mirror of
https://github.com/ANL-CEEESA/UnitCommitment.jl.git
synced 2025-12-06 00:08:52 -06:00
Compare commits
26 Commits
v0.2.1
...
feature/re
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
2b429bc664 | ||
|
|
2d48c84f1a | ||
|
|
718d6af96b | ||
|
|
56c9e28495 | ||
|
|
3d252c55a3 | ||
|
|
f44d7bcfdf | ||
| c64b76d6d1 | |||
| f514ace560 | |||
|
|
97b8611fcc | ||
| 209c3a72e9 | |||
| fe3066f2b5 | |||
|
|
92221bcaa4 | ||
|
|
2cdf8874fb | ||
|
|
ea35c3ffcc | ||
|
|
7a03f4bbb0 | ||
| 7a1b6f0f55 | |||
| 719143ea40 | |||
| 07d7e04728 | |||
| 4daf38906d | |||
|
|
b2eaa0e48b | ||
| 821d48bdc6 | |||
| cee86168ce | |||
| a7f9e84c31 | |||
| 063b602d1a | |||
| 2f90c48d60 | |||
| 98ae4d3ad4 |
@@ -11,6 +11,11 @@ All notable changes to this project will be documented in this file.
|
||||
[semver]: https://semver.org/spec/v2.0.0.html
|
||||
[pkjjl]: https://pkgdocs.julialang.org/v1/compatibility/#compat-pre-1.0
|
||||
|
||||
## [0.2.2] - 2021-07-21
|
||||
### Fixed
|
||||
- Fix small bug in validation scripts related to startup costs
|
||||
- Fix duplicated startup constraints (@mtanneau, #12)
|
||||
|
||||
## [0.2.1] - 2021-06-02
|
||||
### Added
|
||||
- Add multiple ramping formulations (ArrCon2000, MorLatRam2013, DamKucRajAta2016, PanGua2016)
|
||||
|
||||
@@ -2,10 +2,11 @@ name = "UnitCommitment"
|
||||
uuid = "64606440-39ea-11e9-0f29-3303a1d3d877"
|
||||
authors = ["Santos Xavier, Alinson <axavier@anl.gov>"]
|
||||
repo = "https://github.com/ANL-CEEESA/UnitCommitment.jl"
|
||||
version = "0.2.1"
|
||||
version = "0.2.3"
|
||||
|
||||
[deps]
|
||||
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
|
||||
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
|
||||
GZip = "92fee26a-97fe-5a0c-ad85-20a5f3185b63"
|
||||
JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
|
||||
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
|
||||
@@ -19,6 +20,7 @@ SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
|
||||
[compat]
|
||||
Cbc = "0.7"
|
||||
DataStructures = "0.18"
|
||||
Distributions = "0.25"
|
||||
GZip = "0.5"
|
||||
JSON = "0.21"
|
||||
JuMP = "0.21"
|
||||
@@ -29,6 +31,7 @@ julia = "1"
|
||||
[extras]
|
||||
Cbc = "9961bab8-2fa3-5c5a-9d89-47fab24efd76"
|
||||
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
|
||||
Gurobi = "2e9cd046-0924-5485-92f1-d5272153d98b"
|
||||
|
||||
[targets]
|
||||
test = ["Cbc", "Test"]
|
||||
test = ["Cbc", "Test", "Gurobi"]
|
||||
|
||||
@@ -20,7 +20,7 @@
|
||||
|
||||
* **Data Format:** The package proposes an extensible and fully-documented JSON-based data format for SCUC, developed in collaboration with Independent System Operators (ISOs), which describes the most important aspects of the problem. The format supports the most common generator characteristics (including ramping, piecewise-linear production cost curves and time-dependent startup costs), as well as operating reserves, price-sensitive loads, transmission networks and contingencies.
|
||||
* **Benchmark Instances:** The package provides a diverse collection of large-scale benchmark instances collected from the literature, converted into a common data format, and extended using data-driven methods to make them more challenging and realistic.
|
||||
* **Model Implementation**: The package provides a Julia/JuMP implementations of state-of-the-art formulations and solution methods for SCUC, including multiple ramping formulations ([ArrCon2000][ArrCon2000], [MorLatRam2013][MorLatRam2013], [DamKucRajAta2016][DamKucRajAta2016], [PanGua2016][PanGua2016]), multiple piecewise-linear costs formulations ([Gar1962][Gar1962], [CarArr2006][CarArr2006], [KnuOstWat2018][KnuOstWat2018]) and contingency screening methods ([XavQiuWanThi2019][XavQiuWanThi2019]). Our goal is to keep these implementations up-to-date as new methods are proposed in the literature.
|
||||
* **Model Implementation**: The package provides Julia/JuMP implementations of state-of-the-art formulations and solution methods for SCUC, including multiple ramping formulations ([ArrCon2000][ArrCon2000], [MorLatRam2013][MorLatRam2013], [DamKucRajAta2016][DamKucRajAta2016], [PanGua2016][PanGua2016]), multiple piecewise-linear costs formulations ([Gar1962][Gar1962], [CarArr2006][CarArr2006], [KnuOstWat2018][KnuOstWat2018]) and contingency screening methods ([XavQiuWanThi2019][XavQiuWanThi2019]). Our goal is to keep these implementations up-to-date as new methods are proposed in the literature.
|
||||
* **Benchmark Tools:** The package provides automated benchmark scripts to accurately evaluate the performance impact of proposed code changes.
|
||||
|
||||
[ArrCon2000]: https://doi.org/10.1109/59.871739
|
||||
|
||||
@@ -6,6 +6,9 @@ from pathlib import Path
|
||||
import pandas as pd
|
||||
import re
|
||||
from tabulate import tabulate
|
||||
from colorama import init, Fore, Back, Style
|
||||
|
||||
init()
|
||||
|
||||
|
||||
def process_all_log_files():
|
||||
@@ -48,6 +51,7 @@ def process(filename):
|
||||
# m = re.search("case([0-9]*)", instance_name)
|
||||
# n_buses = int(m.group(1))
|
||||
n_buses = 0
|
||||
validation_errors = 0
|
||||
|
||||
with open(filename) as file:
|
||||
for line in file.readlines():
|
||||
@@ -137,6 +141,14 @@ def process(filename):
|
||||
if m is not None:
|
||||
transmission_count += 1
|
||||
|
||||
m = re.search(r".*Found ([0-9]*) validation errors", line)
|
||||
if m is not None:
|
||||
validation_errors += int(m.group(1))
|
||||
print(
|
||||
f"{Fore.YELLOW}{Style.BRIGHT}Warning:{Style.RESET_ALL} {validation_errors:8d} "
|
||||
f"{Style.DIM}validation errors in {Style.RESET_ALL}{group_name}/{instance_name}/{sample_name}"
|
||||
)
|
||||
|
||||
return {
|
||||
"Group": group_name,
|
||||
"Instance": instance_name,
|
||||
@@ -168,6 +180,7 @@ def process(filename):
|
||||
"Transmission screening constraints": transmission_count,
|
||||
"Transmission screening time": transmission_time,
|
||||
"Transmission screening calls": transmission_calls,
|
||||
"Validation errors": validation_errors,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@@ -28,13 +28,14 @@ Each section is described in detail below. For a complete example, see [case14](
|
||||
|
||||
### Parameters
|
||||
|
||||
This section describes system-wide parameters, such as power balance penalties, optimization parameters, such as the length of the planning horizon and the time.
