Merge branch 'gtsp-comb'

master
Alinson S. Xavier 11 years ago
commit 1208297971

@ -1,15 +1,18 @@
#!/bin/bash
n=$1
m=$2
t=0
all_t=""
TIMEFORMAT=%U
mkdir -p out/
printf "%12s\t%12s\n" "seed" "user-time (s)"
TIMEFORMAT=%U
for i in $(seq 0 9); do
t=$( { time bin/hw2.run --gtsp -s $i -n $n > out/gtsp-n${n}-s${i}.log; } 2>&1 )
t=$( { time bin/hw2.run --gtsp -s "$i" -n "$n" -m "$m" 2>&1 > tmp/gtsp-m${m}-n${n}-s${i}.log; } 2>&1 )
all_t="$all_t $t"
printf "%12d\t%12.3f\n" $i $t
done
echo
echo $all_t | scripts/mean.r
echo "$all_t" | scripts/mean.r

@ -85,8 +85,6 @@ static int BNC_solve_node(struct BNC *bnc, int depth)
int rval = 0;
double *x = (double *) NULL;
log_debug("Optimizing...\n");
int is_infeasible;
rval = LP_optimize(lp, &is_infeasible);
abort_if(rval, "LP_optimize failed\n");
@ -104,7 +102,7 @@ static int BNC_solve_node(struct BNC *bnc, int depth)
if (ceil(objval) > *best_val + LP_EPSILON)
{
log_debug("Branch pruned by bound (%.2lf > %.2lf).\n", objval,
*best_val);
*best_val);
rval = 0;
goto CLEANUP;
}
@ -129,7 +127,7 @@ static int BNC_solve_node(struct BNC *bnc, int depth)
if (ceil(objval) > *best_val + LP_EPSILON)
{
log_debug("Branch pruned by bound (%.2lf > %.2lf).\n", objval,
*best_val);
*best_val);
rval = 0;
goto CLEANUP;
}
@ -155,7 +153,10 @@ static int BNC_solve_node(struct BNC *bnc, int depth)
log_info(" obj val = %.2lf **\n", objval);
if (bnc->problem_solution_found)
bnc->problem_solution_found(bnc->problem_data, bnc->best_x);
{
rval = bnc->problem_solution_found(bnc->problem_data, bnc->best_x);
abort_if(rval, "problem_solution_found failed");
}
}
}
else
@ -180,7 +181,7 @@ static int BNC_branch_node(struct BNC *bnc, double *x, int depth)
int best_branch_var = BNC_find_best_branching_var(x, num_cols);
log_debug("Branching on variable x%d = %.6lf (depth %d)...\n",
best_branch_var, x[best_branch_var], depth);
best_branch_var, x[best_branch_var], depth);
log_debug("Fixing variable x%d to one...\n", best_branch_var);
rval = LP_change_bound(lp, best_branch_var, 'L', 1.0);
@ -210,11 +211,17 @@ static int BNC_branch_node(struct BNC *bnc, double *x, int depth)
static int BNC_is_integral(double *x, int num_cols)
{
#ifdef ALLOW_FRACTIONAL_SOLUTIONS
UNUSED(num_cols);
UNUSED(x);
return 1;
#else
for (int i = 0; i < num_cols; i++)
if (x[i] > LP_EPSILON && x[i] < 1.0 - LP_EPSILON)
return 0;
return 1;
#endif
}
static int BNC_find_best_branching_var(double *x, int num_cols)

@ -11,6 +11,8 @@ void graph_init(struct Graph *graph)
graph->adj = 0;
graph->node_count = 0;
graph->edge_count = 0;
graph->x_coordinates = 0;
graph->y_coordinates = 0;
}
void graph_free(struct Graph *graph)
@ -20,6 +22,8 @@ void graph_free(struct Graph *graph)
if (graph->edges) free(graph->edges);
if (graph->nodes) free(graph->nodes);
if (graph->adj) free(graph->adj);
if (graph->x_coordinates) free(graph->x_coordinates);
if (graph->y_coordinates) free(graph->y_coordinates);
}
int graph_build(
@ -86,7 +90,7 @@ int graph_build(
n = &graph->nodes[b];
n->adj[n->degree].neighbor_index = a;
n->adj[n->degree].edge_index = i;
n->adj[n->degree].neighbor = &graph->nodes[b];
n->adj[n->degree].neighbor = &graph->nodes[a];
n->adj[n->degree].edge = &graph->edges[i];
n->degree++;
}

@ -41,6 +41,9 @@ struct Graph
struct Edge *edges;
struct Node *nodes;
double *x_coordinates;
double *y_coordinates;
struct Adjacency *adj;
};

@ -0,0 +1,491 @@
#include "gtsp.h"
#include "util.h"
#include <assert.h>
int add_comb_cut(
struct LP *lp,
struct Graph *graph,
int current_component,
int *clusters,
int *components,
int *component_sizes,
int *teeth,
int tooth_count,
double *x)
{
int rval = 0;
char sense = 'G';
const int node_count = graph->node_count;
const int edge_count = graph->edge_count;
struct Row *cut = 0;
int *rmatind = 0;
double *rmatval = 0;
rmatind = (int *) malloc((node_count + edge_count) * sizeof(int));
rmatval = (double *) malloc((node_count + edge_count) * sizeof(double));
