@ -1,12 +1,184 @@
|
||||
# PowerSAS.m
|
||||
|
||||
**PowerSAS.m** is a robust, efficient and scalable power grid analysis framework based on semi-analytical solutions (SAS) technology. The **PowerSAS.m** is the version for MATLAB/Octave users. It currently provides the following functionalities (more coming soon!):
|
||||
## I. Documentation
|
||||
[HTML](https://powersasm.readthedocs.io/en/latest/index.html)
|
||||
|
||||
[PDF](https://powersasm.readthedocs.io/_/downloads/en/latest/pdf/)
|
||||
|
||||
## II. What is PowerSAS.m?
|
||||
|
||||
**PowerSAS.m** is a robust, efficient and scalable power grid analysis framework based on semi-analytical solutions (SAS) technology. [(Click here for more details of the SAS technology)](https://powersasm.readthedocs.io/en/latest/sas_basics.html#).
|
||||
|
||||
The **PowerSAS.m** is the version for MATLAB/Octave users. It currently provides the following functionalities (more coming soon!):
|
||||
|
||||
* **Steady-state analysis**, including power flow (PF), continuation power flow (CPF), contingency analysis.
|
||||
* **Dynamic security analysis**, including voltage stability analysis, transient stability analysis, and flexible user-defined simulation.
|
||||
* **Hybrid extended-term simulation** provides adaptive QSS-dynamic hybrid simulation in extended term with high accuracy and efficiency.
|
||||
|
||||
### Key features
|
||||
#### Key features
|
||||
* **High numerical robustness.** Backed by the SAS approach, the PowerSAS tool provides much better convergence than the tools using traditional Newton-type algebraic equation solvers when solving algebraic equations (AE)/ordinary differential equations (ODE)/differential-algebraic equations(DAE).
|
||||
* **Enhanced computational performance.** Due to the analytical nature, PowerSAS provides model-adaptive high-accuracy approximation, which brings significantly extended effective range and much larger steps for steady-state/dynamic analysis. PowerSAS has been used to solve large-scale system cases with 200,000+ buses.
|
||||
* **Customizable and extensible.** PowerSAS supports flexible customization of grid analysis scenarios, including complex event sequences in extended simulation term.
|
||||
* **Customizable and extensible.** PowerSAS supports flexible customization of grid analysis scenarios, including complex event sequences in extended simulation term.
|
||||
|
||||
## III. Installation
|
||||
#### 1. System requirements
|
||||
Matlab (7.1 or later) or GNU Octave (4.0.0 or later).
|
||||
|
||||
#### 2. Installation
|
||||
* Extract source code to a directory.
|
||||
* Enter the directory in Matlab or GNU Octave.
|
||||
* Execute command `setup`. You will see the following sub-directories:
|
||||
* `/data`: Stores test system data, simulation settings data, etc.
|
||||
* `/example`: Some examples of using PowerSAS.m.
|
||||
* `/output`: Stores test result data.
|
||||
* `/internal`: Internal functions of PowerSAS.m computation core.
|
||||
* `/util`: Auxiliary functions including data I/O, plotting, data conversion, etc.
|
||||
* `/logging`: Built-in logging system.
|
||||
* `/doc`: Documentation.
|
||||
|
||||
#### 3. Test
|
||||
* Execute command `initpowersas` to initialize the environment, then execute `test_powersas` to run tests. You should expect all tests to pass.
|
||||
|
||||
#### 4. Initialization
|
||||
To initialize PowerSAS.m, add the main directory of PowerSAS.m to your Matlab or GNU Octave path and run the command `initpowersas`. This will ensure that all the functions of PowerSAS.m are added to the path and thus callable.
|
||||
|
||||
## IV Basic Usage
|
||||
### 1 Initialization before use
|
||||
To initialize PowerSAS.m, add the main directory of PowerSAS to Matlab or GNU Octave path, and execute command `initpowersas`. This will ensure all the functions of PowerSAS be added to the path and thus callable.
|
||||
|
||||
### 2 Call high-level API -- `runPowerSAS`
|
||||
Most grid analysis functionalities can be invoked through the high-level function `runPowerSAS`. `runPowerSAS` is defined as follows:
|
||||
```Matlab
|
||||
function res=runPowerSAS(simType,data,options,varargin)
|
||||
```
|
||||
##### Input arguments
|
||||
* `simType` is a string specifying the type of analysis, which can be one of the following values:
|
||||
* `'pf'`: Conventional power flow or extended power flow (for finding steady state of dynamic model).
|
||||
* `'cpf'`: Continuation power flow.
|
||||
* `'ctg'`: Contingency analysis (line outages).
|
||||
* `'n-1'`: N-1 line outage screening.
|
||||
* `'tsa'`: Transient stability analysis.
|
||||
* `'dyn'`: General dynamic simulation.
|
||||
* `data` is the system data to be analyzed. It can be either a string specifying the data file name, or a `SysData` struct. For more information about data format and `SysData` struct, please refer to the "Data format and models" chapter.
|
||||
* `options` specifies the options for analysis. If you do not provide `options` argument, or if you simply set the field to empty with `[]`, the corresponding routines will provide default options that will fit most cases. See Advanced Use chapter for more details.
|
||||
* `varargin` are the additional input variables depending on the type of analysis. Section 3 Basic analysis funtionalifies will explain more details.
|
||||
|
||||
##### Output
|
||||
Output `res` is a struct containing simulation result, system states, system data, etc.
|
||||
* `res.flag`: Flag information returned by the analysis task.
|
||||
* `res.msg`: More information as supplemental to the flag information.
|
||||
* `res.caseName`: The name of the analyzed case.
|
||||
* `res.timestamp`: A string showing the timestamp the analysis started, can be viewed as an unique identifier of the analysis task.
|
||||
* `res.stateCurve`: A matrix storing the evolution of system states, where the number of rows equals the number of state variables, and the number of columns equals the number of time points.
|
||||
* `res.t`: A vector storing time points corresponding to states in `res.stateCurve`.
|
||||
* `res.simSettings`: A struct specifying the simulation settings, including simulation parametersand defined events.
|
||||
* `res.eventList`: A matrix showing as the list of events in the system in the analysis task.
|
||||
* `res.SysDataBase`: A struct of system data at base state.
|
||||
* `res.snapshot`: The snapshot of the system states at the end of anlaysis, which can be used to initilize other analysis tasks.
|
||||
|
||||
To access the system states, we need to further access each kind of state variable in `res.stateCurve`. For example, the commands to extract the voltage from `res.stateCurve` are shown below:
|
||||
```Matlab
|
||||
[~,idxs]=getIndexDyn(res.SysDataBase); % Get the indexes of each kind of state variables
|
||||
vCurve=res.StateCurve(idxs.vIdx,:); % idxs.vIdx is the row indexes of voltage variables
|
||||
```
|
||||
|
||||
### 3 Basic analysis functionalities
|
||||
#### 3.1 Power flow analysis
|
||||
When `simType='pf'`, the `runPowerSAS` function runs power flow analysis. In addition to the conventional power flow model, `runPowerSAS` also integrates an extended power flow to solve the steady state of dynamic models. For example, it will calculate the rotor angles of synchronous generators and slips of induction motors in addition to the network equations.
|
||||
|
||||
To perform power flow analysis, call the `runPowerSAS` function as follows:
|
||||
```Matlab
|
||||
res=runPowerSAS('pf',data,options)
|
||||
```
|
||||
where the argument `data` can either be a string of file name or a `SysData` struct.