|
||||
This section describes system-wide parameters, such as power balance and reserve shortfall penalties, and optimization parameters, such as the length of the planning horizon and the time.
|
||||
|
||||
| Key | Description | Default | Time series?
|
||||
| :----------------------------- | :------------------------------------------------ | :------: | :------------:
|
||||
| `Time horizon (h)` | Length of the planning horizon (in hours). | Required | N
|
||||
| `Time horizon (h)` | Length of the planning horizon (in hours). | Required | N
|
||||
| `Time step (min)` | Length of each time step (in minutes). Must be a divisor of 60 (e.g. 60, 30, 20, 15, etc). | `60` | N
|
||||
| `Power balance penalty ($/MW)` | Penalty for system-wide shortage or surplus in production (in $/MW). This is charged per time step. For example, if there is a shortage of 1 MW for three time steps, three times this amount will be charged. | `1000.0` | Y
|
||||
| `Reserve shortfall penalty ($/MW)` | Penalty for system-wide shortage in meeting reserve requirements (in $/MW). This is charged per time step. Negative value implies reserve constraints must always be satisfied. | `-1` | Y
|
||||
|
||||
|
||||
#### Example
|
||||
@@ -42,7 +43,8 @@ This section describes system-wide parameters, such as power balance penalties,
|
||||
{
|
||||
"Parameters": {
|
||||
"Time horizon (h)": 4,
|
||||
"Power balance penalty ($/MW)": 1000.0
|
||||
"Power balance penalty ($/MW)": 1000.0,
|
||||
"Reserve shortfall penalty ($/MW)": -1.0
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
@@ -148,7 +148,7 @@ for g in instance.units
|
||||
end
|
||||
```
|
||||
|
||||
### Modifying the model
|
||||
### Fixing variables, modifying objective function and adding constraints
|
||||
|
||||
Since we now have a direct reference to the JuMP decision variables, it is possible to fix variables, change the coefficients in the objective function, or even add new constraints to the model before solving it. The script below shows how can this be accomplished. For more information on modifying an existing model, [see the JuMP documentation](https://jump.dev/JuMP.jl/stable/manual/variables/).
|
||||
|
||||
@@ -190,6 +190,54 @@ JuMP.set_objective_coefficient(
|
||||
UnitCommitment.optimize!(model)
|
||||
```
|
||||
|
||||
### Adding new component to a bus
|
||||
|
||||
The following snippet shows how to add a new grid component to a particular bus. For each time step, we create decision variables for the new grid component, add these variables to the objective function, then attach the component to a particular bus by modifying some existing model constraints.
|
||||
|
||||
```julia
|
||||
using Cbc
|
||||
using JuMP
|
||||
using UnitCommitment
|
||||
|
||||
# Load instance and build base model
|
||||
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
|
||||
model = UnitCommitment.build_model(
|
||||
instance=instance,
|
||||
optimizer=Cbc.Optimizer,
|
||||
)
|
||||
|
||||
# Get the number of time steps in the original instance
|
||||
T = instance.time
|
||||
|
||||
# Create decision variables for the new grid component.
|
||||
# In this example, we assume that the new component can
|
||||
# inject up to 10 MW of power at each time step, so we
|
||||
# create new continuous variables 0 ≤ x[t] ≤ 10.
|
||||
@variable(model, x[1:T], lower_bound=0.0, upper_bound=10.0)
|
||||
|
||||
# For each time step
|
||||
for t in 1:T
|
||||
|
||||
# Add production costs to the objective function.
|
||||
# In this example, we assume a cost of $5/MW.
|
||||
set_objective_coefficient(model, x[t], 5.0)
|
||||
|
||||
# Attach the new component to bus b1, by modifying the
|
||||
# constraint `eq_net_injection`.
|
||||
set_normalized_coefficient(
|
||||
model[:eq_net_injection]["b1", t],
|
||||
x[t],
|
||||
1.0,
|
||||
)
|
||||
end
|
||||
|
||||
# Solve the model
|
||||
UnitCommitment.optimize!(model)
|
||||
|
||||
# Show optimal values for the x variables
|
||||
@show value.(x)
|
||||
```
|
||||
|
||||
References
|
||||
----------
|
||||
* [KnOsWa20] **Bernard Knueven, James Ostrowski and Jean-Paul Watson.** "On Mixed-Integer Programming Formulations for the Unit Commitment Problem". INFORMS Journal on Computing (2020). [DOI: 10.1287/ijoc.2019.0944](https://doi.org/10.1287/ijoc.2019.0944)
|
||||
|
||||
@@ -71,7 +71,7 @@ Advanced usage
|
||||
|
||||
### Customizing the formulation
|
||||
|
||||
By default, `build_model` uses a formulation that combines modeling components from different publications, and that has been carefully tested, using our own benchmark scripts, to provide good performance across a wide variety of instances. This default formulation is expected to change over time, as new methods are proposed in the literature. You can, however, construct your own formulation, based the modeling components that you choose, as shown in the next example.
|
||||
By default, `build_model` uses a formulation that combines modeling components from different publications, and that has been carefully tested, using our own benchmark scripts, to provide good performance across a wide variety of instances. This default formulation is expected to change over time, as new methods are proposed in the literature. You can, however, construct your own formulation, based on the modeling components that you choose, as shown in the next example.
|
||||
|
||||
```julia
|
||||
using Cbc
|
||||
@@ -119,7 +119,10 @@ instance = UnitCommitment.read("instance.json")
|
||||
UnitCommitment.generate_initial_conditions!(instance, Cbc.Optimizer)
|
||||
|
||||
# Construct and solve optimization model
|
||||
model = UnitCommitment.build_model(instance, Cbc.Optimizer)
|
||||
model = UnitCommitment.build_model(
|
||||
instance=instance,
|
||||
optimizer=Cbc.Optimizer,
|
||||
)
|
||||
UnitCommitment.optimize!(model)
|
||||
```
|
||||
|
||||
|
||||
Binary file not shown.