abort_if(!rmatind, "could not allocate rmatind");
abort_if(!rmatval, "could not allocate rmatval");
double rhs = -component_sizes[current_component] - tooth_count +
(tooth_count + 1) / 2;
int nz = 0;
// Edges inside handle
for (int i = 0; i < edge_count; i++)
{
struct Edge *e = &graph->edges[i];
if (components[clusters[e->from->index]] != current_component) continue;
if (components[clusters[e->to->index]] != current_component) continue;
rmatind[nz] = node_count + e->index;
rmatval[nz] = -1.0;
nz++;
log_debug(" handle (%d %d)\n", e->from->index, e->to->index);
}
// Edges inside each tooth
for (int i = 0; i < edge_count; i++)
{
struct Edge *e = &graph->edges[i];
struct Node *from = e->from;
struct Node *to = e->to;
if (teeth[clusters[from->index]] < 0) continue;
if (teeth[clusters[to->index]] < 0) continue;
if (teeth[clusters[from->index]] != teeth[clusters[to->index]])
continue;
log_debug(" tooth (%d %d)\n", e->from->index, e->to->index);
rmatind[nz] = node_count + e->index;
rmatval[nz] = -1.0;
nz++;
}
// // Lifting of the nodes
// for (int i = 0; i < node_count; i++)
// {
// double val;
// struct Node *n = &graph->nodes[i];
// int c = clusters[n->index];
//
// if (components[c] == current_component)
// val = (teeth[c] < 0 ? 1.0 : 0.0);
// else
// val = (teeth[c] < 0 ? 0.0 : 0.0);
//
// if (val == 0.0) continue;
//
// rmatind[nz] = n->index;
// rmatval[nz] = val;
// nz++;
//
// rhs = val;
// }
#if LOG_LEVEL >= LOG_LEVEL_DEBUG
log_debug("Generated cut:\n");
for (int i = 0; i < nz; i++)
{
if (OPTIMAL_X[rmatind[i]] < LP_EPSILON) continue;
if (rmatind[i] >= node_count)
{
struct Edge *e = &graph->edges[rmatind[i] - node_count];
log_debug(" %.2lf x%d (%d %d %.4lf)\n", rmatval[i], rmatind[i],
e->from->index, e->to->index, OPTIMAL_X[rmatind[i]]);
}
else
{
log_debug(" %.2lf x%d (%.4lf)\n", rmatval[i], rmatind[i],
OPTIMAL_X[rmatind[i]]);
}
}
log_debug(" %c %.2lf\n", sense, rhs);
#endif
if (OPTIMAL_X)
{
double sum = 0;
for (int i = 0; i < nz; i++)
sum += rmatval[i] * OPTIMAL_X[rmatind[i]];
log_debug("%.2lf >= %.2lf\n", sum, rhs);
abort_if(sum <= rhs - LP_EPSILON, "cannot add invalid cut");
}
double lhs = 0.0;
for (int i = 0; i < nz; i++)
lhs += rmatval[i] * x[rmatind[i]];
log_debug("Violation: %.4lf >= %.4lf\n", lhs, rhs);
if (lhs + LP_EPSILON > rhs) goto CLEANUP;
cut = (struct Row *) malloc(sizeof(struct Row));
abort_if(!cut, "could not allocate cut");
cut->nz = nz;
cut->sense = sense;
cut->rhs = rhs;
cut->rmatval = rmatval;
cut->rmatind = rmatind;
rval = LP_add_cut(lp, cut);
abort_if(rval, "LP_add_cut failed");
CLEANUP:
if (rmatind) free(rmatind);
if (rmatval) free(rmatval);
return rval;
}
int find_components(
struct Graph *graph, double *x, int *components, int *component_sizes)
{
int rval = 0;
struct Node **stack = 0;
const int node_count = graph->node_count;
for (int i = 0; i < node_count; i++)
{
components[i] = -1;
graph->nodes[i].mark = 0;
}
int stack_top = 0;
stack = (struct Node **) malloc(node_count * sizeof(struct Node *));
abort_if(!stack, "could not allocate stack");
for (int i = 0; i < node_count; i++)
{
struct Node *root = &graph->nodes[i];
if (root->mark) continue;
stack[stack_top++] = root;
while (stack_top > 0)
{
struct Node *n = stack[--stack_top];
components[n->index] = i;
for (int j = 0; j < n->degree; j++)
{
struct Adjacency *adj = &n->adj[j];
struct Node *neighbor = adj->neighbor;
if (neighbor->mark) continue;
double x_e = x[adj->edge->index];
if (x_e < LP_EPSILON) continue;
if (x_e > 1 - LP_EPSILON) continue;
stack[stack_top++] = neighbor;
neighbor->mark = 1;
}
}
}
for (int i = 0; i < node_count; i++)
component_sizes[i] = 0;
for (int i = 0; i < node_count; i++)
component_sizes[components[i]]++;
log_debug("Components:\n");
for (int i = 0; i < graph->node_count; i++)
log_debug(" %d %d\n", i, components[i]);
log_debug("Component sizes:\n");
for (int i = 0; i < graph->node_count; i++)
log_debug(" %d %d\n", i, component_sizes[i]);
CLEANUP:
