Compare commits

...

51 Commits

Author SHA1 Message Date
fd25580967 Reformat source code 2022-07-11 10:58:42 -05:00
dc693896a3 Merge branch 'dev' into feature/reserves 2022-06-20 17:17:27 -05:00
ddebcc6ddb Merge branch 'dev' into feature/reserves 2022-06-20 14:31:02 -05:00
3282e5bc3a Fix all tests 2022-06-20 14:21:02 -05:00
15de1901c8 Remove temporary files 2022-06-14 14:55:59 -05:00
bf2dc4ddc4 Remove instances from repository; download on the fly 2022-06-14 14:38:44 -05:00
5c3c8f0d63 GitHub Actions: Remove older non-LTS Julia versions 2022-04-16 11:53:12 -05:00
cce6a874b9 Bump JuMP version to 1.0 2022-04-16 11:52:21 -05:00
1ce1cddaf3 Remove Gurobi from test dependencies; remove large tests 2022-04-16 11:43:09 -05:00
46d754dbcf GitHub Actions: Add Julia 1.7 2022-04-16 11:34:25 -05:00
b7d9083335 Makefile: Update clean target 2022-04-16 11:34:14 -05:00
86ae1d0429 juliaw: Make it compatible with Julia 1.7 2022-04-16 11:33:57 -05:00
58a7567c16 Randomization: Explicitly use MersenneTwister; allow other RNGs 2022-04-16 11:14:06 -05:00
2367e5a348 Fix formatting 2022-04-16 10:27:46 -05:00
74b8a8ae2c Fix formatting 2022-04-16 10:23:58 -05:00
3260fa29ad Remove temporary files 2022-04-16 10:16:53 -05:00
3b1d2d1845 Add author: Ogün Yurdakul 2022-04-16 10:15:32 -05:00
db106f1a38 Make juliaw executable 2022-04-16 10:12:09 -05:00
16b0fec6cd Make tests completely silent; remove set_gap warnings on Cbc 2022-04-16 10:11:33 -05:00
cda1e368fe Remove some redundant comments 2022-04-16 09:55:28 -05:00
099fb4e3cb Add case14-flex test case 2022-04-16 09:52:08 -05:00
oyurdakul
b4bc50c865 new formatting 2022-04-01 15:22:42 +02:00
oyurdakul
febb4f1aad new formatting 2022-04-01 15:17:14 +02:00
oyurdakul
8988b00b07 modified validation, error scripts 2022-03-23 02:39:24 +01:00
oyurdakul
0046c4ca2a change the validation of reserves 2022-03-22 19:01:20 +01:00
72f659b9ff Merge branch 'dev' into add-flexiramp 2022-03-01 16:32:52 -06:00
861284875b Reformat source code 2022-03-01 16:32:33 -06:00
360308ef4a Reformat source code 2022-03-01 16:26:51 -06:00
03268dd3df Merge branch 'dev' into add-flexiramp 2022-03-01 16:26:42 -06:00
ec0f9dcfcd Temporarily revert changes to instances.md; download v0.2 instances 2022-03-01 16:24:47 -06:00
oyurdakul
a3a71ff5a9 add flexiramp 2022-02-03 09:45:06 +01:00
5beff627d3 Cite sources in read_benchmark; update docs 2022-01-24 10:42:55 -06:00
5ca566f147 Remove old reserves 2022-01-20 16:23:22 -06:00
5e2cdb9e0c Update docs 2022-01-20 16:20:02 -06:00
e41f4d11c2 Remove instances from repository; download on the fly 2022-01-20 16:17:48 -06:00
3220650e39 Implement new reserves 2022-01-20 10:18:19 -06:00
ca0d250dfa Parse new reserves 2022-01-19 10:03:22 -06:00
2bd68b49a5 Reserves: Update docs 2022-01-19 09:23:21 -06:00
fbc4b004cd benchmarks: use provided gap and time limit 2021-08-31 10:25:58 -05:00
93d3e5987d Replace sysimage.jl by juliaw; add deps/formatter 2021-08-31 09:51:36 -05:00
f235333551 Improve benchmark scripts 2021-08-31 08:03:21 -05:00
6c566e0e79 Improve sysimage.jl 2021-08-20 04:51:09 -05:00
5c3f7b15d3 UnitCommitmentInstance: add _by_name fields 2021-08-19 07:07:25 -05:00
7c907a6eb5 Implement randomization method from XavQiuAhm2021 2021-08-05 17:04:37 -05:00
b1498c50b3 GitHub Actions: Test fewer combinations 2021-07-26 07:57:17 -05:00
Aleksandr Kazachkov
000215e991 Add reserve shortfall penalty 2021-07-26 07:54:45 -05:00
7a1b6f0f55 Update CHANGELOG.md 2021-07-21 11:18:22 -05:00
719143ea40 Flip coefficients in eq_net_injection; add example to the docs 2021-07-21 11:04:11 -05:00
07d7e04728 Fix bug in validation script; create large tests 2021-07-21 09:49:20 -05:00
4daf38906d Merge pull request #12 from mtanneau/mt/FixDuplicateStartup
Fix duplicated startup constraint
2021-07-19 17:14:39 -05:00
mtanneau
b2eaa0e48b Fix duplicated startup constraint 2021-07-17 15:57:03 -04:00
255 changed files with 1582 additions and 625 deletions

View File

@@ -9,8 +9,8 @@ jobs:
runs-on: ${{ matrix.os }}
strategy:
matrix:
julia-version: ['1.3', '1.4', '1.5', '1.6']
julia-arch: [x64, x86]
julia-version: ['1.6', '1.7']
julia-arch: [x64]
os: [ubuntu-latest, windows-latest, macOS-latest]
exclude:
- os: macOS-latest

