Armin's heuristics

master
Alinson S. Xavier 11 years ago
parent ce206f5b7a
commit 2e370e39ef

@ -4,6 +4,8 @@
#include "lp.h"
#include "branch_and_cut.h"
#include "util.h"
#include "gtsp.h"
int BNC_NODE_COUNT = 0;
@ -15,6 +17,8 @@ static int BNC_is_integral(double *x, int num_cols);
static int BNC_find_best_branching_var(double *x, int num_cols);
//int optimize_vertex_in_cluster(struct BNC *bnc, double best_val);
int BNC_init(struct BNC *bnc)
{
int rval = 0;
@ -144,7 +148,9 @@ static int BNC_solve_node(struct BNC *bnc, int depth)
*best_val = objval;
bnc->best_x = x;
x = 0;
log_info("Found a better integral solution:\n");
log_info(" obj val = %.2lf **\n", objval);
@ -227,3 +233,130 @@ static int BNC_find_best_branching_var(double *x, int num_cols)
return best_index;
}
/*
int re_optimize_integral(struct BNC *bnc){
int i = 0 , current_vertex = 0, rval = 0;
struct GTSP* data;
data = bnc->problem_data;
int node_count = data->graph->node_count;
int cluster_count = data->cluster_count;
int edge_count = data->graph->edge_count;
struct TOUR * tour = (struct TOUR*) NULL;
//intialize the tour
tour = (struct TOUR *) malloc( cluster_count * sizeof(struct TOUR));
for (i = 0; i < edge_count; i++){
tour[i].vertex = -1;
tour[i].next = -1;
tour[i].prev = -1;
}
//Constructing the tour with vertices
for (i = 0; i < edge_count; i++){
if (bnc->best_x[i + node_count] > LP_EPSILON) {
tour[current_vertex].vertex = data->graph->edges[i].from->index;
current_vertex += 1;
printf("From node %d \t", data->graph->edges[i].from->index);
printf("TO node %d \n", data->graph->edges[i].to->index);
}
}
//printf("Edgese in solution %d \n", current_vertex);
return rval;
CLEANUP:
if (data) free(data);
}
*/
/*
int optimize_vertex_in_cluster(struct BNC *bnc, double best_val)
{
int i = 0 , j, current_vertex = 0, rval = 0;
int tour_cost = 0;
struct GTSP* data;
data = bnc->problem_data;
//rval = GTSP_init_data(&data);
//data = bnc->problem_data;
//data = (struct GTSP) malloc(sizeof(struct GTSP));
//data = &bnc->problem_data;
int node_count = data->graph->node_count;
int cluster_count = data->cluster_count;
int edge_count = data->graph->edge_count;
int * tour = (int*) NULL;
tour = (int *) malloc( cluster_count * sizeof(int));
//Constructing the tour with vertices
for (i = 0; i < edge_count; i++)
{ //printf(" edge %lf **\n", bnc->best_x[i]);
if ((bnc->best_x[i] > 1 - LP_EPSILON)){
//printf(" x[i] = %lf **\n", bnc->best_x[i]);
tour[current_vertex] = (data->graph->edges[i].from)->index;
current_vertex += 1;
//printf(" Edge No = %d **\n", i);
printf(" FROM No = %d **\n", (data->graph->edges[i].from)->index);
printf(" TO No = %d **\n", (data->graph->edges[i].to)->index);
//printf(" current vertex = %d **\n", current_vertex);
}
}
//reoptmizing the your with two-opt
//rval = two_opt(cluster_count, tour, data->dist_matrix);
//Optimizing the vertices inside the clusters
int current_cluster = 0;
int insertion_cost = 0;
//printf(" o-- val = %.2lf **\n", best_val);
for(i = 1; i < cluster_count - 2; i++){
//printf(" vertex in tour = %d **\n", tour[current_vertex]);
current_cluster = data->clusters[tour[i]];
//printf(" o-- val = %.2lf **\n", best_val);
insertion_cost = data->dist_matrix[tour[i-1]][tour[i]] +
data->dist_matrix[tour[i]][tour[i+1]];
//printf(" o-- val = %.2lf **\n", best_val);
for(j = 0; j < node_count; j++)
if (current_cluster == data->clusters[j])
if (insertion_cost > data->dist_matrix[j][tour[i]] +
data->dist_matrix[j][tour[i+1]]){
log_info("Optmize vertex in cluster improved the bound\n");
insertion_cost = data->dist_matrix[j][tour[i]] +
data->dist_matrix[j][tour[i+1]];
tour[i] = j;
}
}
printf(" o-- val = %.2lf **\n", best_val);
for(i = 0; i< cluster_count ; i++){
if (i == cluster_count - 1)
tour_cost += data->dist_matrix[tour[i]][tour[0]];
else
tour_cost += data->dist_matrix[tour[i]][tour[i+1]];
if(tour_cost < bnc->best_obj_val)
bnc->best_obj_val = tour_cost;
}
return rval;
}
*/
/*
static int two_opt(int tour_length, int*tour, int** dist_matrix){
int rval = 0, i;
for (i = 1; i < tour_length - 2; i++){
int current_cost = dist_matrix[tour[i-1]][tour[i]] +
dist_matrix[tour[i+1]][tour[i+2]];
int temp_cost = dist_matrix[tour[i-1]][tour[i+1]] +
dist_matrix[tour[i]][tour[i+2]];
if(current_cost > temp_cost){
log_info("Two opt improved the bound\n");
int temp_vertex = tour[i];
tour[i] = tour[i+1];
tour[i+1] = temp_vertex;
}
}
return rval;
}
*/