if (stack) free(stack);
return rval;
}
int find_teeth(
struct Graph *graph,
double *x,
int current_component,
int *components,
int *teeth,
int *tooth_count)
{
const int node_count = graph->node_count;
const int edge_count = graph->edge_count;
for (int i = 0; i < node_count; i++)
{
graph->nodes[i].mark = 0;
teeth[i] = -1;
}
*tooth_count = 0;
for (int i = 0; i < edge_count; i++)
{
struct Edge *e = &graph->edges[i];
struct Node *from = e->from;
struct Node *to = e->to;
if (x[e->index] < 1 - LP_EPSILON) continue;
if (to->mark || from->mark) continue;
int z = 0;
if (components[from->index] == current_component) z++;
if (components[to->index] == current_component) z++;
if (z != 1) continue;
to->mark = 1;
from->mark = 1;
teeth[to->index] = *tooth_count;
teeth[from->index] = *tooth_count;
(*tooth_count)++;
}
return 0;
}
int write_shrunken_graph(
double *shrunken_x,
struct Graph *shrunken_graph,
int const cluster_count);
static int shrink_clusters(
const struct GTSP *data,
double *x,
struct Graph *shrunken_graph,
double *shrunken_x)
{
int rval = 0;
double *x_coords = 0;
double *y_coords = 0;
int *cluster_sizes = 0;
const int *clusters = data->clusters;
const int cluster_count = data->cluster_count;
const struct Graph *graph = data->graph;
int *edges = 0;
int *edge_map = 0;
int edge_count = (cluster_count * (cluster_count - 1)) / 2;
edge_map = (int *) malloc(cluster_count * cluster_count * sizeof(int));
abort_if(!edge_map, "could not allocate edge_map");
edges = (int *) malloc(2 * edge_count * sizeof(int));
abort_if(!edges, "could not allocate edges");
cluster_sizes = (int *) malloc(cluster_count * sizeof(int));
x_coords = (double *) malloc(cluster_count * sizeof(double));
y_coords = (double *) malloc(cluster_count * sizeof(double));
abort_if(!cluster_sizes, "could not allocate cluster_sizes");
abort_if(!x_coords, "could not allocate x_coords");
abort_if(!y_coords, "could not allocate y_coords");
for (int i = 0; i < cluster_count; i++)
{
x_coords[i] = 0.0;
y_coords[i] = 0.0;
cluster_sizes[i] = 0;
}
for (int i = 0; i < graph->node_count; i++)
{
struct Node *n = &graph->nodes[i];
int c = clusters[n->index];
cluster_sizes[c]++;
x_coords[c] += graph->x_coordinates[n->index];
y_coords[c] += graph->y_coordinates[n->index];
}
for (int i = 0; i < cluster_count; i++)
{
x_coords[i] = x_coords[i] / cluster_sizes[i];
y_coords[i] = y_coords[i] / cluster_sizes[i];
}
shrunken_graph->x_coordinates = x_coords;
shrunken_graph->y_coordinates = y_coords;
int curr_edge = 0;
for (int i = 0; i < cluster_count; i++)
{
for (int j = i + 1; j < cluster_count; j++)
{
edges[curr_edge * 2] = i;
edges[curr_edge * 2 + 1] = j;
edge_map[i * cluster_count + j] = curr_edge;
edge_map[j * cluster_count + i] = curr_edge;
curr_edge++;
}
}
assert(curr_edge == edge_count);
rval = graph_build(cluster_count, edge_count, edges, 0, shrunken_graph);
abort_if(rval, "graph_build failed");
for (int i = 0; i < edge_count; i++)
shrunken_x[i] = 0.0;
for (int i = 0; i < graph->edge_count; i++)
{
struct Edge *e = &graph->edges[i];
int from = clusters[e->from->index];
int to = clusters[e->to->index];
int shunk_e_index = edge_map[from * cluster_count + to];
shrunken_x[shunk_e_index] += x[graph->node_count + e->index];
}
CLEANUP:
if (edges) free(edges);
if (edge_map) free(edge_map);
if (cluster_sizes) free(cluster_sizes);
return rval;
}
int find_comb_cuts(struct LP *lp, struct GTSP *data)
{
int rval = 0;
double *x = 0;
double *shrunken_x = 0;
int *teeth = 0;
int *components = 0;
int *component_sizes = 0;
int num_cols = LP_get_num_cols(lp);
x = (double *) malloc(num_cols * sizeof(double));
abort_if(!x, "could not allocate x");
rval = LP_get_x(lp, x);
abort_if(rval, "LP_get_x failed");
struct Graph shrunken_graph;
graph_init(&shrunken_graph);
const int cluster_count = data->cluster_count;
const int shrunken_edge_count = (cluster_count * (cluster_count - 1)) / 2;
shrunken_x = (double *) malloc(shrunken_edge_count * sizeof(double));