32
.gitignore vendored
View File

@@ -1,20 +1,38 @@
*.bak
*.gz
*.lastrun
*.so
*.mps
*.ipynb
*.lastrun
*.mps
*.so
*/Manifest.toml
.AppleDB
.AppleDesktop
.AppleDouble
.DS_Store
.DocumentRevisions-V100
.LSOverride
.Spotlight-V100
.TemporaryItems
.Trashes
.VolumeIcon.icns
._*
.apdisk
.com.apple.timemachine.donotpresent
.fseventsd
.ipy*
.vscode
Icon
Manifest.toml
Network Trash Folder
TODO.md
Temporary Items
benchmark/results
benchmark/runs
benchmark/tables
benchmark/tmp.json
build
docs/_build
instances/**/*.json
instances/_source
local
notebooks
TODO.md
docs/_build
.vscode
Manifest.toml

View File

@@ -11,6 +11,22 @@ All notable changes to this project will be documented in this file.
[semver]: https://semver.org/spec/v2.0.0.html
[pkjjl]: https://pkgdocs.julialang.org/v1/compatibility/#compat-pre-1.0
## [Unreleased]
### Added
- Add multiple reserve products
### Changed
- To support multiple reserve products, the input data format has been modified as follows:
- In `Generators`, replace `Provides spinning reserves?` by `Reserve eligibility`
- In `Parameters`, remove `Reserve shortfall penalty`
- Revise `Reserves` section
## [0.2.2] - 2021-07-21
### Fixed
- Fix small bug in validation scripts related to startup costs
- Fix duplicated startup constraints (@mtanneau, #12)
## [0.2.1] - 2021-06-02
### Added
- Add multiple ramping formulations (ArrCon2000, MorLatRam2013, DamKucRajAta2016, PanGua2016)

View File

@@ -2,31 +2,22 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
JULIA := julia --color=yes --project=@.
VERSION := 0.2
build/sysimage.so: src/utils/sysimage.jl Project.toml Manifest.toml
mkdir -p build
mkdir -p benchmark/results/test
cd benchmark; $(JULIA) --trace-compile=../build/precompile.jl benchmark.jl test/case14
$(JULIA) src/utils/sysimage.jl
clean:
rm -rf build/*
rm -rfv build Manifest.toml test/Manifest.toml deps/formatter/build deps/formatter/Manifest.toml
docs:
cd docs; make clean; make dirhtml
rsync -avP --delete-after docs/_build/dirhtml/ ../docs/$(VERSION)/
test: build/sysimage.so
@echo Running tests...
$(JULIA) --sysimage build/sysimage.so -e 'using Pkg; Pkg.test("UnitCommitment")' | tee build/test.log
format:
julia -e 'using JuliaFormatter; format(["src", "test", "benchmark"], verbose=true);'
cd deps/formatter; ../../juliaw format.jl
install-deps:
julia -e 'using Pkg; Pkg.add(PackageSpec(name="JuliaFormatter", version="0.14.4"))'
test: test/Manifest.toml
./juliaw test/runtests.jl
test/Manifest.toml: test/Project.toml
julia --project=test -e "using Pkg; Pkg.instantiate()"
.PHONY: docs test format install-deps

View File

@@ -2,10 +2,11 @@ name = "UnitCommitment"
uuid = "64606440-39ea-11e9-0f29-3303a1d3d877"
authors = ["Santos Xavier, Alinson <axavier@anl.gov>"]
repo = "https://github.com/ANL-CEEESA/UnitCommitment.jl"
version = "0.2.1"
version = "0.3.0"
[deps]
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
Distributed = "8ba89e20-285c-5b6f-9357-94700520ee1b"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
GZip = "92fee26a-97fe-5a0c-ad85-20a5f3185b63"
JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
@@ -15,22 +16,16 @@ Logging = "56ddb016-857b-54e1-b83d-db4d58db5568"
MathOptInterface = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
PackageCompiler = "9b87118b-4619-50d2-8e1e-99f35a4d4d9d"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[compat]
Cbc = "0.7"
DataStructures = "0.18"
Distributions = "0.25"
GZip = "0.5"
JSON = "0.21"
JuMP = "0.21"
MathOptInterface = "0.9"
JuMP = "1"
MathOptInterface = "1"
PackageCompiler = "1"
julia = "1"
[extras]
Cbc = "9961bab8-2fa3-5c5a-9d89-47fab24efd76"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[targets]
test = ["Cbc", "Test"]

View File

@@ -95,6 +95,7 @@ UnitCommitment.write("/tmp/output.json", solution)
## Authors
* **Alinson S. Xavier** (Argonne National Laboratory)
* **Aleksandr M. Kazachkov** (University of Florida)
* **Ogün Yurdakul** (Technische Universität Berlin)
* **Feng Qiu** (Argonne National Laboratory)
## Acknowledgments

View File

@@ -1,4 +1,5 @@
[deps]
DocOpt = "968ba79b-81e4-546f-ab3a-2eecfa62a9db"
Gurobi = "2e9cd046-0924-5485-92f1-d5272153d98b"
JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"