@ -3,6 +3,12 @@
#include "lp.h"
struct TOUR {
int vertex;
int next;
int prev;
};
struct BNC
{
struct LP *lp;
@ -29,6 +35,11 @@ int BNC_init_lp(struct BNC *bnc);
void BNC_free(struct BNC *bnc);
int re_optimize_integral(struct BNC *bnc);
//int optimize_vertex_in_cluster(struct BNC *bnc, double best_val);
extern int BNC_NODE_COUNT;
#endif //_PROJECT_BRANCH_AND_CUT_H_

@ -111,6 +111,21 @@ int generate_random_clusters_2d(
return rval;
}
int generate_dist_matrix(
int node_count,
double *x_coordinates,
double *y_coordinates, int** dist_matrix)
{
int i,j;
for (i = 0; i < node_count; i++){
for (j = 0; j < node_count; j++){
dist_matrix[i][j] =
get_euclidean_distance(x_coordinates, y_coordinates, i, j);
}
}
return 0;
}
int get_euclidean_distance(
double *x_coordinates,
double *y_coordinates,

@ -21,4 +21,8 @@ int get_euclidean_distance(
int p1_index,
int p2_index);
int generate_dist_matrix(
int node_count,
double *x_coordinates,
double *y_coordinates, int** dist_matrix);
#endif //_PROJECT_GEOMETRY_H_