@@ -30,6 +30,8 @@ include("model/formulations/base/unit.jl")
|
||||
include("model/formulations/CarArr2006/pwlcosts.jl")
|
||||
include("model/formulations/DamKucRajAta2016/ramp.jl")
|
||||
include("model/formulations/Gar1962/pwlcosts.jl")
|
||||
include("model/formulations/Gar1962/status.jl")
|
||||
include("model/formulations/Gar1962/prod.jl")
|
||||
include("model/formulations/KnuOstWat2018/pwlcosts.jl")
|
||||
include("model/formulations/MorLatRam2013/ramp.jl")
|
||||
include("model/formulations/MorLatRam2013/scosts.jl")
|
||||
@@ -46,6 +48,7 @@ include("solution/warmstart.jl")
|
||||
include("solution/write.jl")
|
||||
include("transform/initcond.jl")
|
||||
include("transform/slice.jl")
|
||||
include("transform/randomize.jl")
|
||||
include("utils/log.jl")
|
||||
include("validation/repair.jl")
|
||||
include("validation/validate.jl")
|
||||
|
||||
@@ -98,6 +98,10 @@ function _from_json(json; repair = true)
|
||||
json["Parameters"]["Power balance penalty (\$/MW)"],
|
||||
default = [1000.0 for t in 1:T],
|
||||
)
|
||||
shortfall_penalty = timeseries(
|
||||
json["Parameters"]["Reserve shortfall penalty (\$/MW)"],
|
||||
default = [-1.0 for t in 1:T],
|
||||
)
|
||||
|
||||
# Read buses
|
||||
for (bus_name, dict) in json["Buses"]
|
||||
@@ -264,6 +268,7 @@ function _from_json(json; repair = true)
|
||||
instance = UnitCommitmentInstance(
|
||||
T,
|
||||
power_balance_penalty,
|
||||
shortfall_penalty,
|
||||
units,
|
||||
buses,
|
||||
lines,
|
||||
|
||||
@@ -72,6 +72,8 @@ end
|
||||
mutable struct UnitCommitmentInstance
|
||||
time::Int
|
||||
power_balance_penalty::Vector{Float64}
|
||||
"Penalty for failing to meet reserve requirement."
|
||||
shortfall_penalty::Vector{Float64}
|
||||
units::Vector{Unit}
|
||||
buses::Vector{Bus}
|
||||
lines::Vector{TransmissionLine}
|
||||
|
||||
@@ -5,7 +5,9 @@
|
||||
function _add_ramp_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation::ArrCon2000.Ramping,
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_ramping::ArrCon2000.Ramping,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
)::Nothing
|
||||
# TODO: Move upper case constants to model[:instance]
|
||||
RESERVES_WHEN_START_UP = true
|
||||
@@ -17,15 +19,19 @@ function _add_ramp_eqs!(
|
||||
RD = g.ramp_down_limit
|
||||
SU = g.startup_limit
|
||||
SD = g.shutdown_limit
|
||||
is_on = model[:is_on]
|
||||
prod_above = model[:prod_above]
|
||||
reserve = model[:reserve]
|
||||
switch_off = model[:switch_off]
|
||||
switch_on = model[:switch_on]
|
||||
eq_ramp_down = _init(model, :eq_ramp_down)
|
||||
eq_ramp_up = _init(model, :eq_ramp_up)
|
||||
is_initially_on = (g.initial_status > 0)
|
||||
|
||||
# Gar1962.ProdVars
|
||||
prod_above = model[:prod_above]
|
||||
|
||||
# Gar1962.StatusVars
|
||||
is_on = model[:is_on]
|
||||
switch_off = model[:switch_off]
|
||||
switch_on = model[:switch_on]
|
||||
|
||||
for t in 1:model[:instance].time
|
||||
# Ramp up limit
|
||||
if t == 1
|
||||
|
||||
@@ -5,13 +5,18 @@
|
||||
function _add_production_piecewise_linear_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation::CarArr2006.PwlCosts,
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_pwl_costs::CarArr2006.PwlCosts,
|
||||
formulation_status_vars::StatusVarsFormulation,
|
||||
)::Nothing
|
||||
eq_prod_above_def = _init(model, :eq_prod_above_def)
|
||||
eq_segprod_limit = _init(model, :eq_segprod_limit)
|
||||
prod_above = model[:prod_above]
|
||||
segprod = model[:segprod]
|
||||
gn = g.name
|
||||
|
||||
# Gar1962.ProdVars
|
||||
prod_above = model[:prod_above]
|
||||
|
||||
K = length(g.cost_segments)
|
||||
for t in 1:model[:instance].time
|
||||
gn = g.name
|
||||
|
||||
@@ -5,7 +5,9 @@
|
||||
function _add_ramp_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation::DamKucRajAta2016.Ramping,
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_ramping::DamKucRajAta2016.Ramping,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
)::Nothing
|
||||
# TODO: Move upper case constants to model[:instance]
|
||||
RESERVES_WHEN_START_UP = true
|
||||
@@ -21,9 +23,13 @@ function _add_ramp_eqs!(
|
||||
gn = g.name
|
||||
eq_str_ramp_down = _init(model, :eq_str_ramp_down)
|
||||
eq_str_ramp_up = _init(model, :eq_str_ramp_up)
|
||||
is_on = model[:is_on]
|
||||
prod_above = model[:prod_above]
|
||||
reserve = model[:reserve]
|
||||
|
||||
# Gar1962.ProdVars
|
||||
prod_above = model[:prod_above]
|
||||
|
||||
# Gar1962.StatusVars
|
||||
is_on = model[:is_on]
|
||||
switch_off = model[:switch_off]
|
||||
switch_on = model[:switch_on]
|
||||
|
||||
|
||||
50
src/model/formulations/Gar1962/prod.jl
Normal file
50
src/model/formulations/Gar1962/prod.jl
Normal file
@@ -0,0 +1,50 @@
|
||||
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
function _add_production_vars!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
)::Nothing
|
||||
prod_above = _init(model, :prod_above)
|
||||
segprod = _init(model, :segprod)
|
||||
for t in 1:model[:instance].time
|
||||
for k in 1:length(g.cost_segments)
|
||||
segprod[g.name, t, k] = @variable(model, lower_bound = 0)
|
||||
end
|
||||
prod_above[g.name, t] = @variable(model, lower_bound = 0)
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
function _add_production_limit_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
)::Nothing
|
||||
eq_prod_limit = _init(model, :eq_prod_limit)
|
||||
is_on = model[:is_on]
|
||||
prod_above = model[:prod_above]
|
||||
reserve = model[:reserve]
|
||||
gn = g.name
|
||||
for t in 1:model[:instance].time
|
||||
# Objective function terms for production costs
|
||||
# Part of (69) of Kneuven et al. (2020) as C^R_g * u_g(t) term
|
||||
add_to_expression!(model[:obj], is_on[gn, t], g.min_power_cost[t])
|
||||
|
||||
# Production limit
|
||||
# Equation (18) in Kneuven et al. (2020)
|
||||
# as \bar{p}_g(t) \le \bar{P}_g u_g(t)
|
||||
# amk: this is a weaker version of (20) and (21) in Kneuven et al. (2020)
|
||||
# but keeping it here in case those are not present
|
||||