|
||||
|
||||
Below are some examples:
|
||||
|
||||
```Matlab
|
||||
% Use file name string to specify data
|
||||
res1=runPowerSAS('pf','d:/codes/d_003.m'); % Filename can use absolute path
|
||||
res2=runPowerSAS('pf','d_003.m'); % If data file is already in the Matlab/Octave path,
|
||||
% then can directly use file name
|
||||
res3=runPowerSAS('pf','d_003'); % Filename can be without '.m'
|
||||
res4=runPowerSAS('pf','d_003',setOptions('dataPath','d:/codes'); % Another way to specify data path
|
||||
|
||||
% Use SysData struct to specify data
|
||||
SysData=readDataFile('d_003.m','d:/codes'); % Generate SysData struct from data file
|
||||
res5=runPowerSAS('pf',SysData); % Run power flow using SysData struct
|
||||
```
|
||||
|
||||
#### 3.2 Continuation Power Flow
|
||||
Continuation power flow (CPF) analysis in PowerSAS.m features enhanced efficiency and convergence. To perform continuation power flow analysis, call `runPowerSAS` function as follows:
|
||||
```Matlab
|
||||
res=runPowerSAS('cpf',data,options,varargin)
|
||||
```
|
||||
where `options` (optional) specifies the options of CPF analysis, and `varargin` are the input arguments:
|
||||
* `varargin{1}` (optional) is the ramping direction of load, which is an $\text{N}\times \text{12}$ matrix, the first column is the index of the bus, and the columns 5-10 are the ZIP load increase directions.
|
||||
* `varargin{2}` (optional) is the ramping direction of generation power, which is an $\text{N}\times \text{2}$ matrix, the first column is the index of the bus, and the 2nd column is the generation increase directions.
|
||||
* `varargin{3}` (optional) is the snapshot of the starting state, with which the computation of starting steady state is skipped.
|
||||
|
||||
Some examples can be found in `example/ex_cpf.m`.
|
||||
|
||||
#### 3.3 Contingency Analysis
|
||||
Contingency analysis computes the system states immediately after removing a line/lines. To perform contingency analysis, call `runPowerSAS` as follows:
|
||||
```Matlab
|
||||
res=runPowerSAS('ctg',data,options,varargin)
|
||||
```
|
||||
where `options` (optional) specifies the options of contingency analysis. When not using customized options, set `options=[]`. And `varargin` are the input arguments:
|
||||
* `varargin{1}` (mandatory) is a vector specifying the indexes of lines to be removed simultaneously.
|
||||
* `varargin{2}` (optional) is the snapshot of the starting state. With this option, computing the starting steady state is skipped.
|
||||
|
||||
Some examples can be found in `example/ex_ctg.m`.
|
||||
|
||||
#### 3.4 N-1 screening
|
||||
N-1 screening is essentially performing a series of contingency analysis, each removing a line from the base state. To perform N-1 screening, call `runPowerSAS` as follows:
|
||||
```Matlab
|
||||
res=runPowerSAS('n-1',data,options)
|
||||
```
|
||||
|
||||
The return value `res` is a cell containing each contingency analysis results.
|
||||
|
||||
Some examples can be found in `example/ex_n_minus_1.m`.
|
||||
|
||||
#### 3.5 Transient Stability Analysis
|
||||
Transient stability anslysis (TSA) assesses the system dynamic behavior and stability after given disturbance(s). 3-phase balanced fault(s) are the most common disturbances in the TSA. In PowerSAS, the TSA supports the analysis of the combinations of multiple faults. To perform transient Stability Analysis, call `runPowerSAS` in the following way:
|
||||
```Matlab
|
||||
res=runPowerSAS('tsa',data,options,varargin)
|
||||
```
|
||||
where `options` (optional) specifies the options of TSA. When not using customized options, set `options=[]`. And `varargin` are the input arguments:
|
||||
* `varargin{1}` (mandatory) is a $\text{N}\times \text{6}$ matrix specifying the faults:
|
||||
* The 1st column is the index of line where the fault happens.
|
||||
* The 2nd column is the relative position of the fault, 0.0 stands for the starting terminal and 1.0 stands for the ending terminal. For example, 0.5 means the fault happens in the middle point of the line.
|
||||
* The 3rd and 4th columns are the resistance and reactance of the fault.
|
||||
* The 5th and 6th columns specify the fault occurrence and clearing times.
|
||||
* `varargin{2}` (optional) is the snapshot of the starting state, with which the computation of starting steady state is skipped.
|
||||
|
||||
By default, the TSA is run for 10 seconds. To change the simulation length, specify in the `options` argument, e.g. `options=setOptions('simlen',30)`.
|
||||
|
||||
Example can be found in `example/ex_tsa.m`.
|
||||
|
||||
### 4. Plot dynamic analysis results
|
||||
PowerSAS provides an integrated and formatted way of plotting the system behavior in the time domain. The function for plotting curves is `plotCurves`. The function is defined as follows:
|
||||
```Matlab
|
||||
function plotCurves(figId,t,stateCurve,SysDataBase,variable,...
|
||||
subIdx,lw,dot,fontSize,width,height,sizeRatio)
|
||||
```
|
||||
The argument list is explained as follows:
|
||||
* `figId`: A positive integer or `[]` specifying the index of figure.
|
||||
* `t`: A vector of time instants. If got `res` from `runPowreSAS` function, then input this argument as `res.t`.
|
||||
* `stateCurve`: A matrix of system states in time domain, the number of columns should equal to the length of `t`. If got `res` from `runPowreSAS` function, then input this argument as `res.stateCurve`.
|
||||
* `SysDataBase`: A SysData struct specifying the base system. If got `res` from `runPowreSAS` function, then input this argument as `res.SysDataBase`.
|
||||
* `variable`: A string of variable name to be plotted. Here is a nonexhaustive list:
|
||||
* `'v'`: voltage magnitude (pu);
|
||||
* `'a'`: voltage angle (rad);
|
||||
* `'delta'`: rotor angle of synchronous generators;
|
||||
* `'omega'`: deviation of synchronous generator rotor speed;
|
||||
* `'s'`: induction motor slips;
|
||||
* `'f'`: frequency;
|
||||
* `subIdx`: Allows you to pick a portion of the variables to plot e.g., the voltage of some selected buses. Default value is `[]`, which means that all the selected type of variables are plotted.
|
||||
* `lw`: Line width. Default value is 1.
|
||||
* `dot`: Allows you to choose whether to show data points. 1 means curves mark data dots, and 0 means no data dots are shown on curves. The default value is 0.
|
||||
* `fontSize`: Font size of labels. Default value is 12.
|
||||
* `width`: Width of figure window in pixels.
|
||||
* `height`: Height of figure window in pixels.
|
||||
* `sizeRatio`: If `width` or `height` is not specified, the size of the figure is determined by the `sizeRatio` of the screen size. The default value of `sizeRatio` is 0.7.
|
||||
|
@ -0,0 +1,20 @@
|
||||
# Minimal makefile for Sphinx documentation
|
||||
#
|
||||
|
||||
# You can set these variables from the command line.
|
||||
SPHINXOPTS = "-W" # This flag turns warnings into errors.
|
||||
SPHINXBUILD = sphinx-build
|
||||
SPHINXPROJ = PackagingScientificPython
|
||||
SOURCEDIR = source
|
||||
BUILDDIR = build
|
||||
|
||||
# Put it first so that "make" without argument is like "make help".
|
||||
help:
|
||||
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
||||
|
||||
.PHONY: help Makefile
|
||||
|
||||
# Catch-all target: route all unknown targets to Sphinx using the new
|
||||
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
|
||||
%: Makefile
|
||||
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
@ -0,0 +1,36 @@
|
||||
@ECHO OFF
|
||||
|
||||
pushd %~dp0
|
||||
|
||||
REM Command file for Sphinx documentation
|
||||
|
||||
if "%SPHINXBUILD%" == "" (
|
||||
set SPHINXBUILD=sphinx-build
|
||||
)
|
||||
set SOURCEDIR=source
|
||||
set BUILDDIR=build
|
||||
set SPHINXPROJ=PackagingScientificPython
|
||||
|
||||
if "%1" == "" goto help
|
||||
|
||||
%SPHINXBUILD% >NUL 2>NUL
|
||||
if errorlevel 9009 (
|
||||
echo.
|
||||
echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
|
||||
echo.installed, then set the SPHINXBUILD environment variable to point
|
||||
echo.to the full path of the 'sphinx-build' executable. Alternatively you
|
||||
echo.may add the Sphinx directory to PATH.
|
||||
echo.