View File

@@ -1,158 +0,0 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Distributed
using Pkg
Pkg.activate(".")
@everywhere using Pkg
@everywhere Pkg.activate(".")
@everywhere using UnitCommitment
@everywhere using JuMP
@everywhere using Gurobi
@everywhere using JSON
@everywhere using Logging
@everywhere using Printf
@everywhere using LinearAlgebra
@everywhere using Random
@everywhere import UnitCommitment:
ArrCon2000,
CarArr2006,
DamKucRajAta2016,
Formulation,
Gar1962,
KnuOstWat2018,
MorLatRam2013,
PanGua2016,
XavQiuWanThi2019
@everywhere UnitCommitment._setup_logger()
function main()
cases = [
"pglib-uc/ca/2014-09-01_reserves_0",
"pglib-uc/ca/2014-09-01_reserves_1",
"pglib-uc/ca/2015-03-01_reserves_0",
"pglib-uc/ca/2015-06-01_reserves_0",
"pglib-uc/ca/Scenario400_reserves_1",
"pglib-uc/ferc/2015-01-01_lw",
"pglib-uc/ferc/2015-05-01_lw",
"pglib-uc/ferc/2015-07-01_hw",
"pglib-uc/ferc/2015-10-01_lw",
"pglib-uc/ferc/2015-12-01_lw",
"pglib-uc/rts_gmlc/2020-04-03",
"pglib-uc/rts_gmlc/2020-09-20",
"pglib-uc/rts_gmlc/2020-10-27",
"pglib-uc/rts_gmlc/2020-11-25",
"pglib-uc/rts_gmlc/2020-12-23",
"or-lib/20_0_1_w",
"or-lib/20_0_5_w",
"or-lib/50_0_2_w",
"or-lib/75_0_2_w",
"or-lib/100_0_1_w",
"or-lib/100_0_4_w",
"or-lib/100_0_5_w",
"or-lib/200_0_3_w",
"or-lib/200_0_7_w",
"or-lib/200_0_9_w",
"tejada19/UC_24h_290g",
"tejada19/UC_24h_623g",
"tejada19/UC_24h_959g",
"tejada19/UC_24h_1577g",
"tejada19/UC_24h_1888g",
"tejada19/UC_168h_72g",
"tejada19/UC_168h_86g",
"tejada19/UC_168h_130g",
"tejada19/UC_168h_131g",
"tejada19/UC_168h_199g",
]
formulations = Dict(
"Default" => Formulation(),
"ArrCon2000" => Formulation(ramping = ArrCon2000.Ramping()),
"CarArr2006" => Formulation(pwl_costs = CarArr2006.PwlCosts()),
"DamKucRajAta2016" =>
Formulation(ramping = DamKucRajAta2016.Ramping()),
"Gar1962" => Formulation(pwl_costs = Gar1962.PwlCosts()),
"KnuOstWat2018" =>
Formulation(pwl_costs = KnuOstWat2018.PwlCosts()),
"MorLatRam2013" => Formulation(ramping = MorLatRam2013.Ramping()),
"PanGua2016" => Formulation(ramping = PanGua2016.Ramping()),
)
trials = [i for i in 1:5]
combinations = [
(c, f.first, f.second, t) for c in cases for f in formulations for
t in trials
]
shuffle!(combinations)
@sync @distributed for c in combinations
_run_combination(c...)
end
end
@everywhere function _run_combination(
case,
formulation_name,
formulation,
trial,
)
name = "$formulation_name/$case"
dirname = "results/$name"
mkpath(dirname)
if isfile("$dirname/$trial.json")
@info @sprintf("%-4s %-16s %s", "skip", formulation_name, case)
return
end
@info @sprintf("%-4s %-16s %s", "run", formulation_name, case)
open("$dirname/$trial.log", "w") do file
redirect_stdout(file) do
redirect_stderr(file) do
return _run_sample(case, formulation, "$dirname/$trial")
end
end
end
@info @sprintf("%-4s %-16s %s", "done", formulation_name, case)
end
@everywhere function _run_sample(case, formulation, prefix)
total_time = @elapsed begin
@info "Reading: $case"
time_read = @elapsed begin
instance = UnitCommitment.read_benchmark(case)
end
@info @sprintf("Read problem in %.2f seconds", time_read)
BLAS.set_num_threads(4)
model = UnitCommitment.build_model(
instance = instance,
formulation = formulation,
optimizer = optimizer_with_attributes(
Gurobi.Optimizer,
"Threads" => 4,
"Seed" => rand(1:1000),
),
variable_names = true,
)
@info "Optimizing..."
BLAS.set_num_threads(1)
UnitCommitment.optimize!(
model,
XavQiuWanThi2019.Method(time_limit = 3600.0, gap_limit = 1e-4),
)
end
@info @sprintf("Total time was %.2f seconds", total_time)
@info "Writing solution: $prefix.json"
solution = UnitCommitment.solution(model)
UnitCommitment.write("$prefix.json", solution)
@info "Verifying solution..."
return UnitCommitment.validate(instance, solution)
# @info "Exporting model..."
# return JuMP.write_to_file(model, model_filename)
end
if length(ARGS) > 0
_run_sample(ARGS[1], UnitCommitment.Formulation(), "tmp")
else
main()
end