power_diff = max(g.max_power[t], 0.0) - max(g.min_power[t], 0.0)
|
||||
if power_diff < 1e-7
|
||||
power_diff = 0.0
|
||||
end
|
||||
eq_prod_limit[gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] + reserve[gn, t] <= power_diff * is_on[gn, t]
|
||||
)
|
||||
end
|
||||
end
|
||||
@@ -5,14 +5,21 @@
|
||||
function _add_production_piecewise_linear_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation::Gar1962.PwlCosts,
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_pwl_costs::Gar1962.PwlCosts,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
)::Nothing
|
||||
eq_prod_above_def = _init(model, :eq_prod_above_def)
|
||||
eq_segprod_limit = _init(model, :eq_segprod_limit)
|
||||
is_on = model[:is_on]
|
||||
prod_above = model[:prod_above]
|
||||
segprod = model[:segprod]
|
||||
gn = g.name
|
||||
|
||||
# Gar1962.ProdVars
|
||||
prod_above = model[:prod_above]
|
||||
|
||||
# Gar1962.StatusVars
|
||||
is_on = model[:is_on]
|
||||
|
||||
K = length(g.cost_segments)
|
||||
for t in 1:model[:instance].time
|
||||
# Definition of production
|
||||
|
||||
61
src/model/formulations/Gar1962/status.jl
Normal file
61
src/model/formulations/Gar1962/status.jl
Normal file
@@ -0,0 +1,61 @@
|
||||
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
function _add_status_vars!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
)::Nothing
|
||||
is_on = _init(model, :is_on)
|
||||
switch_on = _init(model, :switch_on)
|
||||
switch_off = _init(model, :switch_off)
|
||||
for t in 1:model[:instance].time
|
||||
if g.must_run[t]
|
||||
is_on[g.name, t] = 1.0
|
||||
switch_on[g.name, t] = (t == 1 ? 1.0 - _is_initially_on(g) : 0.0)
|
||||
switch_off[g.name, t] = 0.0
|
||||
else
|
||||
is_on[g.name, t] = @variable(model, binary = true)
|
||||
switch_on[g.name, t] = @variable(model, binary = true)
|
||||
switch_off[g.name, t] = @variable(model, binary = true)
|
||||
end
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
function _add_status_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
)::Nothing
|
||||
eq_binary_link = _init(model, :eq_binary_link)
|
||||
eq_switch_on_off = _init(model, :eq_switch_on_off)
|
||||
is_on = model[:is_on]
|
||||
switch_off = model[:switch_off]
|
||||
switch_on = model[:switch_on]
|
||||
for t in 1:model[:instance].time
|
||||
if !g.must_run[t]
|
||||
# Link binary variables
|
||||
if t == 1
|
||||
eq_binary_link[g.name, t] = @constraint(
|
||||
model,
|
||||
is_on[g.name, t] - _is_initially_on(g) ==
|
||||
switch_on[g.name, t] - switch_off[g.name, t]
|
||||
)
|
||||
else
|
||||
eq_binary_link[g.name, t] = @constraint(
|
||||
model,
|
||||
is_on[g.name, t] - is_on[g.name, t-1] ==
|
||||
switch_on[g.name, t] - switch_off[g.name, t]
|
||||
)
|
||||
end
|
||||
# Cannot switch on and off at the same time
|
||||
eq_switch_on_off[g.name, t] = @constraint(
|
||||
model,
|
||||
switch_on[g.name, t] + switch_off[g.name, t] <= 1
|
||||
)
|
||||
end
|
||||
end
|
||||
return
|
||||
end
|
||||
@@ -14,7 +14,11 @@ Formulation described in:
|
||||
module Gar1962
|
||||
|
||||
import ..PiecewiseLinearCostsFormulation
|
||||
import ..ProductionVarsFormulation
|
||||
import ..StatusVarsFormulation
|
||||
|
||||
struct ProdVars <: ProductionVarsFormulation end
|
||||
struct PwlCosts <: PiecewiseLinearCostsFormulation end
|
||||
struct StatusVars <: StatusVarsFormulation end
|
||||
|
||||
end
|
||||
|
||||
@@ -5,21 +5,27 @@
|
||||
function _add_production_piecewise_linear_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation::KnuOstWat2018.PwlCosts,
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_pwl_costs::KnuOstWat2018.PwlCosts,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
)::Nothing
|
||||
eq_prod_above_def = _init(model, :eq_prod_above_def)
|
||||
eq_segprod_limit_a = _init(model, :eq_segprod_limit_a)
|
||||
eq_segprod_limit_b = _init(model, :eq_segprod_limit_b)
|
||||
eq_segprod_limit_c = _init(model, :eq_segprod_limit_c)
|
||||
prod_above = model[:prod_above]
|
||||
segprod = model[:segprod]
|
||||
is_on = model[:is_on]
|
||||
switch_on = model[:switch_on]
|
||||
switch_off = model[:switch_off]
|
||||
gn = g.name
|
||||
K = length(g.cost_segments)
|
||||
T = model[:instance].time
|
||||
|
||||
# Gar1962.ProdVars
|
||||
prod_above = model[:prod_above]
|
||||
|
||||
# Gar1962.StatusVars
|
||||
is_on = model[:is_on]
|
||||
switch_on = model[:switch_on]
|
||||
switch_off = model[:switch_off]
|
||||
|
||||
for t in 1:T
|
||||
for k in 1:K
|
||||
# Pbar^{k-1)
|
||||
|
||||
@@ -5,7 +5,9 @@
|
||||
function _add_ramp_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation::MorLatRam2013.Ramping,
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_ramping::MorLatRam2013.Ramping,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
)::Nothing
|
||||
# TODO: Move upper case constants to model[:instance]
|
||||
RESERVES_WHEN_START_UP = true
|
||||
@@ -20,9 +22,13 @@ function _add_ramp_eqs!(
|
||||
gn = g.name
|
||||
eq_ramp_down = _init(model, :eq_ramp_down)
|
||||
eq_ramp_up = _init(model, :eq_str_ramp_up)
|
||||
is_on = model[:is_on]
|
||||
prod_above = model[:prod_above]
|
||||
reserve = model[:reserve]
|
||||
|
||||
# Gar1962.ProdVars
|
||||
prod_above = model[:prod_above]
|
||||
|
||||
# Gar1962.StatusVars
|
||||
is_on = model[:is_on]
|
||||
switch_off = model[:switch_off]
|
||||
switch_on = model[:switch_on]
|
||||
|
||||
|
||||
@@ -12,14 +12,14 @@ function _add_startup_cost_eqs!(
|
||||
S = length(g.startup_categories)
|
||||
startup = model[:startup]
|
||||
for t in 1:model[:instance].time
|
||||
for s in 1:S
|
||||
# If unit is switching on, we must choose a startup category
|
||||
eq_startup_choose[g.name, t, s] = @constraint(
|
||||
model,
|
||||
model[:switch_on][g.name, t] ==
|
||||
sum(startup[g.name, t, s] for s in 1:S)
|
||||
)
|
||||
# If unit is switching on, we must choose a startup category
|
||||
eq_startup_choose[g.name, t] = @constraint(
|
||||
model,
|
||||
model[:switch_on][g.name, t] ==
|
||||
sum(startup[g.name, t, s] for s in 1:S)
|
||||
)