|
||||
echo.If you don't have Sphinx installed, grab it from
|
||||
echo.http://sphinx-doc.org/
|
||||
exit /b 1
|
||||
)
|
||||
|
||||
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS%
|
||||
goto end
|
||||
|
||||
:help
|
||||
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS%
|
||||
|
||||
:end
|
||||
popd
|
@ -0,0 +1,17 @@
|
||||
cvxopt
|
||||
numpy
|
||||
scipy
|
||||
sympy
|
||||
pandas
|
||||
matplotlib
|
||||
openpyxl
|
||||
xlsxwriter
|
||||
dill
|
||||
pathos
|
||||
tqdm
|
||||
pyyaml
|
||||
coloredlogs
|
||||
ipython
|
||||
numpydoc
|
||||
sphinx-copybutton
|
||||
sphinx_rtd_theme
|
@ -0,0 +1,499 @@
|
||||
Advanced Usage
|
||||
==============
|
||||
|
||||
1. Customize analysis with settings file/struct
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
PowerSAS.m lets you customize your simulation by providing a simulation
|
||||
settings interface to specify the events and scenarios to be analyzed.
|
||||
To use the customized simulation, call the ``runPowerSAS`` function as
|
||||
follows:
|
||||
|
||||
.. code:: matlab
|
||||
|
||||
res=runPowerSAS('dyn',data,options,settings,snapshot)
|
||||
|
||||
Details are explained as follows: #### 1.1 Settings file The input
|
||||
argument ``settings`` can be a string specifying the settings file name,
|
||||
or a struct containing all the simulation settings.
|
||||
|
||||
When ``settings`` is a string, it should be a valid file name of an .m
|
||||
script file containing the settings. Some examples of the settings files
|
||||
can be found in the directory ``/data``. The settings file should have
|
||||
the following variables:
|
||||
|
||||
- ``eventList``: A gross list of events. (`more
|
||||
details <#variable-eventlist>`__)
|
||||
- ``bsBus``: (for black start simulation only) Black start bus
|
||||
information. (`more details <#variable-bsbus>`__)
|
||||
- ``bsSyn``: (for black start simulation only) Generator information on
|
||||
black start bus. (`more details <#variable-bssyn>`__)
|
||||
- ``bsInd``: (for black start simulation only) Inductin motor on black
|
||||
start bus. (`more details <#variable-bsind>`__)
|
||||
- ``Efstd``: Excitation potential of synchronous generators. (`more
|
||||
details <#variable-efstd>`__)
|
||||
- ``evtLine``: List of line addition/outage events. (`more
|
||||
details <#variables-evtline-and-evtlinespec>`__)
|
||||
- ``evtLineSpec``: Specifications of line addition/outage events.
|
||||
(`more details <#variables-evtline-and-evtlinespec>`__)
|
||||
- ``evtZip``: List of static load addition/shedding events. (`more
|
||||
details <#variables-evtzip-evtzipspec-and-evtzipspec2>`__)
|
||||
- ``evtZipSpec``: Specifications of static load addition/shedding
|
||||
events. (`more
|
||||
details <#variables-evtzip-evtzipspec-and-evtzipspec2>`__)
|
||||
- ``evtZipSpec2``: Alternative specifications of static load
|
||||
addition/shedding events. (`more
|
||||
details <#variables-evtzip-evtzipspec-and-evtzipspec2>`__)
|
||||
- ``evtInd``: List of induction motor addition/outage events. (`more
|
||||
details <#variables-evtind-and-evtindspec>`__)
|
||||
- ``evtIndSpec``: Specifications of induction motor addition/outage
|
||||
events. (`more details <#variables-evtind-and-evtindspec>`__)
|
||||
- ``evtSyn``: List of synchronous generator addition/outage events.
|
||||
(`more details <#variables-evtsyn-and-evtsynspec>`__)
|
||||
- ``evtSynSpec``: Specifications of synchronous generator
|
||||
addition/outage events. (`more
|
||||
details <#variables-evtsyn-and-evtsynspec>`__)
|
||||
- ``evtFault``: List of fault occurrence/clearing events. (`more
|
||||
details <#variables-evtfault-and-evtfaultspec>`__)
|
||||
- ``evtFaultSpec``: Specifications of fault occurrence/clearning
|
||||
events. (`more details <#variables-evtfault-and-evtfaultspec>`__)
|
||||
- ``evtDyn``: List of dynamic ramping events. (`more
|
||||
details <#variable-evtdyn>`__)
|
||||
- ``evtDynPQ``: Specifications of PQ bus ramping. (`more
|
||||
details <#variable-evtdynpq>`__)
|
||||
- ``evtDynPV``: Specifications of PV bus ramping. (`more
|
||||
details <#variable-evtdynpv>`__)
|
||||
- ``evtDynInd``: Specifications of induction motor mechanical load
|
||||
ramping. (`more details <#variable-evtdynind>`__)
|
||||
- ``evtDynZip``: Specifications of ZIP load ramping. (`more
|
||||
details <#variable-evtdynzip>`__)
|
||||
- ``evtDynSh``: Specifications of shunt compensator ramping. (`more
|
||||
details <#variable-evtdynsh>`__)
|
||||
- ``evtDynZipRamp``: Alternative specifications of ZIP load ramping.
|
||||
(`more details <#variable-evtdynramp>`__)
|
||||
- ``evtDynTmech``: Specifications of generator mechanical torque
|
||||
ramping. (`more details <#variable-evtdyntmech>`__)
|
||||
- ``evtDynPm``: Specifications of generator input active power ramping.
|
||||
(`more details <#variable-evtdynpm>`__)
|
||||
- ``evtDynEf``: Specifications of generator excitation potential
|
||||
ramping. (`more details <#variable-evtdynef>`__)
|
||||
- ``evtDynVref``: Specifications of exciter reference voltage ramping.
|
||||
(`more details <#variable-evtdynvref>`__)
|
||||
- ``evtDynEq1``: Specifications of generator transient excitation
|
||||
potential ramping. (`more details <#variable-evtdyneq1>`__)
|
||||
|
||||
1.2 Settings struct
|
||||
^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Alternatively, the ``settings`` can be a struct containing all the
|
||||
previous variables as its fields.
|
||||
|
||||
Example 1: Transient stability analysis (TSA) using settings file
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
In this example, we want to perform transient stability analysis on
|
||||
2383-bus system. Here is the scenario of the TSA: \* The total
|
||||
simulation period is 10 seconds. \* At 0.5 s, apply faults on the
|
||||
starting terminals of lines 74 and 114, the fault resistance is 0.0 and
|
||||
the reactance is 0.02. At 0.75 s, clear the faults. \* At 1.5 s, apply
|
||||
fault on the starting terminal of line 1674, the fault resistance is 0.0
|
||||
and the reactance is 0.1. At 1.95 s, clear the faults.
|
||||
|
||||
The settings file for this simulation is shown below. Other variables
|
||||
irrelevant to the fault events are omitted here for the sake of clarity.
|
||||
|
||||
.. code:: matlab
|
||||
|
||||
eventList=[...
|
||||
1 0.0000 0.0000 0 1 0.0 0.0000
|
||||
1.1 0.5000 0.0000 6 1 0.0 0.0000
|
||||
1.2 0.7500 0.0000 6 2 0.0 0.0000
|
||||
1.3 1.5000 0.0000 6 3 0.0 0.0000
|
||||
1.4 1.9500 0.0000 6 4 0.0 0.0000
|
||||
3 10.00 0.0000 99 0 0.0 0.0000
|
||||
];
|
||||
|
||||
% Fault event data
|
||||
evtFault=[...
|
||||
1 1 2
|
||||
2 3 4
|
||||
3 5 5
|
||||
4 6 6
|
||||
];
|
||||
|
||||
evtFaultSpec=[...