209
benchmark/run.jl Normal file
View File

@@ -0,0 +1,209 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
doc = """UnitCommitment.jl Benchmark Runner
Usage:
run.jl [-s ARG]... [-m ARG]... [-c ARG]... [-f ARG]... [options]
Examples:
1. Benchmark all solvers, methods and formulations:
julia run.jl
2. Benchmark formulations "default" and "ArrCon200" using Gurobi:
julia run.jl -s gurobi -f default -f ArrCon2000
3. Benchmark a few test cases, using all solvers, methods and formulations:
julia run.jl -c or-lib/20_0_1_w -c matpower/case1888rte/2017-02-01
4. Solve 4 test cases in parallel, with 2 threads available per worker:
JULIA_NUM_THREADS=2 julia --procs 4 run.jl
Options:
-h --help Show this screen.
-s --solver=ARG Mixed-integer linear solver (e.g. gurobi)
-c --case=ARG Unit commitment test case (e.g. or-lib/20_0_1_w)
-m --method=ARG Solution method (e.g. default)
-f --formulation=ARG Formulation (e.g. ArrCon2000)
--time-limit=ARG Time limit in seconds [default: 3600]
--gap=ARG Relative MIP gap tolerance [default: 0.001]
--trials=ARG Number of trials [default: 5]
"""
using Distributed
using Pkg
Pkg.activate(".")
@everywhere using Pkg
@everywhere Pkg.activate(".")
using DocOpt
args = docopt(doc)
@everywhere using UnitCommitment
@everywhere UnitCommitment._setup_logger()
using UnitCommitment
using Gurobi
using Logging
using JuMP
import UnitCommitment:
ArrCon2000,
CarArr2006,
DamKucRajAta2016,
Formulation,
Gar1962,
KnuOstWat2018,
MorLatRam2013,
PanGua2016,
XavQiuWanThi2019
# Benchmark test cases
# -----------------------------------------------------------------------------
cases = [
"pglib-uc/ca/2014-09-01_reserves_0",
"pglib-uc/ca/2014-09-01_reserves_1",
"pglib-uc/ca/2015-03-01_reserves_0",
"pglib-uc/ca/2015-06-01_reserves_0",
"pglib-uc/ca/Scenario400_reserves_1",
"pglib-uc/ferc/2015-01-01_lw",
"pglib-uc/ferc/2015-05-01_lw",
"pglib-uc/ferc/2015-07-01_hw",
"pglib-uc/ferc/2015-10-01_lw",
"pglib-uc/ferc/2015-12-01_lw",
"pglib-uc/rts_gmlc/2020-04-03",
"pglib-uc/rts_gmlc/2020-09-20",
"pglib-uc/rts_gmlc/2020-10-27",
"pglib-uc/rts_gmlc/2020-11-25",
"pglib-uc/rts_gmlc/2020-12-23",
"or-lib/20_0_1_w",
"or-lib/20_0_5_w",
"or-lib/50_0_2_w",
"or-lib/75_0_2_w",
"or-lib/100_0_1_w",
"or-lib/100_0_4_w",
"or-lib/100_0_5_w",
"or-lib/200_0_3_w",
"or-lib/200_0_7_w",
"or-lib/200_0_9_w",
"tejada19/UC_24h_290g",
"tejada19/UC_24h_623g",
"tejada19/UC_24h_959g",
"tejada19/UC_24h_1577g",
"tejada19/UC_24h_1888g",
"tejada19/UC_168h_72g",
"tejada19/UC_168h_86g",
"tejada19/UC_168h_130g",
"tejada19/UC_168h_131g",
"tejada19/UC_168h_199g",
"matpower/case1888rte/2017-02-01",
"matpower/case1951rte/2017-02-01",
"matpower/case2848rte/2017-02-01",
"matpower/case3012wp/2017-02-01",
"matpower/case3375wp/2017-02-01",
"matpower/case6468rte/2017-02-01",
"matpower/case6515rte/2017-02-01",
]
# Formulations
# -----------------------------------------------------------------------------
formulations = Dict(
"default" => Formulation(),
"ArrCon2000" => Formulation(ramping = ArrCon2000.Ramping()),
"CarArr2006" => Formulation(pwl_costs = CarArr2006.PwlCosts()),
"DamKucRajAta2016" => Formulation(ramping = DamKucRajAta2016.Ramping()),
"Gar1962" => Formulation(pwl_costs = Gar1962.PwlCosts()),
"KnuOstWat2018" => Formulation(pwl_costs = KnuOstWat2018.PwlCosts()),
"MorLatRam2013" => Formulation(ramping = MorLatRam2013.Ramping()),
"PanGua2016" => Formulation(ramping = PanGua2016.Ramping()),
)
# Solution methods
# -----------------------------------------------------------------------------
const gap_limit = parse(Float64, args["--gap"])
const time_limit = parse(Float64, args["--time-limit"])
methods = Dict(
"default" => XavQiuWanThi2019.Method(
time_limit = time_limit,
gap_limit = gap_limit,
),
)
# MIP solvers
# -----------------------------------------------------------------------------
optimizers = Dict(
"gurobi" => optimizer_with_attributes(
Gurobi.Optimizer,
"Threads" => Threads.nthreads(),
),
)
# Parse command line arguments
# -----------------------------------------------------------------------------
if !isempty(args["--case"])
cases = args["--case"]
end
if !isempty(args["--formulation"])
formulations = filter(p -> p.first in args["--formulation"], formulations)
end
if !isempty(args["--method"])
methods = filter(p -> p.first in args["--method"], methods)
end
if !isempty(args["--solver"])
optimizers = filter(p -> p.first in args["--solver"], optimizers)
end
const ntrials = parse(Int, args["--trials"])
# Print benchmark settings
# -----------------------------------------------------------------------------
function printlist(d::Dict)
for key in keys(d)
@info " - $key"
end
end
function printlist(d::Vector)
for key in d
@info " - $key"
end
end
@info "Computational environment:"
@info " - CPU: $(Sys.cpu_info()[1].model)"
@info " - Logical CPU cores: $(length(Sys.cpu_info()))"
@info " - System memory: $(round(Sys.total_memory() / 2^30, digits=2)) GiB"
@info " - Available workers: $(nworkers())"
@info " - Available threads per worker: $(Threads.nthreads())"
@info "Parameters:"
@info " - Number of trials: $ntrials"
@info " - Time limit (s): $time_limit"
@info " - Relative MIP gap tolerance: $gap_limit"
@info "Solvers:"
printlist(optimizers)
@info "Methods:"
printlist(methods)
@info "Formulations:"
printlist(formulations)
@info "Cases:"
printlist(cases)
# Run benchmarks
# -----------------------------------------------------------------------------
UnitCommitment._run_benchmarks(
cases = cases,
formulations = formulations,
methods = methods,
optimizers = optimizers,
trials = 1:ntrials,
)