|
||||
|
||||
for s in 1:S
|
||||
# If unit has not switched off in the last `delay` time periods, startup category is forbidden.
|
||||
# The last startup category is always allowed.
|
||||
if s < S
|
||||
|
||||
@@ -1,16 +1,18 @@
|
||||
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
function _add_ramp_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation::PanGua2016.Ramping,
|
||||
formulation_prod_vars::Gar1962.ProdVars,
|
||||
formulation_ramping::PanGua2016.Ramping,
|
||||
formulation_status_vars::Gar1962.StatusVars,
|
||||
)::Nothing
|
||||
# TODO: Move upper case constants to model[:instance]
|
||||
RESERVES_WHEN_SHUT_DOWN = true
|
||||
gn = g.name
|
||||
is_on = model[:is_on]
|
||||
prod_above = model[:prod_above]
|
||||
reserve = model[:reserve]
|
||||
switch_off = model[:switch_off]
|
||||
switch_on = model[:switch_on]
|
||||
eq_str_prod_limit = _init(model, :eq_str_prod_limit)
|
||||
eq_prod_limit_ramp_up_extra_period =
|
||||
_init(model, :eq_prod_limit_ramp_up_extra_period)
|
||||
@@ -23,6 +25,14 @@ function _add_ramp_eqs!(
|
||||
RD = g.ramp_down_limit # ramp down rate
|
||||
T = model[:instance].time
|
||||
|
||||
# Gar1962.ProdVars
|
||||
prod_above = model[:prod_above]
|
||||
|
||||
# Gar1962.StatusVars
|
||||
is_on = model[:is_on]
|
||||
switch_off = model[:switch_off]
|
||||
switch_on = model[:switch_on]
|
||||
|
||||
for t in 1:T
|
||||
Pbar = g.max_power[t]
|
||||
if Pbar < 1e-7
|
||||
|
||||
@@ -4,15 +4,11 @@
|
||||
|
||||
function _add_bus!(model::JuMP.Model, b::Bus)::Nothing
|
||||
net_injection = _init(model, :expr_net_injection)
|
||||
reserve = _init(model, :expr_reserve)
|
||||
curtail = _init(model, :curtail)
|
||||
for t in 1:model[:instance].time
|
||||
# Fixed load
|
||||
net_injection[b.name, t] = AffExpr(-b.load[t])
|
||||
|
||||
# Reserves
|
||||
reserve[b.name, t] = AffExpr()
|
||||
|
||||
# Load curtailment
|
||||
curtail[b.name, t] =
|
||||
@variable(model, lower_bound = 0, upper_bound = b.load[t])
|
||||
|
||||
@@ -6,20 +6,33 @@ abstract type TransmissionFormulation end
|
||||
abstract type RampingFormulation end
|
||||
abstract type PiecewiseLinearCostsFormulation end
|
||||
abstract type StartupCostsFormulation end
|
||||
abstract type StatusVarsFormulation end
|
||||
abstract type ProductionVarsFormulation end
|
||||
|
||||
struct Formulation
|
||||
prod_vars::ProductionVarsFormulation
|
||||
pwl_costs::PiecewiseLinearCostsFormulation
|
||||
ramping::RampingFormulation
|
||||
startup_costs::StartupCostsFormulation
|
||||
status_vars::StatusVarsFormulation
|
||||
transmission::TransmissionFormulation
|
||||
|
||||
function Formulation(;
|
||||
prod_vars::ProductionVarsFormulation = Gar1962.ProdVars(),
|
||||
pwl_costs::PiecewiseLinearCostsFormulation = KnuOstWat2018.PwlCosts(),
|
||||
ramping::RampingFormulation = MorLatRam2013.Ramping(),
|
||||
startup_costs::StartupCostsFormulation = MorLatRam2013.StartupCosts(),
|
||||
status_vars::StatusVarsFormulation = Gar1962.StatusVars(),
|
||||
transmission::TransmissionFormulation = ShiftFactorsFormulation(),
|
||||
)
|
||||
return new(pwl_costs, ramping, startup_costs, transmission)
|
||||
return new(
|
||||
prod_vars,
|
||||
pwl_costs,
|
||||
ramping,
|
||||
startup_costs,
|
||||
status_vars,
|
||||
transmission,
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
@@ -11,12 +11,12 @@ end
|
||||
function _add_net_injection_eqs!(model::JuMP.Model)::Nothing
|
||||
T = model[:instance].time
|
||||
net_injection = _init(model, :net_injection)
|
||||
eq_net_injection_def = _init(model, :eq_net_injection_def)
|
||||
eq_net_injection = _init(model, :eq_net_injection)
|
||||
eq_power_balance = _init(model, :eq_power_balance)
|
||||
for t in 1:T, b in model[:instance].buses
|
||||
n = net_injection[b.name, t] = @variable(model)
|
||||
eq_net_injection_def[t, b.name] =
|
||||
@constraint(model, n == model[:expr_net_injection][b.name, t])
|
||||
eq_net_injection[b.name, t] =
|
||||
@constraint(model, -n + model[:expr_net_injection][b.name, t] == 0)
|
||||
end
|
||||
for t in 1:T
|
||||
eq_power_balance[t] = @constraint(
|
||||
@@ -29,13 +29,28 @@ end
|
||||
|
||||
function _add_reserve_eqs!(model::JuMP.Model)::Nothing
|
||||
eq_min_reserve = _init(model, :eq_min_reserve)
|
||||
for t in 1:model[:instance].time
|
||||
instance = model[:instance]
|
||||
for t in 1:instance.time
|
||||
# Equation (68) in Kneuven et al. (2020)
|
||||
# As in Morales-España et al. (2013a)
|
||||
# Akin to the alternative formulation with max_power_avail
|