|
||||
114, 0.00, 0, 0.02, 0;
|
||||
74, 0.00, 0, 0.02, 0;
|
||||
114, 0.00, 0, 0.02, 1;
|
||||
74, 0.00, 0, 0.02, 1;
|
||||
1674, 0.00, 0, 0.1, 0;
|
||||
1674, 0.00, 0, 0.1, 1;
|
||||
];
|
||||
|
||||
Assume the settings file is ``settings_polilsh_tsa.m`` and the system
|
||||
data file is ``d_dcase2383wp_mod2_ind_zip_syn.m``. We can run the TSA as
|
||||
follows:
|
||||
|
||||
.. code:: matlab
|
||||
|
||||
res_2383_st=runPowerSAS('pf','d_dcase2383wp_mod2_ind_zip_syn.m'); % Run steady-state
|
||||
res_2383_tsa=runPowerSAS('dyn','d_dcase2383wp_mod2_ind_zip_syn.m',setOptions('hotStart',1),'settings_polilsh_tsa',res_2383_st.snapshot); % Hot start from existing steady-state
|
||||
|
||||
plotCurves(1,res_2383_tsa.t,res_2383_tsa.stateCurve,res_2383_tsa.SysDataBase,'v'); % plot the voltage magnitude curves
|
||||
|
||||
2. Extended-term simulation using hybrid QSS and dynamic engines
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
To accelerate computation — especially for extended-term simulation —
|
||||
PowerSAS.m provides an adaptive way to switch between QSS and dynamic
|
||||
engines in the course of a simulation. With this feature enabled,
|
||||
PowerSAS.m can switch to QSS simulation for better speed on detecting
|
||||
the fade-away of transients and switch back to dynamic simulation upon
|
||||
detecting transient events.
|
||||
|
||||
For more details on the technical approach, please refer to our paper:
|
||||
\* Hybrid QSS and Dynamic Extended-Term Simulation Based on Holomorphic
|
||||
Embedding, arXiv:2104.02877
|
||||
|
||||
Example 2 illustrates the use of PowerSAS.m to perform extended-term
|
||||
simulation.
|
||||
|
||||
Example 2: Extended-term simulation
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
We want to study the response of a 4-bus system under periodic
|
||||
disturbances. The entire simulated process is 500 seconds. Starting at
|
||||
60 s and continuing until 270 s, the system undergoes events of
|
||||
adding/shedding loads every 30 s.
|
||||
|
||||
The key settings of the simulation are:
|
||||
|
||||
.. code:: matlab
|
||||
|
||||
% settings_d_004_2a_agc.m
|
||||
|
||||
eventList=[...
|
||||
1 0.0000 0.0000 0 1 0.0 0.0100
|
||||
6 60.0000 0.0000 2 1 0.0 0.0100
|
||||
7 90.0000 0.0000 2 2 0.0 0.0100
|
||||
8 120.0000 0.0000 2 3 0.0 0.0100
|
||||
9 150.0000 0.0000 2 4 0.0 0.0100
|
||||
10 180.0000 0.0000 2 1 0.0 0.0100
|
||||
11 210.0000 0.0000 2 2 0.0 0.0100
|
||||
12 240.0000 0.0000 2 3 0.0 0.0100
|
||||
13 270.0000 0.0000 2 4 0.0 0.0100
|
||||
18 500.0000 0.0000 99 0 0.0 0.0100
|
||||
];
|
||||
|
||||
% Static load event data
|
||||
evtZip=[...
|
||||
1 1 1 1
|
||||
2 1 2 2
|
||||
3 1 3 3
|
||||
4 1 4 4
|
||||
];
|
||||
|
||||
evtZipSpec2=[...
|
||||
3 100.0000 100.0000 60.0000 0.0648 0.0648 0.0648 0.0359 0.0359 0.0359 0 1
|
||||
2 100.0000 100.0000 60.0000 0.0648 0.0648 0.0648 0.0359 0.0359 0.0359 0 1
|
||||
3 100.0000 100.0000 60.0000 -0.0648 -0.0648 -0.0648 -0.0359 -0.0359 -0.0359 0 1
|
||||
2 100.0000 100.0000 60.0000 -0.0648 -0.0648 -0.0648 -0.0359 -0.0359 -0.0359 0 1
|
||||
];
|
||||
|
||||
First we run the simulation in full-dynamic mode and record time:
|
||||
|
||||
.. code:: matlab
|
||||
|
||||
% Full dynamic simulation
|
||||
tagFullDynStart=tic;
|
||||
res_004_fulldyn=runPowerSAS('dyn','d_004_2a_bs_agc.m',[]],'settings_d_004_2a_agc');
|
||||
timeFullDyn=toc(tagFullDynStart);
|
||||
|
||||
Then we run the simulation in hybrid QSS & dynamic mode and record time:
|
||||
|
||||
.. code:: matlab
|
||||
|
||||
% Hybrid simulation with dynamic-QSS switching
|
||||
tagHybridStart=tic;
|
||||
res_004=runPowerSAS('dyn','d_004_2a_bs_agc.m',setOptions('allowSteadyDynSwitch',1),'settings_d_004_2a_agc');
|
||||
timeHybrid=toc(tagHybridStart);
|
||||
|
||||
Compare the results:
|
||||
|
||||
.. code:: matlab
|
||||
|
||||
plotCurves(1,res_004_fulldyn.t,res_004_fulldyn.stateCurve,res_004_fulldyn.SysDataBase,'v');
|
||||
plotCurves(2,res_004.t,res_004.stateCurve,res_004.SysDataBase,'v');
|
||||
|
||||
And compare the computation time:
|
||||
|
||||
.. code:: matlab
|
||||
|
||||
disp(['Full dynamic simulation computation time:', num2str(timeFullDyn),' s.']);
|
||||
disp(['Hybrid simulation computation time:', num2str(timeHybrid),' s.']);
|
||||
|
||||
The complete example can be found in
|
||||
``/example/ex_extended_term_dyn.m``. And the results can also be found
|
||||
in our paper: \* Hybrid QSS and Dynamic Extended-Term Simulation Based
|
||||
on Holomorphic Embedding, arXiv:2104.02877
|
||||
|
||||
Appendix: Variables in settings
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
variable ``eventList``
|
||||
^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
(`back to top <#11-settings-file>`__) ##### Table 1. Definition of
|
||||
``eventList`` Column \| Content ——-\| ————- 1 \| Event index (can be an
|
||||
integer or a real number) 2 \| Event start time 3 \| Event end time (no
|
||||
effect for instant event) 4 \| Type of event (see `Table
|
||||
2 <#table-2-event-types>`__) 5 \| Index of event under its type 6 \|
|
||||
Simulation method (default 0.0) (see below `Simulation
|
||||
methods <#simulation-methods>`__) 7 \| Timestep (default 0.01)
|
||||
|
||||
Table 2. Event types
|
||||
''''''''''''''''''''
|
||||
|
||||
(`back to top <#11-settings-file>`__) Value \| Event type ——-\| ————- 0
|
||||
\| Calculate steady-state at start 1 \| Add line 2 \| Add static load 3
|
||||
\| Add induction motor load 4 \| Add synchronous generator 6 \|
|
||||
Applying/clearing faults 7 \| Cut line 8 \| Cut static load 9 \| Cut
|
||||
motor load 10\| Cut synchronous generator 50\| Dynamic process 99\| End
|
||||
of simulation
|
||||
|
||||
Simulation methods
|
||||
''''''''''''''''''
|
||||
|
||||
Simulation methods can be specified for each event on the 6th column of
|
||||
``eventList``. It is encoded as a number ``x.yz``, where: \* ``x`` is
|
||||
the method for solving differential equation, where 0 - SAS, 1 -
|
||||
Modified Euler, 2 - R-K 4, 3 - Trapezoidal rule. \* ``y`` is the method
|
||||
for solving algebraic equation, where 0 - SAS, 1 - Newton-Raphson. \*
|
||||
``z`` is whether to use variable time step scheme for numerical
|
||||
integration (``x`` is 1, 2 or 3). 0 - Fixed step, 1 - Variable step.
|
||||
|
||||
Note that when ``x=0``, ``y`` and ``z`` are not effective, it
|
||||
automatically uses SAS and variable time steps.
|
||||
|
||||
variable ``bsBus``
|
||||
^^^^^^^^^^^^^^^^^^
|
||||
|
||||
(`back to top <#11-settings-file>`__) Current version only support one
|
||||
black start bus and therefore only the first line will be recognized.