abort_if(!shrunken_x, "could not allocate shrunken_x");
rval = shrink_clusters(data, x, &shrunken_graph, shrunken_x);
abort_if(rval, "shrink_clusters failed");
#if LOG_LEVEL >= LOG_LEVEL_DEBUG
rval = write_shrunken_graph(shrunken_x, &shrunken_graph, cluster_count);
abort_if(rval, "write_shrunken_graph failed");
#endif
teeth = (int *) malloc(cluster_count * sizeof(int));
components = (int *) malloc(cluster_count * sizeof(int));
component_sizes = (int *) malloc(cluster_count * sizeof(int));
abort_if(!teeth, "could not allocate teeth");
abort_if(!components, "could not allocate components");
abort_if(!component_sizes, "could not allocate component_sizes");
rval = find_components(&shrunken_graph, shrunken_x, components,
component_sizes);
abort_if(rval, "find_components failed");
#if LOG_LEVEL >= LOG_LEVEL_DEBUG
int original_cut_pool_size = lp->cut_pool_size;
#endif
for (int i = 0; i < cluster_count; i++)
{
if (component_sizes[i] < 3) continue;
int tooth_count;
rval = find_teeth(&shrunken_graph, shrunken_x, i, components, teeth,
&tooth_count);
abort_if(rval, "find_teeth failed");
log_debug("Component %d has %d teeth:\n", i, tooth_count);
for (int j = 0; j < cluster_count; j++)
{
if (teeth[j] < 0) continue;
log_debug(" %d %d\n", j, teeth[j]);
}
if (tooth_count % 2 == 0) continue;
rval = add_comb_cut(lp, data->graph, i, data->clusters, components,
component_sizes, teeth, tooth_count, x);
abort_if(rval, "add_comb_cut failed");
}
log_debug(" %d combs\n", lp->cut_pool_size - original_cut_pool_size);
CLEANUP:
graph_free(&shrunken_graph);
if (teeth) free(teeth);
if (components) free(components);
if (component_sizes) free(component_sizes);
if (shrunken_x) free(shrunken_x);
return rval;
}
int write_shrunken_graph(
double *shrunken_x,
struct Graph *shrunken_graph,
int const cluster_count)
{
int rval = 0;
FILE *file = 0;
file = fopen("gtsp-shrunken.in", "w");
abort_if(!file, "could not open file");
fprintf(file, "%d %d\n", (*shrunken_graph).node_count, cluster_count);
for (int i = 0; i < (*shrunken_graph).node_count; i++)
{
fprintf(file, "%.2lf %.2lf %d\n", (*shrunken_graph).x_coordinates[i],
(*shrunken_graph).y_coordinates[i], i);
}
fclose(file);
file = fopen("gtsp-shrunken.out", "w");
abort_if(!file, "could not open file");
int positive_edge_count = 0;
for (int i = 0; i < (*shrunken_graph).edge_count; i++)
if (shrunken_x[i] > LP_EPSILON)
positive_edge_count++;
fprintf(file, "%d %d\n", (*shrunken_graph).node_count,
(*shrunken_graph).edge_count);
fprintf(file, "%d\n", positive_edge_count);
for (int i = 0; i < (*shrunken_graph).edge_count; i++)
if (shrunken_x[i] > LP_EPSILON)
fprintf(file, "%d %d %.4lf\n",
(*shrunken_graph).edges[i].from->index,
(*shrunken_graph).edges[i].to->index, shrunken_x[i]);
fclose(file);
CLEANUP:
return rval;
}

@ -0,0 +1,6 @@
#ifndef PROJECT_GTSP_COMB_H
#define PROJECT_GTSP_COMB_H
int find_comb_cuts(struct LP *lp, struct GTSP *data);
#endif //PROJECT_GTSP_COMB_H

@ -143,7 +143,7 @@ int static add_subtour_cut(
log_verbose("Generated cut:\n");
for (int i = 0; i < newnz; i++)
log_verbose("%8.2f x%d\n", rmatval[i], rmatind[i]);
log_verbose(" %8.2f x%d\n", rmatval[i], rmatind[i]);
log_verbose(" %c %.2lf\n", sense, rhs);
if (OPTIMAL_X)
@ -213,12 +213,9 @@ int find_exact_subtour_cuts(
abort_if(rval, "find_exact_subtour_cuts_cluster_to_cluster failed");
added_cuts_count = lp->cut_pool_size - original_cut_pool_size;
log_debug(" %d cluster-to-cluster\n", added_cuts_count);
if (added_cuts_count > 0)
{
log_debug("Added %d cluster-to-cluster subtour cuts\n",
added_cuts_count);
goto CLEANUP;
}
// Constraints (2.2)
original_cut_pool_size = lp->cut_pool_size;
@ -227,11 +224,9 @@ int find_exact_subtour_cuts(
abort_if(rval, "find_exact_subtour_cuts_node_to_cluster failed");
added_cuts_count = lp->cut_pool_size - original_cut_pool_size;
log_debug(" %d node-to-cluster\n", added_cuts_count);
if (added_cuts_count > 0)