||||
# from Carrión and Arroyo (2006) and Ostrowski et al. (2012)
|
||||
shortfall_penalty = instance.shortfall_penalty[t]
|
||||
eq_min_reserve[t] = @constraint(
|
||||
model,
|
||||
sum(
|
||||
model[:expr_reserve][b.name, t] for b in model[:instance].buses
|
||||
) >= model[:instance].reserves.spinning[t]
|
||||
sum(model[:reserve][g.name, t] for g in instance.units) +
|
||||
(shortfall_penalty >= 0 ? model[:reserve_shortfall][t] : 0.0) >=
|
||||
instance.reserves.spinning[t]
|
||||
)
|
||||
|
||||
# Account for shortfall contribution to objective
|
||||
if shortfall_penalty >= 0
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
shortfall_penalty,
|
||||
model[:reserve_shortfall][t],
|
||||
)
|
||||
end
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
function _add_unit!(model::JuMP.Model, g::Unit, f::Formulation)
|
||||
function _add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation)
|
||||
if !all(g.must_run) && any(g.must_run)
|
||||
error("Partially must-run units are not currently supported")
|
||||
end
|
||||
@@ -11,72 +11,49 @@ function _add_unit!(model::JuMP.Model, g::Unit, f::Formulation)
|
||||
end
|
||||
|
||||
# Variables
|
||||
_add_production_vars!(model, g)
|
||||
_add_production_vars!(model, g, formulation.prod_vars)
|
||||
_add_reserve_vars!(model, g)
|
||||
_add_startup_shutdown_vars!(model, g)
|
||||
_add_status_vars!(model, g)
|
||||
_add_status_vars!(model, g, formulation.status_vars)
|
||||
|
||||
# Constraints and objective function
|
||||
_add_min_uptime_downtime_eqs!(model, g)
|
||||
_add_net_injection_eqs!(model, g)
|
||||
_add_production_limit_eqs!(model, g)
|
||||
_add_production_piecewise_linear_eqs!(model, g, f.pwl_costs)
|
||||
_add_ramp_eqs!(model, g, f.ramping)
|
||||
_add_startup_cost_eqs!(model, g, f.startup_costs)
|
||||
_add_production_limit_eqs!(model, g, formulation.prod_vars)
|
||||
_add_production_piecewise_linear_eqs!(
|
||||
model,
|
||||
g,
|
||||
formulation.prod_vars,
|
||||
formulation.pwl_costs,
|
||||
formulation.status_vars,
|
||||
)
|
||||
_add_ramp_eqs!(
|
||||
model,
|
||||
g,
|
||||
formulation.prod_vars,
|
||||
formulation.ramping,
|
||||
formulation.status_vars,
|
||||
)
|
||||
_add_startup_cost_eqs!(model, g, formulation.startup_costs)
|
||||
_add_startup_shutdown_limit_eqs!(model, g)
|
||||
_add_status_eqs!(model, g)
|
||||
_add_status_eqs!(model, g, formulation.status_vars)
|
||||
return
|
||||
end
|
||||
|
||||
_is_initially_on(g::Unit)::Float64 = (g.initial_status > 0 ? 1.0 : 0.0)
|
||||
|
||||
function _add_production_vars!(model::JuMP.Model, g::Unit)::Nothing
|
||||
prod_above = _init(model, :prod_above)
|
||||
segprod = _init(model, :segprod)
|
||||
for t in 1:model[:instance].time
|
||||
for k in 1:length(g.cost_segments)
|
||||
segprod[g.name, t, k] = @variable(model, lower_bound = 0)
|
||||
end
|
||||
prod_above[g.name, t] = @variable(model, lower_bound = 0)
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
function _add_production_limit_eqs!(model::JuMP.Model, g::Unit)::Nothing
|
||||
eq_prod_limit = _init(model, :eq_prod_limit)
|
||||
is_on = model[:is_on]
|
||||
prod_above = model[:prod_above]
|
||||
reserve = model[:reserve]
|
||||
gn = g.name
|
||||
for t in 1:model[:instance].time
|
||||
# Objective function terms for production costs
|
||||
# Part of (69) of Kneuven et al. (2020) as C^R_g * u_g(t) term
|
||||
add_to_expression!(model[:obj], is_on[gn, t], g.min_power_cost[t])
|
||||
|
||||
# Production limit
|
||||
# Equation (18) in Kneuven et al. (2020)
|
||||
# as \bar{p}_g(t) \le \bar{P}_g u_g(t)
|
||||
# amk: this is a weaker version of (20) and (21) in Kneuven et al. (2020)
|
||||
# but keeping it here in case those are not present
|
||||
power_diff = max(g.max_power[t], 0.0) - max(g.min_power[t], 0.0)
|
||||
if power_diff < 1e-7
|
||||
power_diff = 0.0
|
||||
end
|
||||
eq_prod_limit[gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] + reserve[gn, t] <= power_diff * is_on[gn, t]
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
function _add_reserve_vars!(model::JuMP.Model, g::Unit)::Nothing
|
||||
reserve = _init(model, :reserve)
|
||||
reserve_shortfall = _init(model, :reserve_shortfall)
|
||||
for t in 1:model[:instance].time
|
||||
if g.provides_spinning_reserves[t]
|
||||
reserve[g.name, t] = @variable(model, lower_bound = 0)
|
||||
else
|
||||
reserve[g.name, t] = 0.0
|
||||
end
|
||||
reserve_shortfall[t] =
|
||||
(model[:instance].shortfall_penalty[t] >= 0) ?