|
||||
Will expand in the future versions. Column \| Content ——-\| ————- 1 \|
|
||||
Bus index 2 \| Active power of Z component load 3 \| Active power of I
|
||||
component load 4 \| Active power of P component load 5 \| Reactive power
|
||||
of Z component load 6 \| Reactive power of I component load 7 \|
|
||||
Reactive power of P component load
|
||||
|
||||
variable ``bsSyn``
|
||||
^^^^^^^^^^^^^^^^^^
|
||||
|
||||
(`back to top <#11-settings-file>`__) Column \| Content ——-\| ————- 1 \|
|
||||
Index of synchronous generator 2 \| Excitation potential 3 \| Active
|
||||
power 4 \| Participation factor for power balancing
|
||||
|
||||
variable ``bsInd``
|
||||
^^^^^^^^^^^^^^^^^^
|
||||
|
||||
(`back to top <#11-settings-file>`__) Column \| Content ——-\| ————- 1 \|
|
||||
Index of induction motor 2 \| Mechanical load torque
|
||||
|
||||
variable ``Efstd``
|
||||
^^^^^^^^^^^^^^^^^^
|
||||
|
||||
(`back to top <#11-settings-file>`__) When there are synchronous
|
||||
generators in the system model, ``Efstd`` is needed to compute steady
|
||||
state. The ``Efstd`` is a column vector specifying the excitation
|
||||
potential of every synchronous generator, or it can also be a scalar
|
||||
assigning the excitation potentials of all the generator as the same
|
||||
value.
|
||||
|
||||
variables ``evtLine`` and ``evtLineSpec``
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
(`back to top <#11-settings-file>`__) In ``eventList``, when the 4th
|
||||
column (event type) equals 1 or 7 (add or cut line, respectively), the
|
||||
index of the line events in ``evtLine`` corresponds to the 5th column of
|
||||
``eventList``. ##### variable ``evtLine`` (`back to
|
||||
top <#11-settings-file>`__) Column \| Content ——-\| ————- 1 \| Index of
|
||||
line events (from 5th column of ``eventList``) 2 \| Start index in
|
||||
``evtLineSpec`` 3 \| End index in ``evtLineSpec``
|
||||
|
||||
variable ``evtLineSpec``
|
||||
''''''''''''''''''''''''
|
||||
|
||||
(`back to top <#11-settings-file>`__) Column \| Content ——-\| ————- 1 \|
|
||||
Index of line 2 \| Add/cut mark, 0 - add line, 1 - cut line 3 \|
|
||||
Reserved 4 \| Reserved 5 \| Reserved
|
||||
|
||||
variables ``evtZip``, ``evtZipSpec`` and ``evtZipSpec2``
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
(`back to top <#11-settings-file>`__) In ``eventList``, when the 4th
|
||||
column (event type) equals 2 or 8 (add/cut static load), the index of
|
||||
the load events in ``evtZip`` corresponds to the 5th column of
|
||||
``eventList``. ##### variable ``evtLine`` (`back to
|
||||
top <#11-settings-file>`__) Column \| Content ——-\| ————- 1 \| Index of
|
||||
load events (from 5th column of ``eventList``) 2 \| Choose
|
||||
``evtZipSpec`` (0) or ``evtZipSpec2`` (1) 3 \| Start index in
|
||||
``evtZipSpec`` or ``evtZipSpec2`` 4 \| End index in ``evtZipSpec`` or
|
||||
``evtZipSpec2``
|
||||
|
||||
variable ``evtZipSpec``
|
||||
'''''''''''''''''''''''
|
||||
|
||||
(`back to top <#11-settings-file>`__) Column \| Content ——-\| ————- 1 \|
|
||||
Index of zip loads in system base state 2 \| Add/cut mark, 0 - add load,
|
||||
1 - cut load
|
||||
|
||||
variable ``evtZipSpec2`` (recommended)
|
||||
''''''''''''''''''''''''''''''''''''''
|
||||
|
||||
(`back to top <#11-settings-file>`__) ``evtZipSpec2`` has the same
|
||||
format as PSAT ZIP load format, which represents the change of ZIP load.
|
||||
Whether the event is specified as add/cut load does not make difference.
|
||||
|
||||
variables ``evtInd`` and ``evtIndSpec``
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
(`back to top <#11-settings-file>`__) In ``eventList``, when the 4th
|
||||
column (event type) equals 3 or 9 (add or cut induction motors,
|
||||
respectively), the index of the induction motor events in ``evtInd``
|
||||
corresponds to the 5th column of ``eventList``. ##### variable
|
||||
``evtInd`` (`back to top <#11-settings-file>`__) Column \| Content ——-\|
|
||||
————- 1 \| Index of induction motor events (from 5th column of
|
||||
``eventList``) 2 \| Start index in ``evtIndSpec`` 3 \| End index in
|
||||
``evtIndSpec``
|
||||
|
||||
variable ``evtIndSpec``
|
||||
'''''''''''''''''''''''
|
||||
|
||||
(`back to top <#11-settings-file>`__) Column \| Content ——-\| ————- 1 \|
|
||||
Index of induction motor 2 \| Event type, 0 - add motor, 1 - change
|
||||
state, 2 - cut motor 3 \| Designated mechanical torque 4 \| Designated
|
||||
slip
|
||||
|
||||
variables ``evtSyn`` and ``evtSynSpec``
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
(`back to top <#11-settings-file>`__) In ``eventList``, when the 4th
|
||||
column (event type) equals 4 or 10 (add or cut synchronous generators,
|
||||
respectively), the index of the synchronous generator events in
|
||||
``evtSyn`` corresponds to the 5th column of ``eventList``. #####
|
||||
variable ``evtSyn`` Column \| Content ——-\| ————- 1 \| Index of
|
||||
synchronous generator events (from 5th column of ``eventList``) 2 \|
|
||||
Start index in ``evtSynSpec`` 3 \| End index in ``evtSynSpec``
|
||||
|
||||
variable ``evtSynSpec``
|
||||
'''''''''''''''''''''''
|
||||
|
||||
(`back to top <#11-settings-file>`__) Column \| Content ——-\| ————- 1 \|
|
||||
Index of synchronous generator 2 \| Event type, 0 - add generator, 1 -
|
||||
cut generator 3 \| Designated rotor angle (only effective when adding
|
||||
generator, NaN means the rotor angle is the same with voltage angle). 4
|
||||
\| Designated mechanical power (only effective when adding generator). 5
|
||||
\| Designated excitation potential (only effective when adding
|
||||
generator).
|
||||
|
||||
variables ``evtFault`` and ``evtFaultSpec``
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
(`back to top <#11-settings-file>`__) In ``eventList``, when the 4th
|
||||
column (event type) equals 6 (apply or clear faults, respectively), the
|
||||
index of the fault events in ``evtFault`` corresponds to the 5th column
|
||||
of ``eventList``. In the current version, we only consider three-phase
|
||||
grounding faults. ##### variable ``evtFault`` Column \| Content ——-\|
|
||||
————- 1 \| Index of fault events (from 5th column of ``eventList``) 2 \|
|
||||
Start index in ``evtFaultSpec`` 3 \| End index in ``evtFaultSpec``
|
||||
|
||||
variable ``evtFaultSpec``
|
||||
'''''''''''''''''''''''''
|
||||
|
||||
(`back to top <#11-settings-file>`__) Column \| Content ——-\| ————- 1 \|
|
||||
Index of fault line 2 \| Position of fault, 0.0 stands for starting
|
||||
terminal and 1.0 stands for ending terminal. 3 \| Resistance of fault. 4
|
||||
\| Reactance of fault. 5 \| Event type: 0 - add fault; 1 - clear fault.
|
||||
|
||||
variable ``evtDyn``
|
||||
^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
(`back to top <#11-settings-file>`__) The ``evtDyn`` variable specifies
|
||||
the indexes of ramping events involving various types of components.