{
log_debug("Added %d node-to-cluster subtour cuts\n", added_cuts_count);
goto CLEANUP;
}
// Constraints (2.3)
original_cut_pool_size = lp->cut_pool_size;
@ -240,11 +235,9 @@ int find_exact_subtour_cuts(
abort_if(rval, "find_exact_subtour_cuts_node_to_node failed");
added_cuts_count = lp->cut_pool_size - original_cut_pool_size;
log_debug(" %d node-to-node\n", added_cuts_count);
if (added_cuts_count > 0)
{
log_debug("Added %d node-to-node subtour cuts\n", added_cuts_count);
goto CLEANUP;
}
CLEANUP:
graph_free(&digraph);

@ -2,36 +2,23 @@
#include <stdlib.h>
#include <float.h>
#include <getopt.h>
#include <math.h>
#include "gtsp.h"
#include "geometry.h"
#include "util.h"
#include "flow.h"
#include "branch_and_cut.h"
#include "math.h"
#include "gtsp-subtour.h"
#include "gtsp-comb.h"
double *OPTIMAL_X = 0;
static int get_edge_num(int node_count, int from, int to)
{
int idx = node_count;
for (int k = 0; k < from; k++)
idx += node_count - k - 1;
idx += to - from - 1;
return idx;
}
int GTSP_init_data(struct GTSP *data)
{
int rval = 0;
data->clusters = 0;
data->cluster_count = 0;
data->x_coordinates = 0;
data->y_coordinates = 0;
data->graph = (struct Graph *) malloc(sizeof(struct Graph));
abort_if(!data->graph, "could not allocate data->graph");
@ -52,8 +39,6 @@ void GTSP_free(struct GTSP *data)
free(data->graph);
if (data->clusters) free(data->clusters);
if (data->x_coordinates) free(data->x_coordinates);
if (data->y_coordinates) free(data->y_coordinates);
}
int GTSP_create_random_problem(
@ -156,11 +141,11 @@ abort_if(!data->graph, "could not allocate data->graph");
data->graph = graph;
data->clusters = clusters;
data->cluster_count = cluster_count;
data->x_coordinates = x_coords;
data->y_coordinates = y_coords;
graph->x_coordinates = x_coords;
graph->y_coordinates = y_coords;
data->dist_matrix = dist_matrix;
data->vertex_set = cluster_member;
CLEANUP:
if (weights) free(weights);
if (edges) free(edges);
@ -226,43 +211,47 @@ int GTSP_init_lp(struct LP *lp, struct GTSP *data)
int GTSP_add_cutting_planes(struct LP *lp, struct GTSP *data)
{
int rval = 0;
int round = 0;
int violation_total = 3;
int violation_current = 0;
double violations[] = {1.0, 0.1, LP_EPSILON};
int current_round = 0;
while (1)
{
round++;
if (current_round > 0)
{
int is_infeasible;
rval = LP_optimize(lp, &is_infeasible);
abort_if(rval, "LP_optimize failed");
if (is_infeasible) break;
}
log_debug("Finding subtour cuts, round %d, violation %.4lf...\n", round,
violations[violation_current]);
current_round++;
int original_cut_pool_size = lp->cut_pool_size;
rval = find_exact_subtour_cuts(lp, data, violations[violation_current]);
int original_cut_pool_size;
int added_cuts_count;
original_cut_pool_size = lp->cut_pool_size;
log_debug("Finding subtour cuts, round %d...\n", current_round);
rval = find_exact_subtour_cuts(lp, data, LP_EPSILON);
abort_if(rval, "find_exact_subtour_cuts failed");
if (lp->cut_pool_size - original_cut_pool_size == 0)
{
if (++violation_current < violation_total)
{
log_debug("No cuts found. Decreasing minimum cut violation.\n");
continue;
}
else
{
log_debug("No additional cuts found.\n");
break;
}
}
added_cuts_count = lp->cut_pool_size - original_cut_pool_size;
if (added_cuts_count > 0)
continue;
#ifdef ENABLE_COMB_INEQUALITIES
original_cut_pool_size = lp->cut_pool_size;
log_debug("Finding comb cuts, round %d...\n", current_round);
rval = find_comb_cuts(lp, data);
abort_if(rval, "find_comb_cuts failed");
int is_infeasible;
rval = LP_optimize(lp, &is_infeasible);
abort_if(rval, "LP_optimize failed");
added_cuts_count = lp->cut_pool_size - original_cut_pool_size;
if (added_cuts_count > 0)
continue;
#endif
if (is_infeasible) break;
break;
}
CLEANUP:
@ -278,12 +267,14 @@ int GTSP_write_problem(struct GTSP *data, char *filename)
file = fopen(filename, "w");
abort_if(!file, "could not open file");
fprintf(file, "%d %d\n", data->graph->node_count, data->cluster_count);