5
deps/formatter/Project.toml vendored Normal file
View File

@@ -0,0 +1,5 @@
[deps]
JuliaFormatter = "98e50ef6-434e-11e9-1051-2b60c6c9e899"
[compat]
JuliaFormatter = "0.14.4"

9
deps/formatter/format.jl vendored Normal file
View File

@@ -0,0 +1,9 @@
using JuliaFormatter
format(
[
"../../src",
"../../test",
"../../benchmark/run.jl",
],
verbose=true,
)

View File

@@ -28,11 +28,11 @@ Each section is described in detail below. For a complete example, see [case14](
### Parameters
This section describes system-wide parameters, such as power balance penalties, optimization parameters, such as the length of the planning horizon and the time.
This section describes system-wide parameters, such as power balance penalty, and optimization parameters, such as the length of the planning horizon and the time.
| Key | Description | Default | Time series?
| :----------------------------- | :------------------------------------------------ | :------: | :------------:
| `Time horizon (h)` | Length of the planning horizon (in hours). | Required | N
| `Time horizon (h)` | Length of the planning horizon (in hours). | Required | N
| `Time step (min)` | Length of each time step (in minutes). Must be a divisor of 60 (e.g. 60, 30, 20, 15, etc). | `60` | N
| `Power balance penalty ($/MW)` | Penalty for system-wide shortage or surplus in production (in $/MW). This is charged per time step. For example, if there is a shortage of 1 MW for three time steps, three times this amount will be charged. | `1000.0` | Y
@@ -42,7 +42,7 @@ This section describes system-wide parameters, such as power balance penalties,
{
"Parameters": {
"Time horizon (h)": 4,
"Power balance penalty ($/MW)": 1000.0
"Power balance penalty ($/MW)": 1000.0,
}
}
```
@@ -94,7 +94,7 @@ This section describes all generators in the system, including thermal units, re
| `Initial status (h)` | If set to a positive number, indicates the amount of time (in hours) the generator has been on at the beginning of the simulation, and if set to a negative number, the amount of time the generator has been off. For example, if `Initial status (h)` is `-2`, this means that the generator was off since `-02:00` (h:min). The simulation starts at time `00:00`. If `Initial status (h)` is `3`, this means that the generator was on since `-03:00`. A value of zero is not acceptable. | Required | N
| `Initial power (MW)` | Amount of power the generator at time step `-1`, immediately before the planning horizon starts. | Required | N
| `Must run?` | If `true`, the generator should be committed, even if that is not economical (Boolean). | `false` | Y
| `Provides spinning reserves?` | If `true`, this generator may provide spinning reserves (Boolean). | `true` | Y
| `Reserve eligibility` | List of reserve products this generator is eligibe to provide. By default, the generator is not eligible to provide any reserves. | `[]` | N
#### Production costs and limits
@@ -133,13 +133,13 @@ Note that this curve also specifies the production limits. Specifically, the fir
"Minimum uptime (h)": 4,
"Initial status (h)": 12,
"Must run?": false,
"Provides spinning reserves?": true,
"Reserve eligibility": ["r1"],
},
"gen2": {
"Bus": "b5",
"Production cost curve (MW)": [0.0, [10.0, 8.0, 0.0, 3.0]],
"Production cost curve ($)": [0.0, 0.0],
"Provides spinning reserves?": true,
"Reserve eligibility": ["r1", "r2"],
}
}
}
@@ -204,24 +204,39 @@ This section describes the characteristics of transmission system, such as its t
### Reserves
This section describes the hourly amount of operating reserves required.
This section describes the hourly amount of reserves required.
| Key | Description | Default | Time series?
| :-------------------- | :------------------------------------------------- | --------- | :----:
| `Spinning (MW)` | Minimum amount of system-wide spinning reserves (in MW). Only generators which are online may provide this reserve. | `0.0` | Y
| `Type` | Type of reserve product. Must be either "spinning" or "flexiramp". | Required | N
| `Amount (MW)` | Amount of reserves required. | Required | Y
| `Shortfall penalty ($/MW)` | Penalty for shortage in meeting the reserve requirements (in $/MW). This is charged per time step. Negative value implies reserve constraints must always be satisfied. | `-1` | Y
#### Example
#### Example 1
```json
{
"Reserves": {
"Spinning (MW)": [
57.30552,
53.88429,
51.31838,
50.46307
]
"r1": {
"Type": "spinning",
"Amount (MW)": [
57.30552,
53.88429,
51.31838,
50.46307
],
"Shortfall penalty ($/MW)": 5.0
},
"r2": {
"Type": "flexiramp",
"Amount (MW)": [
20.31042,
23.65273,
27.41784,
25.34057
],
}
}
}
```
@@ -284,9 +299,7 @@ The output data format is also JSON-based, but it is not currently documented si
Current limitations
-------------------