|
||||
Column \| Content ——-\| ————- 1 \| Index of event 2 \| Start index in
|
||||
``evtDynPQ`` 3 \| End index in ``evtDynPQ`` 4 \| Start index in
|
||||
``evtDynPV`` 5 \| End index in ``evtDynPV`` 6 \| Start index in
|
||||
``evtDynInd`` 7 \| End index in ``evtDynInd`` 8 \| Start index in
|
||||
``evtDynZip`` 9 \| End index in ``evtDynZip`` 10\| Start index in
|
||||
``evtDynSh`` 11\| End index in ``evtDynSh`` 12\| Start index in
|
||||
``evtDynZipRamp`` 13\| End index in ``evtDynZipRamp`` 14\| Start index
|
||||
in ``evtDynTmech`` 15\| End index in ``evtDynTmech`` 16\| Start index in
|
||||
``evtDynPm`` 17\| End index in ``evtDynPm`` 18\| Start index in
|
||||
``evtDynEf`` 19\| End index in ``evtDynEf`` 20\| Start index in
|
||||
``evtDynVref`` 21\| End index in ``evtDynVref`` 22\| Start index in
|
||||
``evtDynEq1`` 23\| End index in ``evtDynEq1``
|
||||
|
||||
variable ``evtDynPQ``
|
||||
^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
(`back to top <#11-settings-file>`__) Column \| Content ——-\| ————- 1 \|
|
||||
Index of bus 2 \| Active power ramping rate 3 \| Reactive power ramping
|
||||
rate
|
||||
|
||||
variable ``evtDynPV``
|
||||
^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
(`back to top <#11-settings-file>`__) Column \| Content ——-\| ————- 1 \|
|
||||
Index of bus 2 \| Active power ramping rate
|
||||
|
||||
variable ``evtDynInd``
|
||||
^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
(`back to top <#11-settings-file>`__) Column \| Content ——-\| ————- 1 \|
|
||||
Index of induction motor 2 \| Mechanical load torque ramping rate
|
||||
|
||||
variable ``evtDynZip``
|
||||
^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
(`back to top <#11-settings-file>`__) Column \| Content ——-\| ————- 1 \|
|
||||
Index of bus 2 \| ZIP load ramping rate
|
||||
|
||||
variable ``evtDynSh``
|
||||
^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
(`back to top <#11-settings-file>`__) Column \| Content ——-\| ————- 1 \|
|
||||
Index of bus 2 \| Shunt admittance ramping rate
|
||||
|
||||
variable ``evtDynZipRamp``
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
(`back to top <#11-settings-file>`__) ``evtDynZipRamp`` has the same
|
||||
format as PSAT ZIP load format, which represents the ramping direction
|
||||
of ZIP load.
|
||||
|
||||
variable ``evtDynTmech``
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
(`back to top <#11-settings-file>`__) Column \| Content ——-\| ————- 1 \|
|
||||
Index of synchronous generator 2 \| Ramping rate of mechanical power
|
||||
reference value (TG required)
|
||||
|
||||
variable ``evtDynEf``
|
||||
^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
(`back to top <#11-settings-file>`__) Column \| Content ——-\| ————- 1 \|
|
||||
Index of synchronous generator 2 \| Ramping rate of excitation potential
|
||||
|
||||
variable ``evtDynVref``
|
||||
^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
(`back to top <#11-settings-file>`__) Column \| Content ——-\| ————- 1 \|
|
||||
Index of synchronous generator 2 \| Ramping rate of exciter reference
|
||||
voltage
|
||||
|
||||
variable ``evtDynEq1``
|
||||
^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
(`back to top <#11-settings-file>`__) Column \| Content ——-\| ————- 1 \|
|
||||
Index of synchronous generator 2 \| Ramping rate of transient excitation
|
||||
potential
|
@ -0,0 +1,203 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# ANDES documentation build configuration file, created by
|
||||
# sphinx-quickstart on Thu Jun 28 12:35:56 2018.
|
||||
#
|
||||
# This file is execfile()d with the current directory set to its
|
||||
# containing dir.
|
||||
#
|
||||
# Note that not all possible configuration values are present in this
|
||||
# autogenerated file.
|
||||
#
|
||||
# All configuration values have a default; values that are commented out
|
||||
# serve to show the default.
|
||||
|
||||
# If extensions (or modules to document with autodoc) are in another directory,
|
||||
# add these directories to sys.path here. If the directory is relative to the
|
||||
# documentation root, use os.path.abspath to make it absolute, like shown here.
|
||||
#
|
||||
# import os
|
||||
# import sys
|
||||
# sys.path.insert(0, os.path.abspath('.'))
|
||||
|
||||
# -- General configuration ------------------------------------------------
|
||||
|
||||
# If your documentation needs a minimal Sphinx version, state it here.
|
||||
#
|
||||
# needs_sphinx = '1.0'
|
||||
|
||||
# Add any Sphinx extension module names here, as strings. They can be
|
||||
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
|
||||
# ones.
|
||||
extensions = [
|
||||
'sphinx.ext.autodoc',
|
||||
'sphinx.ext.autosummary',
|
||||
'sphinx.ext.githubpages',
|
||||
'sphinx.ext.intersphinx',
|
||||
'sphinx.ext.mathjax',
|
||||
'sphinx.ext.viewcode',
|
||||
]
|
||||
|
||||
# Configuration options for plot_directive. See:
|
||||
# https://github.com/matplotlib/matplotlib/blob/f3ed922d935751e08494e5fb5311d3050a3b637b/lib/matplotlib/sphinxext/plot_directive.py#L81
|
||||
plot_html_show_source_link = False
|
||||
plot_html_show_formats = False
|
||||
|
||||
# Generate the API documentation when building
|
||||
autosummary_generate = True
|
||||
numpydoc_show_class_members = False
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
templates_path = ['_templates']
|
||||
|
||||
# The suffix(es) of source filenames.
|
||||
# You can specify multiple suffix as a list of string:
|
||||
#
|
||||
# source_suffix = ['.rst', '.md']
|
||||
source_suffix = '.rst'
|
||||
|
||||
# The master toctree document.
|
||||
master_doc = 'index'
|
||||
|
||||
# General information about the project.
|
||||
project = 'powerSAS.m'
|
||||
copyright = ''
|
||||
author = ''
|
||||
|
||||
# The version info for the project you're documenting, acts as replacement for
|
||||
# |version| and |release|, also used in various other places throughout the
|
||||
# built documents.
|
||||
|
||||
# The short X.Y version.
|
||||
version = "0.0"
|
||||
# The full version, including alpha/beta/rc tags.
|
||||
release = "0.0.0"
|
||||
|
||||
# The language for content autogenerated by Sphinx. Refer to documentation
|
||||
# for a list of supported languages.
|
||||
#
|
||||
# This is also used if you do content translation via gettext catalogs.
|
||||
# Usually you set "language" from the command line for these cases.
|
||||
language = None
|
||||
|
||||
# List of patterns, relative to source directory, that match files and
|
||||
# directories to ignore when looking for source files.
|
||||
# This patterns also effect to html_static_path and html_extra_path
|
||||
exclude_patterns = []
|
||||
|
||||
# The name of the Pygments (syntax highlighting) style to use.
|
||||
pygments_style = 'sphinx'
|
||||
|
||||
# If true, `todo` and `todoList` produce output, else they produce nothing.
|
||||
todo_include_todos = False
|
||||
|
||||
|
||||
# -- Options for HTML output ----------------------------------------------
|
||||
|
||||
# The theme to use for HTML and HTML Help pages. See the documentation for
|
||||
# a list of builtin themes.
|
||||
#
|
||||
html_theme = 'sphinx_rtd_theme'
|
||||
import sphinx_rtd_theme
|
||||
html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]
|
||||
|
||||
# Theme options are theme-specific and customize the look and feel of a theme
|
||||
# further. For a list of options available for each theme, see the
|
||||
# documentation.
|
||||
#
|
||||
# html_theme_options = {}
|
||||
|
||||
# Add any paths that contain custom static files (such as style sheets) here,
|
||||
# relative to this directory. They are copied after the builtin static files,
|
||||
# so a file named "default.css" will overwrite the builtin "default.css".
|
||||
html_static_path = ['_static']