const struct Graph *graph = data->graph;
for (int i = 0; i < data->graph->node_count; i++)
fprintf(file, "%d %d\n", graph->node_count, data->cluster_count);
for (int i = 0; i < graph->node_count; i++)
{
fprintf(file, "%.2lf %.2lf %d\n", data->x_coordinates[i],
data->y_coordinates[i], data->clusters[i]);
fprintf(file, "%.2lf %.2lf %d\n", graph->x_coordinates[i],
graph->y_coordinates[i], data->clusters[i]);
}
CLEANUP:
@ -322,12 +313,13 @@ int GTSP_write_solution(struct GTSP *data, char *filename, double *x)
return rval;
}
int GTSP_read_solution(char *filename, double **p_x)
int GTSP_read_solution(struct GTSP *gtsp, char *filename, double **p_x)
{
int rval = 0;
int node_count;
int edge_count;
int *edge_map = 0;
double *x;
@ -351,31 +343,138 @@ int GTSP_read_solution(char *filename, double **p_x)
rval = fscanf(file, "%d", &edge_count);
abort_if(rval != 1, "invalid input format (positive edge count)");
edge_map = (int *) malloc(node_count * node_count * sizeof(int));
abort_if(!edge_map, "could not allocate edge_map");
int k = node_count;
for (int i = 0; i < node_count; i++)
{
for (int j = i + 1; j < node_count; j++)
{
if (gtsp->clusters[i] == gtsp->clusters[j]) continue;
edge_map[i * node_count + j] = k;
edge_map[j * node_count + i] = k;
k++;
}
}
for (int i = 0; i < edge_count; i++)
{
int from, to, edge;
rval = fscanf(file, "%d %d", &from, &to);
abort_if(rval != 2, "invalid input format (edge endpoints)");
if (from > to) swap(from, to);
double val;
rval = fscanf(file, "%d %d %lf", &from, &to, &val);
abort_if(rval != 3, "invalid input format (edge endpoints)");
edge = get_edge_num(node_count, from, to);
edge = edge_map[from * node_count + to];
abort_if(edge > num_cols, "invalid edge");
x[from] += 0.5;
x[to] += 0.5;
x[edge] = 1;
x[from] += val / 2;
x[to] += val / 2;
x[edge] = val;
}
for (int i = 0; i < num_cols; i++)
{
if (x[i] <= LP_EPSILON) continue;
log_debug(" x%-3d = %.2f\n", i, x[i]);
log_debug(" x%-5d = %.6f\n", i, x[i]);
}
*p_x = x;
rval = 0;
CLEANUP:
if (edge_map) free(edge_map);
return rval;
}
int GTSP_check_solution(struct GTSP *data, double *x)
{
int rval = 0;
int *cluster_mark = 0;
struct Node **stack = 0;
int stack_top = 0;
struct Graph *graph = data->graph;
const int node_count = graph->node_count;
const int edge_count = graph->edge_count;
cluster_mark = (int *) malloc(data->cluster_count * sizeof(int));
abort_if(!cluster_mark, "could not allocate cluster_mark");
stack = (struct Node **) malloc(graph->node_count * sizeof(struct Node *));
abort_if(!stack, "could not allocate stack");
for (int i = 0; i < node_count + edge_count; i++)
{
abort_iff(x[i] < 1.0 - LP_EPSILON && x[i] > LP_EPSILON,
"solution is not integral: x%d = %.4lf", i, x[i]);
abort_iff(x[i] > 1.0 + LP_EPSILON || x[i] < 0.0 - LP_EPSILON,
"value out of bounds: x%d = %.4lf", i, x[i]);
}
for (int i = 0; i < node_count; i++)
graph->nodes[i].mark = 0;
for (int i = 0; i < data->cluster_count; i++)
cluster_mark[i] = 0;
int initial;
for (initial = 0; initial < node_count; initial++)
if (x[initial] > 1.0 - LP_EPSILON) break;
abort_if(initial == node_count, "no initial node");
stack[stack_top++] = &graph->nodes[initial];
graph->nodes[initial].mark = 1;
while (stack_top > 0)
{
struct Node *n = stack[--stack_top];
cluster_mark[data->clusters[n->index]]++;
for (int i = 0; i < n->degree; i++)
{
struct Adjacency *adj = &n->adj[i];
struct Node *neighbor = adj->neighbor;
if (neighbor->mark) continue;
if (x[node_count + adj->edge->index] < LP_EPSILON) continue;
stack[stack_top++] = neighbor;
neighbor->mark = 1;
}
}
for (int i = 0; i < data->cluster_count; i++)
abort_if(cluster_mark[i] != 1, "cluster not visited exactly one time");
log_info(" solution is valid\n");
CLEANUP:
if (stack) free(stack);
if (cluster_mark) free(cluster_mark);
return rval;
}
int GTSP_solution_found(struct GTSP *data, double *x)
{
int rval = 0;
char filename[100];
sprintf(filename, "tmp/gtsp-m%d-n%d-s%d.out", data->cluster_count,