* All reserves are system-wide. Zonal reserves are not currently supported.
* Network topology remains the same for all time periods
* Only N-1 transmission contingencies are supported. Generator contingencies are not currently supported.
* Time-varying minimum production amounts are not currently compatible with ramp/startup/shutdown limits.
* Flexible ramping products can only be acquired under the `WanHob2016` formulation, which does not support spinning reserves.

View File

@@ -9,12 +9,11 @@ suffix: .
Instances
=========
UnitCommitment.jl provides a large collection of benchmark instances collected
from the literature and converted to a [common data format](format.md). In some cases, as indicated below, the original instances have been extended, with realistic parameters, using data-driven methods.
If you use these instances in your research, we request that you cite UnitCommitment.jl, as well as the original sources.
UnitCommitment.jl provides a large collection of benchmark instances collected from the literature and converted to a [common data format](format.md). In some cases, as indicated below, the original instances have been extended, with realistic parameters, using data-driven methods. If you use these instances in your research, we request that you cite UnitCommitment.jl, as well as the original sources, as listed below. Benchmark instances can be loaded with `UnitCommitment.read_benchmark(name)`, as explained in the [usage section](usage.md).
Raw instances files are [available at our GitHub repository](https://github.com/ANL-CEEESA/UnitCommitment.jl/tree/dev/instances). Benchmark instances can also be loaded with
`UnitCommitment.read_benchmark(name)`, as explained in the [usage section](usage.md).
```{warning}
The instances included in UC.jl are still under development and may change in the future. If you use these instances in your research, for reproducibility, you should specify what version of UC.jl they came from.
```
MATPOWER
@@ -43,15 +42,10 @@ A variety of smaller IEEE test cases, [compiled by University of Washington](htt
| Name | Buses | Generators | Lines | Contingencies | References |
|------|-------|------------|-------|---------------|--------|
| `matpower/case14/2017-02-01` | 14 | 5 | 20 | 19 | [MTPWR, PSTCA]
| `matpower/case14/2017-08-01` | 14 | 5 | 20 | 19 | [MTPWR, PSTCA]
| `matpower/case30/2017-02-01` | 30 | 6 | 41 | 38 | [MTPWR, PSTCA]
| `matpower/case30/2017-08-01` | 30 | 6 | 41 | 38 | [MTPWR, PSTCA]
| `matpower/case57/2017-02-01` | 57 | 7 | 80 | 79 | [MTPWR, PSTCA]
| `matpower/case57/2017-08-01` | 57 | 7 | 80 | 79 | [MTPWR, PSTCA]
| `matpower/case118/2017-02-01` | 118 | 54 | 186 | 177 | [MTPWR, PSTCA]
| `matpower/case118/2017-08-01` | 118 | 54 | 186 | 177 | [MTPWR, PSTCA]
| `matpower/case300/2017-02-01` | 300 | 69 | 411 | 320 | [MTPWR, PSTCA]
| `matpower/case300/2017-08-01` | 300 | 69 | 411 | 320 | [MTPWR, PSTCA]
### MATPOWER/Polish
@@ -61,21 +55,13 @@ Test cases based on the Polish 400, 220 and 110 kV networks, originally provided
| Name | Buses | Generators | Lines | Contingencies | References |
|------|-------|------------|-------|---------------|--------|
| `matpower/case2383wp/2017-02-01` | 2383 | 323 | 2896 | 2240 | [MTPWR]
| `matpower/case2383wp/2017-08-01` | 2383 | 323 | 2896 | 2240 | [MTPWR]
| `matpower/case2736sp/2017-02-01` | 2736 | 289 | 3504 | 3159 | [MTPWR]
| `matpower/case2736sp/2017-08-01` | 2736 | 289 | 3504 | 3159 | [MTPWR]
| `matpower/case2737sop/2017-02-01` | 2737 | 267 | 3506 | 3161 | [MTPWR]
| `matpower/case2737sop/2017-08-01` | 2737 | 267 | 3506 | 3161 | [MTPWR]
| `matpower/case2746wop/2017-02-01` | 2746 | 443 | 3514 | 3155 | [MTPWR]
| `matpower/case2746wop/2017-08-01` | 2746 | 443 | 3514 | 3155 | [MTPWR]
| `matpower/case2746wp/2017-02-01` | 2746 | 457 | 3514 | 3156 | [MTPWR]
| `matpower/case2746wp/2017-08-01` | 2746 | 457 | 3514 | 3156 | [MTPWR]
| `matpower/case3012wp/2017-02-01` | 3012 | 496 | 3572 | 2854 | [MTPWR]
| `matpower/case3012wp/2017-08-01` | 3012 | 496 | 3572 | 2854 | [MTPWR]
| `matpower/case3120sp/2017-02-01` | 3120 | 483 | 3693 | 2950 | [MTPWR]
| `matpower/case3120sp/2017-08-01` | 3120 | 483 | 3693 | 2950 | [MTPWR]
| `matpower/case3375wp/2017-02-01` | 3374 | 590 | 4161 | 3245 | [MTPWR]
| `matpower/case3375wp/2017-08-01` | 3374 | 590 | 4161 | 3245 | [MTPWR]
### MATPOWER/PEGASE
@@ -84,15 +70,10 @@ Test cases from the [Pan European Grid Advanced Simulation and State Estimation
| Name | Buses | Generators | Lines | Contingencies | References |
|------|-------|------------|-------|---------------|--------|
| `matpower/case89pegase/2017-02-01` | 89 | 12 | 210 | 192 | [JoFlMa16, FlPaCa13, MTPWR]
| `matpower/case89pegase/2017-08-01` | 89 | 12 | 210 | 192 | [JoFlMa16, FlPaCa13, MTPWR]