|
||||
|
||||
# Custom sidebar templates, must be a dictionary that maps document names
|
||||
# to template names.
|
||||
#
|
||||
# This is required for the alabaster theme
|
||||
# refs: http://alabaster.readthedocs.io/en/latest/installation.html#sidebars
|
||||
html_sidebars = {
|
||||
'**': [
|
||||
'relations.html', # needs 'show_related': True theme option to display
|
||||
'searchbox.html',
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
# -- Options for HTMLHelp output ------------------------------------------
|
||||
|
||||
# Output file base name for HTML help builder.
|
||||
htmlhelp_basename = 'powerSAS.m'
|
||||
|
||||
|
||||
# -- Options for LaTeX output ---------------------------------------------
|
||||
|
||||
latex_elements = {
|
||||
# The paper size ('letterpaper' or 'a4paper').
|
||||
#
|
||||
'preamble': r'\DeclareUnicodeCharacter{2588}{-}',
|
||||
'papersize': 'letterpaper',
|
||||
|
||||
# The font size ('10pt', '11pt' or '12pt').
|
||||
#
|
||||
'pointsize': '11pt',
|
||||
|
||||
# Additional stuff for the LaTeX preamble.
|
||||
#
|
||||
# 'preamble': '',
|
||||
|
||||
# Latex figure (float) alignment
|
||||
#
|
||||
# 'figure_align': 'htbp',
|
||||
}
|
||||
|
||||
# Grouping the document tree into LaTeX files. List of tuples
|
||||
# (source start file, target name, title,
|
||||
# author, documentclass [howto, manual, or own class]).
|
||||
# latex_documents = [
|
||||
# (master_doc, 'andes.tex', 'ANDES Manual',
|
||||
# 'Hantao Cui', 'manual'),
|
||||
# ]
|
||||
|
||||
|
||||
# -- Options for manual page output ---------------------------------------
|
||||
|
||||
# One entry per manual page. List of tuples
|
||||
# (source start file, name, description, authors, manual section).
|
||||
# man_pages = [
|
||||
# (master_doc, 'andes', 'ANDES Manual',
|
||||
# [author], 1)
|
||||
# ]
|
||||
|
||||
|
||||
# -- Options for Texinfo output -------------------------------------------
|
||||
|
||||
# Grouping the document tree into Texinfo files. List of tuples
|
||||
# (source start file, target name, title, author,
|
||||
# dir menu entry, description, category)
|
||||
# texinfo_documents = [
|
||||
# (master_doc, 'andes', 'ANDES Manual',
|
||||
# author, 'andes', 'Python Software for Symbolic Power System Modeling and Numerical Analysis',
|
||||
# 'Miscellaneous'),
|
||||
# ]
|
||||
|
||||
|
||||
# Example configuration for intersphinx: refer to the Python standard library.
|
||||
intersphinx_mapping = {
|
||||
'python': ('https://docs.python.org/3/', None),
|
||||
'numpy': ('https://docs.scipy.org/doc/numpy/', None),
|
||||
'scipy': ('https://docs.scipy.org/doc/scipy/reference/', None),
|
||||
'pandas': ('https://pandas.pydata.org/pandas-docs/stable', None),
|
||||
'matplotlib': ('https://matplotlib.org', None),
|
||||
}
|
||||
|
||||
# Favorite icon
|
||||
html_favicon = 'images/curent.ico'
|
||||
|
||||
|
||||
# Disable smartquotes to display double dashes correctly
|
||||
smartquotes = False
|
||||
|
||||
# import and execute model reference generation script
|
@ -0,0 +1,21 @@
|
||||
Data and Models
|
||||
===============
|
||||
|
||||
1. Supported data formats
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Currently PowerSAS.m supports extended PSAT (Matlab) data format.
|
||||
Support for other formats and data format conversion features will be
|
||||
added in future versions.
|
||||
|
||||
2. Extension of PSAT (Matlab) format
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
2.1 Automatic generation control (AGC) model
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Here PowerSAS provides a simple AGC model. It is named as ``Agc.con`` in
|
||||
data files and it is a :math:`\text{N}\times \text{4}` matrix. Each
|
||||
column is defined as below: Column \| Content ——-\| ————- 1 \| Bus index
|
||||
2 \| Reciprocal of turbine governor gain on bus 3 \| Effective damping
|
||||
ratio on bus 4 \| Reciprocal of AGC control time constant
|
After Width: | Height: | Size: 36 KiB |
After Width: | Height: | Size: 23 KiB |
After Width: | Height: | Size: 51 KiB |
After Width: | Height: | Size: 65 KiB |
After Width: | Height: | Size: 78 KiB |
After Width: | Height: | Size: 14 KiB |
After Width: | Height: | Size: 249 KiB |
After Width: | Height: | Size: 46 KiB |
After Width: | Height: | Size: 54 KiB |
After Width: | Height: | Size: 96 KiB |
After Width: | Height: | Size: 135 KiB |
After Width: | Height: | Size: 12 KiB |
After Width: | Height: | Size: 26 KiB |
After Width: | Height: | Size: 4.9 KiB |
After Width: | Height: | Size: 30 KiB |
After Width: | Height: | Size: 22 KiB |
After Width: | Height: | Size: 562 KiB |
After Width: | Height: | Size: 434 KiB |
@ -0,0 +1,134 @@
|
||||
.. powerSAS.m documentation master file, created by
|
||||
sphinx-quickstart on 02/21/2023.
|
||||
You can adapt this file completely to your liking, but it should at least
|
||||
contain the root `toctree` directive.
|
||||
|
||||
.. raw:: html
|
||||
|
||||
<embed>
|
||||
<h1 style="letter-spacing: 0.4em; font-size: 2.5em !important;
|
||||
margin-bottom: 0; padding-bottom: 0"> powerSAS.m </h1>
|
||||
|
||||
<p style="color: #00746F; font-variant: small-caps; font-weight: bold;
|
||||
margin-bottom: 2em">
|
||||
Rrobust, Efficient and Scalable Power Grid Analysis Framework based on Semi-Analytical Solutions (SAS) Technology</p>
|
||||
</embed>
|
||||
|
||||
****
|
||||
Home
|
||||
****
|
||||
.. PowerSAS.m is a robust, efficient and scalable power grid analysis framework based on **semi-analytical solutions (SAS)** technology.
|
||||
.. The PowerSAS.m is the version for MATLAB/Octave users. It currently provides the following functionalities (more coming soon!)
|
||||
|
||||
.. * Steady-state analysis, including power flow (PF), continuation power flow (CPF), contingency analysis.
|
||||
|
||||
.. * Dynamic security analysis, including voltage stability analysis, transient stability analysis, and flexible user-defined simulation.
|
||||
|
||||
.. * Hybrid extended-term simulation provides adaptive QSS-dynamic hybrid simulation in extended term with high accuracy and efficiency.
|
||||
|
||||
PowerSAS.m
|
||||
==========
|
||||
|
||||
**PowerSAS.m** is a robust, efficient and scalable power grid analysis
|
||||
framework based on semi-analytical solutions (SAS) technology. The
|
||||
**PowerSAS.m** is the version for MATLAB/Octave users. It currently
|
||||
provides the following functionalities (more coming soon!):
|
||||
|
||||
- **Steady-state analysis**, including power flow (PF), continuation
|
||||
power flow (CPF), contingency analysis.
|
||||
- **Dynamic security analysis**, including voltage stability analysis,
|
||||
transient stability analysis, and flexible user-defined simulation.
|
||||
- **Hybrid extended-term simulation** provides adaptive QSS-dynamic
|
||||
hybrid simulation in extended term with high accuracy and efficiency.
|
||||
|
||||
Key features
|
||||
~~~~~~~~~~~~
|
||||
|
||||
- **High numerical robustness.** Backed by the SAS approach, the
|
||||
PowerSAS tool provides much better convergence than the tools using
|
||||
traditional Newton-type algebraic equation solvers when solving
|
||||
algebraic equations (AE)/ordinary differential equations
|
||||
(ODE)/differential-algebraic equations(DAE).
|
||||
- **Enhanced computational performance.** Due to the analytical nature,
|
||||
PowerSAS provides model-adaptive high-accuracy approximation, which
|
||||
brings significantly extended effective range and much larger steps
|
||||
for steady-state/dynamic analysis. PowerSAS has been used to solve
|
||||
large-scale system cases with 200,000+ buses.
|
||||
- **Customizable and extensible.** PowerSAS supports flexible
|
||||
customization of grid analysis scenarios, including complex event
|
||||
sequences in extended simulation term.
|
||||
|
||||
|
||||
.. ANDES is a Python-based free software package for power system simulation, control and analysis.