|
||||
@variable(model, lower_bound = 0) : 0.0
|
||||
end
|
||||
return
|
||||
end
|
||||
@@ -134,56 +111,6 @@ function _add_startup_shutdown_limit_eqs!(model::JuMP.Model, g::Unit)::Nothing
|
||||
return
|
||||
end
|
||||
|
||||
function _add_status_vars!(model::JuMP.Model, g::Unit)::Nothing
|
||||
is_on = _init(model, :is_on)
|
||||
switch_on = _init(model, :switch_on)
|
||||
switch_off = _init(model, :switch_off)
|
||||
for t in 1:model[:instance].time
|
||||
if g.must_run[t]
|
||||
is_on[g.name, t] = 1.0
|
||||
switch_on[g.name, t] = (t == 1 ? 1.0 - _is_initially_on(g) : 0.0)
|
||||
switch_off[g.name, t] = 0.0
|
||||
else
|
||||
is_on[g.name, t] = @variable(model, binary = true)
|
||||
switch_on[g.name, t] = @variable(model, binary = true)
|
||||
switch_off[g.name, t] = @variable(model, binary = true)
|
||||
end
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
function _add_status_eqs!(model::JuMP.Model, g::Unit)::Nothing
|
||||
eq_binary_link = _init(model, :eq_binary_link)
|
||||
eq_switch_on_off = _init(model, :eq_switch_on_off)
|
||||
is_on = model[:is_on]
|
||||
switch_off = model[:switch_off]
|
||||
switch_on = model[:switch_on]
|
||||
for t in 1:model[:instance].time
|
||||
if !g.must_run[t]
|
||||
# Link binary variables
|
||||
if t == 1
|
||||
eq_binary_link[g.name, t] = @constraint(
|
||||
model,
|
||||
is_on[g.name, t] - _is_initially_on(g) ==
|
||||
switch_on[g.name, t] - switch_off[g.name, t]
|
||||
)
|
||||
else
|
||||
eq_binary_link[g.name, t] = @constraint(
|
||||
model,
|
||||
is_on[g.name, t] - is_on[g.name, t-1] ==
|
||||
switch_on[g.name, t] - switch_off[g.name, t]
|
||||
)
|
||||
end
|
||||
# Cannot switch on and off at the same time
|
||||
eq_switch_on_off[g.name, t] = @constraint(
|
||||
model,
|
||||
switch_on[g.name, t] + switch_off[g.name, t] <= 1
|
||||
)
|
||||
end
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
function _add_ramp_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
@@ -194,7 +121,7 @@ function _add_ramp_eqs!(
|
||||
eq_ramp_up = _init(model, :eq_ramp_up)
|
||||
eq_ramp_down = _init(model, :eq_ramp_down)
|
||||
for t in 1:model[:instance].time
|
||||
# Ramp up limit
|
||||
# Ramp up limit
|
||||
if t == 1
|
||||
if _is_initially_on(g) == 1
|
||||
eq_ramp_up[g.name, t] = @constraint(
|
||||
@@ -287,11 +214,5 @@ function _add_net_injection_eqs!(model::JuMP.Model, g::Unit)::Nothing
|
||||
model[:is_on][g.name, t],
|
||||
g.min_power[t],
|
||||
)
|
||||
# Add to reserves expression
|
||||
add_to_expression!(
|
||||
model[:expr_reserve][g.bus.name, t],
|
||||
model[:reserve][g.name, t],
|
||||
1.0,
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
@@ -51,6 +51,12 @@ function solution(model::JuMP.Model)::OrderedDict
|
||||
sol["Switch on"] = timeseries(model[:switch_on], instance.units)
|
||||
sol["Switch off"] = timeseries(model[:switch_off], instance.units)
|
||||
sol["Reserve (MW)"] = timeseries(model[:reserve], instance.units)
|
||||
sol["Reserve shortfall (MW)"] = OrderedDict(
|
||||
t =>
|
||||
(instance.shortfall_penalty[t] >= 0) ?
|
||||
round(value(model[:reserve_shortfall][t]), digits = 5) : 0.0 for
|
||||
t in 1:instance.time
|
||||
)
|
||||
sol["Net injection (MW)"] =
|
||||
timeseries(model[:net_injection], instance.buses)
|
||||
sol["Load curtail (MW)"] = timeseries(model[:curtail], instance.buses)
|
||||
|
||||
53
src/transform/randomize.jl
Normal file
53
src/transform/randomize.jl
Normal file
@@ -0,0 +1,53 @@
|
||||
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
|
||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using Distributions
|
||||
|
||||
function randomize_unit_costs!(
|
||||
instance::UnitCommitmentInstance;
|
||||
distribution = Uniform(0.95, 1.05),
|
||||
)::Nothing
|
||||
for unit in instance.units
|
||||
α = rand(distribution)
|
||||
unit.min_power_cost *= α
|
||||
for k in unit.cost_segments
|
||||
k.cost *= α
|
||||
end
|
||||
for s in unit.startup_categories
|
||||
s.cost *= α
|
||||
end
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
function randomize_load_distribution!(
|
||||
instance::UnitCommitmentInstance;
|
||||
distribution = Uniform(0.90, 1.10),
|
||||
)::Nothing
|
||||
α = rand(distribution, length(instance.buses))
|
||||
for t in 1:instance.time
|
||||
total = sum(bus.load[t] for bus in instance.buses)
|
||||
den = sum(
|
||||
bus.load[t] / total * α[i] for
|
||||
(i, bus) in enumerate(instance.buses)
|
||||
)
|
||||
for (i, bus) in enumerate(instance.buses)
|
||||
bus.load[t] *= α[i] / den
|
||||
end
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
function randomize_peak_load!(
|
||||
instance::UnitCommitmentInstance;
|
||||
distribution = Uniform(0.925, 1.075),
|
||||
)::Nothing
|
||||
α = rand(distribution)
|
||||
for bus in instance.buses
|
||||
bus.load *= α
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
export randomize_unit_costs!, randomize_load_distribution!, randomize_peak_load!
|
||||
@@ -5,12 +5,20 @@
|
||||
using PackageCompiler
|
||||
|
||||
using DataStructures
|
||||
using Distributions
|
||||
using JSON
|
||||
using JuMP
|
||||
using MathOptInterface
|
||||
using SparseArrays
|
||||
|
||||
pkg = [:DataStructures, :JSON, :JuMP, :MathOptInterface, :SparseArrays]
|
||||
pkg = [
|
||||
:DataStructures,
|
||||
:Distributions,
|
||||
:JSON,
|
||||
:JuMP,
|
||||
:MathOptInterface,
|
||||
:SparseArrays,
|
||||
]
|
||||
|
||||
@info "Building system image..."
|
||||
create_sysimage(
|
||||
|
||||
@@ -208,12 +208,8 @@ function _validate_units(instance, solution; tol = 0.01)
|
||||
break
|
||||
end
|
||||
end
|
||||
if t == time_down + 1
|
||||
initial_down = unit.min_downtime
|
||||
if unit.initial_status < 0
|
||||
initial_down = -unit.initial_status
|
||||
end
|
||||
time_down += initial_down
|
||||
if (t == time_down + 1) && (unit.initial_status < 0)
|
||||
time_down -= unit.initial_status
|
||||
end
|
||||
|
||||
# Calculate startup costs
|
||||
@@ -246,14 +242,6 @@ function _validate_units(instance, solution; tol = 0.01)
|
||||
break
|
||||
end
|
||||
end
|
||||
if t == time_up + 1
|
||||
initial_up = unit.min_uptime
|
||||
if unit.initial_status > 0
|
||||
initial_up = unit.initial_status
|
||||
end
|
||||
time_up += initial_up
|
||||
end
|
||||
|
||||
if (t == time_up + 1) && (unit.initial_status > 0)
|
||||
time_up += unit.initial_status
|
||||
end
|
||||
@@ -336,11 +324,16 @@ function _validate_reserve_and_demand(instance, solution, tol = 0.01)
|
||||
# Verify spinning reserves
|
||||
reserve =
|
||||
sum(solution["Reserve (MW)"][g.name][t] for g in instance.units)
|
||||
if reserve < instance.reserves.spinning[t] - tol
|
||||
reserve_shortfall =
|
||||
(instance.shortfall_penalty[t] >= 0) ?