| `matpower/case1354pegase/2017-02-01` | 1354 | 260 | 1991 | 1288 | [JoFlMa16, FlPaCa13, MTPWR]
| `matpower/case1354pegase/2017-08-01` | 1354 | 260 | 1991 | 1288 | [JoFlMa16, FlPaCa13, MTPWR]
| `matpower/case2869pegase/2017-02-01` | 2869 | 510 | 4582 | 3579 | [JoFlMa16, FlPaCa13, MTPWR]
| `matpower/case2869pegase/2017-08-01` | 2869 | 510 | 4582 | 3579 | [JoFlMa16, FlPaCa13, MTPWR]
| `matpower/case9241pegase/2017-02-01` | 9241 | 1445 | 16049 | 13932 | [JoFlMa16, FlPaCa13, MTPWR]
| `matpower/case9241pegase/2017-08-01` | 9241 | 1445 | 16049 | 13932 | [JoFlMa16, FlPaCa13, MTPWR]
| `matpower/case13659pegase/2017-02-01` | 13659 | 4092 | 20467 | 13932 | [JoFlMa16, FlPaCa13, MTPWR]
| `matpower/case13659pegase/2017-08-01` | 13659 | 4092 | 20467 | 13932 | [JoFlMa16, FlPaCa13, MTPWR]
### MATPOWER/RTE
@@ -101,21 +82,13 @@ Test cases from the R&D Division at [Reseau de Transport d'Electricite](https://
| Name | Buses | Generators | Lines | Contingencies | References |
|------|-------|------------|-------|---------------|--------|
| `matpower/case1888rte/2017-02-01` | 1888 | 296 | 2531 | 1484 | [MTPWR, JoFlMa16]
| `matpower/case1888rte/2017-08-01` | 1888 | 296 | 2531 | 1484 | [MTPWR, JoFlMa16]
| `matpower/case1951rte/2017-02-01` | 1951 | 390 | 2596 | 1497 | [MTPWR, JoFlMa16]
| `matpower/case1951rte/2017-08-01` | 1951 | 390 | 2596 | 1497 | [MTPWR, JoFlMa16]
| `matpower/case2848rte/2017-02-01` | 2848 | 544 | 3776 | 2242 | [MTPWR, JoFlMa16]
| `matpower/case2848rte/2017-08-01` | 2848 | 544 | 3776 | 2242 | [MTPWR, JoFlMa16]
| `matpower/case2868rte/2017-02-01` | 2868 | 596 | 3808 | 2260 | [MTPWR, JoFlMa16]
| `matpower/case2868rte/2017-08-01` | 2868 | 596 | 3808 | 2260 | [MTPWR, JoFlMa16]
| `matpower/case6468rte/2017-02-01` | 6468 | 1262 | 9000 | 6094 | [MTPWR, JoFlMa16]
| `matpower/case6468rte/2017-08-01` | 6468 | 1262 | 9000 | 6094 | [MTPWR, JoFlMa16]
| `matpower/case6470rte/2017-02-01` | 6470 | 1306 | 9005 | 6085 | [MTPWR, JoFlMa16]
| `matpower/case6470rte/2017-08-01` | 6470 | 1306 | 9005 | 6085 | [MTPWR, JoFlMa16]
| `matpower/case6495rte/2017-02-01` | 6495 | 1352 | 9019 | 6060 | [MTPWR, JoFlMa16]
| `matpower/case6495rte/2017-08-01` | 6495 | 1352 | 9019 | 6060 | [MTPWR, JoFlMa16]
| `matpower/case6515rte/2017-02-01` | 6515 | 1368 | 9037 | 6063 | [MTPWR, JoFlMa16]
| `matpower/case6515rte/2017-08-01` | 6515 | 1368 | 9037 | 6063 | [MTPWR, JoFlMa16]
PGLIB-UC Instances

View File

@@ -23,7 +23,7 @@ Name | Symbol | Description | Unit
`switch_off[g,t]` | $w_{g}(t)$ | True if generator `g` switches off at time `t`. | Binary
`prod_above[g,t]` |$p'_{g}(t)$ | Amount of power produced by generator `g` above its minimum power output at time `t`. For example, if the minimum power of generator `g` is 100 MW and `g` is producing 115 MW of power at time `t`, then `prod_above[g,t]` equals `15.0`. | MW
`segprod[g,t,k]` | $p^k_g(t)$ | Amount of power from piecewise linear segment `k` produced by generator `g` at time `t`. For example, if cost curve for generator `g` is defined by the points `(100, 1400)`, `(110, 1600)`, `(130, 2200)` and `(135, 2400)`, and if the generator is producing 115 MW of power at time `t`, then `segprod[g,t,:]` equals `[10.0, 5.0, 0.0]`.| MW
`reserve[g,t]` | $r_g(t)$ | Amount of reserves provided by generator `g` at time `t`. | MW
`reserve[r,g,t]` | $r_g(t)$ | Amount of reserve `r` provided by unit `g` at time `t`. | MW
`startup[g,t,s]` | $\delta^s_g(t)$ | True if generator `g` switches on at time `t` incurring start-up costs from start-up category `s`. | Binary
@@ -148,7 +148,7 @@ for g in instance.units
end
```
### Modifying the model
### Fixing variables, modifying objective function and adding constraints
Since we now have a direct reference to the JuMP decision variables, it is possible to fix variables, change the coefficients in the objective function, or even add new constraints to the model before solving it. The script below shows how can this be accomplished. For more information on modifying an existing model, [see the JuMP documentation](https://jump.dev/JuMP.jl/stable/manual/variables/).
@@ -190,6 +190,54 @@ JuMP.set_objective_coefficient(
UnitCommitment.optimize!(model)
```
### Adding new component to a bus
The following snippet shows how to add a new grid component to a particular bus. For each time step, we create decision variables for the new grid component, add these variables to the objective function, then attach the component to a particular bus by modifying some existing model constraints.
```julia
using Cbc
using JuMP
using UnitCommitment
# Load instance and build base model
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
model = UnitCommitment.build_model(
instance=instance,
optimizer=Cbc.Optimizer,
)
# Get the number of time steps in the original instance
T = instance.time