data->graph->node_count, SEED);
log_info("Writting solution to file %s\n", filename);
rval = GTSP_write_solution(data, filename, x);
abort_if(rval, "GTSP_write_solution failed");
log_info("Checking solution...\n");
rval = GTSP_check_solution(data, x);
abort_if(rval, "GTSP_check_solution failed");
CLEANUP:
return rval;
}
@ -387,11 +486,12 @@ static const struct option options_tab[] = {{"help", no_argument, 0, 'h'},
{"optimal", required_argument, 0, 'x'},
{"seed", required_argument, 0, 's'},
{(char *) 0, (int) 0, (int *) 0, (int) 0}};
static int input_node_count = -1;
static int input_cluster_count = -1;
static int grid_size = 100;
static char input_x_filename[1000] = {0};
static void GTSP_print_usage()
{
printf("Parameters:\n");
@ -433,8 +533,7 @@ static int GTSP_parse_args(int argc, char **argv)
break;
case 'x':
rval = GTSP_read_solution(optarg, &OPTIMAL_X);
abort_if(rval, "GTSP_read_solution failed");
strcpy(input_x_filename, optarg);
break;
case 's':
@ -443,12 +542,14 @@ static int GTSP_parse_args(int argc, char **argv)
case ':':
fprintf(stderr, "option '-%c' requires an argument\n", optopt);
return 1;
rval = 1;
goto CLEANUP;
case '?':
default:
fprintf(stderr, "option '-%c' is invalid\n", optopt);
return 1;
rval = 1;
goto CLEANUP;
}
}
@ -481,18 +582,6 @@ static int GTSP_parse_args(int argc, char **argv)
return rval;
}
int GTSP_solution_found(struct GTSP *data, double *x)
{
int rval = 0;
log_info("Writting integral solution to file gtsp.out\n");
rval = GTSP_write_solution(data, "gtsp.out", x);
abort_if(rval, "GTSP_write_solution failed");
CLEANUP:
return rval;
}
double FLOW_CPU_TIME = 0;
double LP_SOLVE_TIME = 0;
double LP_CUT_POOL_TIME = 0;
@ -530,7 +619,14 @@ int GTSP_main(int argc, char **argv)
int init_val ;
init_val = inital_tour_value(&data);
log_info("Writing random instance to file gtsp.in\n");
char filename[100];
sprintf(filename, "input/gtsp-m%d-n%d-s%d.in", input_cluster_count,
input_node_count, SEED);
log_info("Writing random instance to file %s\n", filename);
rval = GTSP_write_problem(&data, filename);
abort_if(rval, "GTSP_write_problem failed");
rval = GTSP_write_problem(&data, "gtsp.in");
abort_if(rval, "GTSP_write_problem failed");
@ -542,11 +638,28 @@ int GTSP_main(int argc, char **argv)
bnc.problem_solution_found = (int (*)(
void *, double *)) GTSP_solution_found;
if (OPTIMAL_X)
double opt_val = 0.0;
if (strlen(input_x_filename) == 0)
{
sprintf(input_x_filename, "optimal/gtsp-m%d-n%d-s%d.out",
input_cluster_count, input_node_count, SEED);
FILE *file = fopen(input_x_filename, "r");
if (!file)
input_x_filename[0] = 0;
else
fclose(file);
}
if (strlen(input_x_filename) > 0)
{
rval = GTSP_read_solution(&data, input_x_filename, &OPTIMAL_X);
abort_if(rval, "GTSP_read_solution failed");
log_info("Optimal solution is available. Cuts will be checked.\n");
double opt_val = 0.0;
for (int i = 0; i < data.graph->edge_count; i++)
{
struct Edge *e = &data.graph->edges[i];
@ -560,9 +673,9 @@ int GTSP_main(int argc, char **argv)
rval = BNC_init_lp(&bnc);
abort_if(rval, "BNC_init_lp failed");
log_info("Writing LP to file gtsp.lp...\n");
rval = LP_write(bnc.lp, "gtsp.lp");
abort_if(rval, "LP_write failed");
// log_info("Writing LP to file gtsp.lp...\n");
// rval = LP_write(bnc.lp, "gtsp.lp");
// abort_if(rval, "LP_write failed");
log_info("Starting branch-and-cut solver...\n");
rval = BNC_solve(&bnc);
@ -573,6 +686,13 @@ int GTSP_main(int argc, char **argv)
log_info("Optimal integral solution:\n");
log_info(" obj value = %.2lf **\n", bnc.best_obj_val);
if (OPTIMAL_X)
{
abort_iff(bnc.best_obj_val - LP_EPSILON > opt_val,
"Solution is not optimal: %.4lf > %.4lf", bnc.best_obj_val,
opt_val);
}
log_info("Branch-and-bound nodes: %d\n", BNC_NODE_COUNT);
log_info("Max-flow calls: %d\n", FLOW_MAX_FLOW_COUNT);
log_info("Max-flow computation time: %.2lf\n", FLOW_CPU_TIME);

@ -1,7 +1,3 @@
//
// Created by isoron on 18/03/15.