|
||||
.. It establishes a unique **hybrid symbolic-numeric framework** for modeling differential algebraic
|
||||
.. equations (DAEs) for numerical analysis. Main features of ANDES include
|
||||
|
||||
.. * a unique hybrid symbolic-numeric approach to modeling and simulation that enables descriptive DAE modeling and
|
||||
.. automatic numerical code generation
|
||||
.. * a rich library of transfer functions and discontinuous components (including limiters, dead-bands, and
|
||||
.. saturation) available for prototyping models, which can be readily instantiated as multiple devices for
|
||||
.. system analysis
|
||||
.. * industry-grade second-generation renewable models (solar PV, type 3 and type 4 wind),
|
||||
.. distributed PV and energy storage model
|
||||
.. * comes with the Newton method for power flow calculation, the implicit trapezoidal method for time-domain
|
||||
.. simulation, and full eigenvalue calculation
|
||||
.. * strictly verified models with commercial software. ANDES obtains identical time-domain simulation results for
|
||||
.. IEEE 14-bus and NPCC system with GENROU and multiple controller models. See the verification link for details.
|
||||
.. * developed with performance in mind. While written in Python, ANDES comes with a performance package and can
|
||||
.. finish a 20-second transient simulation of a 2000-bus system in a few seconds on a typical desktop computer
|
||||
.. * out-of-the-box PSS/E raw and dyr file support for available models. Once a model is developed, inputs from a
|
||||
.. dyr file can be readily supported
|
||||
.. * an always up-to-date equation documentation of implemented models
|
||||
|
||||
.. ANDES is currently under active development. To get involved,
|
||||
|
||||
.. * Follow the tutorial at
|
||||
.. `https://andes.readthedocs.io <https://andes.readthedocs.io/en/stable/tutorial.html>`_
|
||||
.. * Checkout the Notebook examples in the
|
||||
.. `examples folder <https://github.com/cuihantao/andes/tree/master/examples>`_
|
||||
.. * Try ANDES in Jupyter Notebook
|
||||
.. `with Binder <https://mybinder.org/v2/gh/cuihantao/andes/master>`_
|
||||
.. * Download the PDF manual at
|
||||
.. `download <https://andes.readthedocs.io/_/downloads/en/stable/pdf/>`_
|
||||
.. * Report issues in the
|
||||
.. `GitHub issues page <https://github.com/cuihantao/andes/issues>`_
|
||||
.. * Learn version control with
|
||||
.. `the command-line git <https://git-scm.com/docs/gittutorial>`_ or
|
||||
.. `GitHub Desktop <https://help.github.com/en/desktop/getting-started-with-github-desktop>`_
|
||||
.. * If you are looking to develop models, read the
|
||||
.. `Modeling Cookbook <https://andes.readthedocs.io/en/stable/modeling.html>`_
|
||||
|
||||
.. This work was supported in part by the Engineering Research Center Program of
|
||||
.. the National Science Foundation and the Department of Energy under NSF Award
|
||||
.. Number EEC-1041877 and the `CURENT <https://curent.utk.edu>`_ Industry Partnership Program.
|
||||
.. **ANDES is made open source as part of the CURENT Large Scale Testbed project.**
|
||||
|
||||
.. ANDES is developed and actively maintained by `Hantao Cui <https://cui.eecps.com>`_.
|
||||
.. See the GitHub repository for a full list of contributors.
|
||||
|
||||
.. toctree::
|
||||
:caption: powerSAS.m Manual
|
||||
:maxdepth: 3
|
||||
:hidden:
|
||||
|
||||
about.rst
|
||||
basic_usage.rst
|
||||
advanced_usage.rst
|
||||
data_and_models.rst
|
||||
troubleshooting.rst
|
||||
installation.rst
|
||||
sas_basics.rst
|
||||
copyright.rst
|
||||
|
||||
|
||||
.. toctree::
|
||||
:hidden:
|
||||
:caption: API References
|
||||
:maxdepth: 3
|
||||
|
||||
Indices and tables
|
||||
==================
|
||||
|
||||
* :ref:`genindex`
|
||||
* :ref:`modindex`
|
||||
* :ref:`search`
|
@ -0,0 +1,41 @@
|
||||
Installation
|
||||
============
|
||||
|
||||
1. System requirements
|
||||
~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Matlab (7.1 or later) or GNU Octave (4.0.0 or later).
|
||||
|
||||
.. _installation-1:
|
||||
|
||||
2. Installation
|
||||
~~~~~~~~~~~~~~~
|
||||
|
||||
- Extract source code to a directory.
|
||||
- Enter the directory in Matlab or GNU Octave.
|
||||
- Execute command ``setup``. You will see the following
|
||||
sub-directories:
|
||||
|
||||
- ``/data``: Stores test system data, simulation settings data, etc.
|
||||
- ``/example``: Some examples of using PowerSAS.m.
|
||||
- ``/output``: Stores test result data.
|
||||
- ``/internal``: Internal functions of PowerSAS.m computation core.
|
||||
- ``/util``: Auxiliary functions including data I/O, plotting, data
|
||||
conversion, etc.
|
||||
- ``/logging``: Built-in logging system.
|
||||
- ``/doc``: Documentation.
|
||||
|
||||
3. Test
|
||||
~~~~~~~
|
||||
|
||||
- Execute command ``initpowersas`` to initialize the environment, then
|
||||
execute ``test_powersas`` to run tests. You should expect all tests
|
||||
to pass.
|
||||
|
||||
4. Initialization
|
||||
~~~~~~~~~~~~~~~~~
|
||||
|
||||
To initialize PowerSAS.m, add the main directory of PowerSAS.m to your
|
||||
Matlab or GNU Octave path and run the command ``initpowersas``. This
|
||||
will ensure that all the functions of PowerSAS.m are added to the path
|
||||
and thus callable.
|
Before Width: | Height: | Size: 235 KiB After Width: | Height: | Size: 235 KiB |
Before Width: | Height: | Size: 168 KiB After Width: | Height: | Size: 168 KiB |
Before Width: | Height: | Size: 175 KiB After Width: | Height: | Size: 175 KiB |
Before Width: | Height: | Size: 11 KiB After Width: | Height: | Size: 11 KiB |
Before Width: | Height: | Size: 199 KiB After Width: | Height: | Size: 199 KiB |
Before Width: | Height: | Size: 263 KiB After Width: | Height: | Size: 263 KiB |
@ -0,0 +1,31 @@
|
||||
PowerSAS.m
|
||||
==========
|
||||
|
||||
**PowerSAS.m** is a robust, efficient and scalable power grid analysis
|
||||
framework based on semi-analytical solutions (SAS) technology. The
|
||||
**PowerSAS.m** is the version for MATLAB/Octave users. It currently
|
||||
provides the following functionalities (more coming soon!):
|
||||
|
||||
- **Steady-state analysis**, including power flow (PF), continuation
|
||||
power flow (CPF), contingency analysis.
|
||||
- **Dynamic security analysis**, including voltage stability analysis,
|
||||
transient stability analysis, and flexible user-defined simulation.
|
||||
- **Hybrid extended-term simulation** provides adaptive QSS-dynamic
|
||||
hybrid simulation in extended term with high accuracy and efficiency.
|
||||
|
||||
Key features
|
||||
~~~~~~~~~~~~
|
||||
|
||||
- **High numerical robustness.** Backed by the SAS approach, the
|
||||
PowerSAS tool provides much better convergence than the tools using
|
||||
traditional Newton-type algebraic equation solvers when solving
|
||||
algebraic equations (AE)/ordinary differential equations
|
||||
(ODE)/differential-algebraic equations(DAE).
|
||||
- **Enhanced computational performance.** Due to the analytical nature,
|
||||
PowerSAS provides model-adaptive high-accuracy approximation, which
|
||||
brings significantly extended effective range and much larger steps
|
||||
for steady-state/dynamic analysis. PowerSAS has been used to solve
|
||||
large-scale system cases with 200,000+ buses.
|
||||
- **Customizable and extensible.** PowerSAS supports flexible
|
||||
customization of grid analysis scenarios, including complex event
|
||||
sequences in extended simulation term.
|