# Create decision variables for the new grid component.
# In this example, we assume that the new component can
# inject up to 10 MW of power at each time step, so we
# create new continuous variables 0 ≤ x[t] ≤ 10.
@variable(model, x[1:T], lower_bound=0.0, upper_bound=10.0)
# For each time step
for t in 1:T
# Add production costs to the objective function.
# In this example, we assume a cost of $5/MW.
set_objective_coefficient(model, x[t], 5.0)
# Attach the new component to bus b1, by modifying the
# constraint `eq_net_injection`.
set_normalized_coefficient(
model[:eq_net_injection]["b1", t],
x[t],
1.0,
)
end
# Solve the model
UnitCommitment.optimize!(model)
# Show optimal values for the x variables
@show value.(x)
```
References
----------
* [KnOsWa20] **Bernard Knueven, James Ostrowski and Jean-Paul Watson.** "On Mixed-Integer Programming Formulations for the Unit Commitment Problem". INFORMS Journal on Computing (2020). [DOI: 10.1287/ijoc.2019.0944](https://doi.org/10.1287/ijoc.2019.0944)

View File

@@ -1,53 +0,0 @@
Instances
=========
UnitCommitment.jl provides a large collection of benchmark instances collected
from the literature and converted to a common data format. If you use these instances in your research, we request that you cite UnitCommitment.jl, as well as the original sources, as listed below. [See documentation for more details](https://anl-ceeesa.github.io/UnitCommitment.jl/).
References
----------
### UnitCommitment.jl
* [UCJL] **Alinson S. Xavier, Feng Qiu.** "UnitCommitment.jl: A Julia/JuMP Optimization Package for Security-Constrained Unit Commitment". Zenodo (2020). [DOI: 10.5281/zenodo.4269874](https://doi.org/10.5281/zenodo.4269874)
### MATPOWER
* [MTPWR] **D. Zimmerman, C. E. Murillo-Sandnchez and R. J. Thomas.** "Matpower: Steady-state operations, planning, and analysis tools forpower systems research and education", IEEE Transactions on PowerSystems, vol. 26, no. 1, pp. 12 19, Feb. 2011. [DOI: 10.1109/TPWRS.2010.2051168](https://doi.org/10.1109/TPWRS.2010.2051168)
* [PSTCA] **University of Washington, Dept. of Electrical Engineering.** "Power Systems Test Case Archive". Available at: <http://www.ee.washington.edu/research/pstca/> (Accessed: Nov 14, 2020)
* [JoFlMa16] **C. Josz, S. Fliscounakis, J. Maeght, and P. Panciatici.** "AC Power Flow
Data in MATPOWER and QCQP Format: iTesla, RTE Snapshots, and PEGASE". [ArXiv (2016)](https://arxiv.org/abs/1603.01533).
* [FlPaCa13] **S. Fliscounakis, P. Panciatici, F. Capitanescu, and L. Wehenkel.**
"Contingency ranking with respect to overloads in very large power
systems taking into account uncertainty, preventive and corrective
actions", Power Systems, IEEE Trans. on, (28)4:4909-4917, 2013.
[DOI: 10.1109/TPWRS.2013.2251015](https://doi.org/10.1109/TPWRS.2013.2251015)
### PGLIB-UC
* [PGLIB] **Carleton Coffrin and Bernard Knueven.** "Power Grid Lib - Unit Commitment". Available at: <https://github.com/power-grid-lib/pglib-uc> (Accessed: Nov 14, 2020)
* [KrHiOn12] **Eric Krall, Michael Higgins and Richard P. ONeill.** "RTO unit commitment test system." Federal Energy Regulatory Commission. Available at: <https://www.ferc.gov/industries-data/electric/power-sales-and-markets/increasing-efficiency-through-improved-software-1> (Accessed: Nov 14, 2020)
* [KnOsWa20] **Bernard Knueven, James Ostrowski and Jean-Paul Watson.** "On Mixed-Integer Programming Formulations for the Unit Commitment Problem". INFORMS Journal on Computing (2020). [DOI: 10.1287/ijoc.2019.0944](https://doi.org/10.1287/ijoc.2019.0944)
### RTS-GMLC
* https://github.com/GridMod/RTS-GMLC
* [BaBlEh19] **Clayton Barrows, Aaron Bloom, Ali Ehlen, Jussi Ikaheimo, Jennie Jorgenson, Dheepak Krishnamurthy, Jessica Lau et al.** "The IEEE Reliability Test System: A Proposed 2019 Update." IEEE Transactions on Power Systems (2019). [DOI: 10.1109/TPWRS.2019.2925557](https://doi.org/10.1109/TPWRS.2019.2925557)
### OR-LIB
* [ORLIB] **J.E.Beasley.** "OR-Library: distributing test problems by electronic mail", Journal of the Operational Research Society 41(11) (1990). [DOI: 10.2307/2582903](https://doi.org/10.2307/2582903)
* [FrGe06] **A. Frangioni, C. Gentile.** "Solving nonlinear single-unit commitment problems with ramping constraints" Operations Research 54(4), p. 767 - 775, 2006. [DOI: 10.1287/opre.1060.0309](https://doi.org/10.1287/opre.1060.0309)
### Tejada19
* [TeLuSa19] **D. A. Tejada-Arango, S. Lumbreras, P. Sanchez-Martin and A. Ramos.** "Which Unit-Commitment Formulation is Best? A Systematic Comparison," in IEEE Transactions on Power Systems. [DOI: 10.1109/TPWRS.2019.2962024](https://ieeexplore.ieee.org/document/8941313/).

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Some files were not shown because too many files have changed in this diff Show More