|
||||
solution["Reserve shortfall (MW)"][t] : 0
|
||||
|
||||
if reserve + reserve_shortfall < instance.reserves.spinning[t] - tol
|
||||
@error @sprintf(
|
||||
"Insufficient spinning reserves at time %d (%.2f should be %.2f)",
|
||||
"Insufficient spinning reserves at time %d (%.2f + %.2f should be %.2f)",
|
||||
t,
|
||||
reserve,
|
||||
reserve_shortfall,
|
||||
instance.reserves.spinning[t],
|
||||
)
|
||||
err_count += 1
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using UnitCommitment
|
||||
using JuMP
|
||||
import UnitCommitment:
|
||||
ArrCon2000,
|
||||
CarArr2006,
|
||||
@@ -11,17 +12,55 @@ import UnitCommitment:
|
||||
Gar1962,
|
||||
KnuOstWat2018,
|
||||
MorLatRam2013,
|
||||
PanGua2016
|
||||
PanGua2016,
|
||||
XavQiuWanThi2019
|
||||
|
||||
function _test(formulation::Formulation)::Nothing
|
||||
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
|
||||
UnitCommitment.build_model(instance = instance, formulation = formulation) # should not crash
|
||||
if ENABLE_LARGE_TESTS
|
||||
using Gurobi
|
||||
end
|
||||
|
||||
function _small_test(formulation::Formulation)::Nothing
|
||||
instances = ["matpower/case118/2017-02-01", "test/case14"]
|
||||
for instance in instances
|
||||
# Should not crash
|
||||
UnitCommitment.build_model(
|
||||
instance = UnitCommitment.read_benchmark(instance),
|
||||
formulation = formulation,
|
||||
)
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
function _large_test(formulation::Formulation)::Nothing
|
||||
instances = ["pglib-uc/ca/Scenario400_reserves_1"]
|
||||
for instance in instances
|
||||
instance = UnitCommitment.read_benchmark(instance)
|
||||
model = UnitCommitment.build_model(
|
||||
instance = instance,
|
||||
formulation = formulation,
|
||||
optimizer = Gurobi.Optimizer,
|
||||
)
|
||||
UnitCommitment.optimize!(
|
||||
model,
|
||||
XavQiuWanThi2019.Method(two_phase_gap = false, gap_limit = 0.1),
|
||||
)
|
||||
solution = UnitCommitment.solution(model)
|
||||
@test UnitCommitment.validate(instance, solution)
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
function _test(formulation::Formulation)::Nothing
|
||||
_small_test(formulation)
|
||||
if ENABLE_LARGE_TESTS
|
||||
_large_test(formulation)
|
||||
end
|
||||
end
|
||||
|
||||
@testset "formulations" begin
|
||||
_test(Formulation())
|
||||
_test(Formulation(ramping = ArrCon2000.Ramping()))
|
||||
_test(Formulation(ramping = DamKucRajAta2016.Ramping()))
|
||||
# _test(Formulation(ramping = DamKucRajAta2016.Ramping()))
|
||||
_test(
|
||||
Formulation(
|
||||
ramping = MorLatRam2013.Ramping(),
|
||||
|
||||
@@ -7,6 +7,8 @@ using UnitCommitment
|
||||
|
||||
UnitCommitment._setup_logger()
|
||||
|
||||
const ENABLE_LARGE_TESTS = ("UCJL_LARGE_TESTS" in keys(ENV))
|
||||
|
||||
@testset "UnitCommitment" begin
|
||||
include("usage.jl")
|
||||
@testset "import" begin
|
||||
@@ -26,6 +28,7 @@ UnitCommitment._setup_logger()
|
||||
@testset "transform" begin
|
||||
include("transform/initcond_test.jl")
|
||||
include("transform/slice_test.jl")
|
||||
include("transform/randomize_test.jl")
|
||||
end
|
||||
@testset "validation" begin
|
||||
include("validation/repair_test.jl")
|
||||
|
||||
43
test/transform/randomize_test.jl
Normal file
43
test/transform/randomize_test.jl
Normal file
@@ -0,0 +1,43 @@
|
||||
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using UnitCommitment, Cbc, JuMP
|
||||
|
||||
_get_instance() = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
|
||||
_total_load(instance) = sum(b.load[1] for b in instance.buses)
|
||||
|
||||
@testset "randomize_unit_costs!" begin
|
||||
instance = _get_instance()
|
||||
unit = instance.units[10]
|
||||
prev_min_power_cost = unit.min_power_cost
|
||||
prev_prod_cost = unit.cost_segments[1].cost
|
||||
prev_startup_cost = unit.startup_categories[1].cost
|
||||
randomize_unit_costs!(instance)
|
||||
@test prev_min_power_cost != unit.min_power_cost
|
||||
@test prev_prod_cost != unit.cost_segments[1].cost
|
||||
@test prev_startup_cost != unit.startup_categories[1].cost
|
||||
end
|
||||
|
||||
@testset "randomize_load_distribution!" begin
|
||||
instance = _get_instance()
|
||||
bus = instance.buses[1]
|
||||
prev_load = instance.buses[1].load[1]
|
||||
prev_total_load = _total_load(instance)
|
||||
randomize_load_distribution!(instance)
|
||||
curr_total_load = _total_load(instance)
|
||||
@test prev_load != instance.buses[1].load[1]
|
||||
@test abs(prev_total_load - curr_total_load) < 1e-3
|
||||
end
|
||||
|
||||
@testset "randomize_peak_load!" begin
|
||||
instance = _get_instance()
|
||||
bus = instance.buses[1]
|
||||
prev_total_load = _total_load(instance)
|
||||
prev_share = bus.load[1] / prev_total_load
|
||||
randomize_peak_load!(instance)
|
||||
curr_total_load = _total_load(instance)
|
||||
curr_share = bus.load[1] / prev_total_load
|
||||
@test curr_total_load != prev_total_load
|
||||
@test abs(curr_share - prev_share) < 1e-3
|
||||
end
|
||||
Reference in New Issue
Block a user