqs!(model::JuMP.Model, g::Unit)::Nothing
|
||||
end
|
||||
end
|
||||
|
||||
function _add_net_injection_eqs!(model::JuMP.Model, g::Unit)::Nothing
|
||||
function _add_net_injection_eqs!(model::JuMP.Model, g::Unit, sc::UnitCommitmentScenario)::Nothing
|
||||
expr_net_injection = model[:expr_net_injection]
|
||||
for t in 1:model[:instance].time
|
||||
# Add to net injection expression
|
||||
add_to_expression!(
|
||||
expr_net_injection[g.bus.name, t],
|
||||
model[:prod_above][g.name, t],
|
||||
expr_net_injection[sc.name, g.bus.name, t],
|
||||
model[:prod_above][sc.name, g.name, t],
|
||||
1.0,
|
||||
)
|
||||
add_to_expression!(
|
||||
expr_net_injection[g.bus.name, t],
|
||||
expr_net_injection[sc.name, g.bus.name, t],
|
||||
model[:is_on][g.name, t],
|
||||
g.min_power[t],
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
function _total_reserves(model, g)::Vector
|
||||
function _total_reserves(model, g, sc)::Vector
|
||||
T = model[:instance].time
|
||||
reserve = [0.0 for _ in 1:T]
|
||||
spinning_reserves = [r for r in g.reserves if r.type == "spinning"]
|
||||
if !isempty(spinning_reserves)
|
||||
reserve += [
|
||||
sum(model[:reserve][r.name, g.name, t] for r in spinning_reserves) for t in 1:model[:instance].time
|
||||
sum(model[:reserve][sc.name, r.name, g.name, t] for r in spinning_reserves) for t in 1:model[:instance].time
|
||||
]
|
||||
end
|
||||
return reserve
|
||||
|
||||
Reference in New Issue
Block a user