//
#ifndef _PROJECT_GTSP_H_
#define _PROJECT_GTSP_H_
@ -21,9 +17,6 @@ struct GTSP
int *clusters;
int cluster_count;
double *x_coordinates;
double *y_coordinates;
int** dist_matrix;
struct CLUSTER *vertex_set;
};

@ -165,10 +165,11 @@ int LP_optimize(struct LP *lp, int *infeasible)
*infeasible = 0;
#if LOG_LEVEL >= LOG_LEVEL_DEBUG
int numrows = CPXgetnumrows(lp->cplex_env, lp->cplex_lp);
int numcols = CPXgetnumcols(lp->cplex_env, lp->cplex_lp);
log_debug("Optimizing LP (%d rows %d cols)...\n", numrows, numcols);
#endif
double time_before = get_current_time();
rval = CPXdualopt(lp->cplex_env, lp->cplex_lp);
@ -228,7 +229,7 @@ int LP_remove_old_cuts(struct LP *lp)
log_verbose("Old cplex row index:\n");
for (int i = 0; i < lp->cut_pool_size; i++)
log_verbose(" %d\n", lp->cut_pool[i]->cplex_row_index);
log_verbose(" %d\n", lp->cut_pool[i]->cplex_row_index);
log_verbose("Should remove:\n");
for (int i = 0; i < lp->cut_pool_size; i++)
@ -250,7 +251,7 @@ int LP_remove_old_cuts(struct LP *lp)
{
struct Row *cut = lp->cut_pool[j];
if (cut->cplex_row_index == i - count) cut->cplex_row_index = 0;
if (cut->cplex_row_index == i - count) cut->cplex_row_index = -1;
else if (cut->cplex_row_index > i - count) cut->cplex_row_index--;
}
@ -259,7 +260,7 @@ int LP_remove_old_cuts(struct LP *lp)
log_verbose("New cplex row index:\n");
for (int i = 0; i < lp->cut_pool_size; i++)
log_verbose(" %d\n", lp->cut_pool[i]->cplex_row_index);
log_verbose(" %d\n", lp->cut_pool[i]->cplex_row_index);
int start = 0;
int end = -1;
@ -298,7 +299,7 @@ int LP_remove_old_cuts(struct LP *lp)
if (count > 0)
{
log_info("Found and removed %d old cuts\n", count);
log_debug("Found and removed %d old cuts\n", count);
rval = CPXdualopt(lp->cplex_env, lp->cplex_lp);
abort_if(rval, "CPXoptimize failed");
}
@ -388,6 +389,9 @@ int LP_add_cut(struct LP *lp, struct Row *cut)
if (lp->cut_pool[i]->hash != cut->hash) continue;
if (!compare_cuts(lp->cut_pool[i], cut))
{
log_verbose("Discarding duplicate cut (same as cplex row %d)\n",
lp->cut_pool[i]->cplex_row_index);
free(cut->rmatval);
free(cut->rmatind);
free(cut);

@ -0,0 +1,10 @@
#ifndef PROJECT_PARAMS_H
#define PROJECT_PARAMS_H
#define LOG_LEVEL LOG_LEVEL_INFO
#define ENABLE_COMB_INEQUALITIES
//#define ALLOW_FRACTIONAL_SOLUTIONS
#endif //PROJECT_PARAMS_H

@ -2,6 +2,7 @@
#define _PROJECT_UTIL_H_
#include <string.h>
#include "params.h"
#define LOG_LEVEL_ERROR 10
#define LOG_LEVEL_WARNING 20
@ -9,8 +10,6 @@
#define LOG_LEVEL_DEBUG 40
#define LOG_LEVEL_VERBOSE 50
#define LOG_LEVEL LOG_LEVEL_DEBUG
#if LOG_LEVEL < LOG_LEVEL_VERBOSE
#define log_verbose(...)
#else
@ -42,7 +41,11 @@
#endif
#define abort_if(cond, msg) if(cond) { \
fprintf(stderr, "%20s:%d " msg "\n", __FILE__, __LINE__); \
fprintf(stderr, "%28s:%d " msg "\n", __FILE__, __LINE__); \
rval = 1; goto CLEANUP; }
#define abort_iff(cond, msg, ...) if(cond) { \
fprintf(stderr, "%28s:%d " msg "\n", __FILE__, __LINE__, __VA_ARGS__); \
rval = 1; goto CLEANUP; }
#define swap(x, y) do \