@ -36,6 +36,8 @@ int GTSP_init_data(struct GTSP *data)
data->graph = (struct Graph *) malloc(sizeof(struct Graph));
abort_if(!data->graph, "could not allocate data->graph");
data->vertex_set = (struct CLUSTER *) malloc(sizeof(struct CLUSTER));
graph_init(data->graph);
CLEANUP:
@ -58,10 +60,12 @@ int GTSP_create_random_problem(
int node_count, int cluster_count, int grid_size, struct GTSP *data)
{
int rval = 0;
int i = 0;
int *edges = 0;
int *weights = 0;
int *clusters = 0;
int ** dist_matrix = 0;
double *x_coords = 0;
double *y_coords = 0;
@ -78,7 +82,7 @@ int GTSP_create_random_problem(
edges = (int *) malloc(2 * edge_count * sizeof(int));
weights = (int *) malloc(edge_count * sizeof(int));
clusters = (int *) malloc(node_count * sizeof(int));
abort_if(!data->graph, "could not allocate data->graph");
abort_if(!edges, "could not allocate data->edges\n");
abort_if(!weights, "could not allocate weights\n");
abort_if(!clusters, "could not allocate clusters\n");
@ -89,16 +93,50 @@ int GTSP_create_random_problem(
abort_if(!x_coords, "could not allocate x_coords\n");
abort_if(!y_coords, "could not allocate y_coords\n");
dist_matrix = (int **) malloc(node_count * sizeof(int*));
for(i=0; i<node_count; i++)
dist_matrix[i] = (int *) malloc(node_count * sizeof(int));
abort_if(!dist_matrix, "could not allocate dist_matrix\n");
rval = generate_random_clusters_2d(node_count, cluster_count, grid_size,
x_coords, y_coords, clusters);
abort_if(rval, "generate_random_clusters_2d failed");
rval = generate_dist_matrix(node_count,
x_coords, y_coords, dist_matrix);
abort_if(rval, "generate_distance_matrix_2d failed");
struct CLUSTER *cluster_member;
cluster_member = (struct CLUSTER *) malloc(cluster_count * sizeof(struct CLUSTER));
for (int j=0; j<cluster_count; j++){
cluster_member[j].size = 0;
for(int i=0; i<node_count; i++)
if(clusters[i] == j)
cluster_member[j].size+= 1;
}
for (int j=0; j<cluster_count; j++)
cluster_member[j].set = (int *) malloc(cluster_member[j].size * sizeof(int));
int current_vertex = 0;
for (int j=0; j<cluster_count; j++){
current_vertex = 0;
for(int i=0; i<node_count; i++)
if(clusters[i] == j){
cluster_member[j].set[current_vertex] = i;
current_vertex += 1;
}
}
int curr_edge = 0;
for (int i = 0; i < edge_count; i++)
for (int j = i + 1; j < node_count; j++)
{
if (clusters[i] == clusters[j]) continue;
edges[curr_edge * 2] = i;
edges[curr_edge * 2 + 1] = j;
weights[curr_edge] = get_euclidean_distance(x_coords, y_coords, i,
@ -120,7 +158,9 @@ int GTSP_create_random_problem(
data->cluster_count = cluster_count;
data->x_coordinates = x_coords;
data->y_coordinates = y_coords;
data->dist_matrix = dist_matrix;
data->vertex_set = cluster_member;
CLEANUP:
if (weights) free(weights);
if (edges) free(edges);
@ -487,12 +527,14 @@ int GTSP_main(int argc, char **argv)
rval = GTSP_create_random_problem(input_node_count, input_cluster_count,
grid_size, &data);
abort_if(rval, "GTSP_create_random_problem failed");
int init_val ;
init_val = inital_tour_value(&data);
log_info("Writing random instance to file gtsp.in\n");
rval = GTSP_write_problem(&data, "gtsp.in");
abort_if(rval, "GTSP_write_problem failed");
bnc.best_obj_val = DBL_MAX;
bnc.best_obj_val = init_val;
bnc.problem_data = (void *) &data;
bnc.problem_init_lp = (int (*)(struct LP *, void *)) GTSP_init_lp;
bnc.problem_add_cutting_planes = (int (*)(
@ -543,3 +585,191 @@ int GTSP_main(int argc, char **argv)
BNC_free(&bnc);
return rval;
}
int inital_tour_value(struct GTSP *data)
{
int cluster_count = data->cluster_count;
int * tour;
int * uncovered_sets;
int min_vertex = -1;
int min_cost = 100000000;
int tour_cost = 0;
int* cluster_in_tour;
cluster_in_tour = (int *) malloc(cluster_count*sizeof(int));
tour = (int *) malloc(cluster_count*sizeof(int));
uncovered_sets = (int *) malloc((cluster_count-1)*sizeof(int));
int cluster_num = 0;
for(int i =0; i< cluster_count; i++){
cluster_in_tour[i] = 0;
if(data->clusters[0] != i){
uncovered_sets[cluster_num] = i;
cluster_num += 1;
}
}
int new_vertex = 1;
tour[0] = 0;
cluster_in_tour[0] = 1;
while(new_vertex <= data->cluster_count){
min_vertex = -1;
min_cost = 100000000;
for (int i = 1; i < data->graph->node_count; i++) {
if (cluster_in_tour[data->clusters[i]] == 0){
for (int k = 0; k < new_vertex; k++) {
int cost = data->dist_matrix[i][tour[k]];
if (cost < min_cost) {
min_cost = cost;
min_vertex = i;
}
}
}
}
tour[new_vertex] = min_vertex;
cluster_in_tour[data->clusters[min_vertex]] = 1;
new_vertex += 1;
}
tour_cost = optimize_vertex_in_cluster(tour, data);
log_info("Initial upper-bound: %d \n", tour_cost);
return tour_cost;
}
int optimize_vertex_in_cluster(int* tour, struct GTSP *data)
{
int i = 0 , j, current_cluster;
int insertion_cost = 0;
int rval = 0;
rval = two_opt(tour, data);
if(rval)
printf("Two opt local search stopped unexpectedly");
//rval = K_opt(tour, data);
for(i = 1; i < data->cluster_count - 2; i++){
current_cluster = data->clusters[tour[i]];
insertion_cost = data->dist_matrix[tour[i-1]][tour[i]] +
data->dist_matrix[tour[i]][tour[i+1]];
current_cluster = data->clusters[i];
for(j = 0; j < data->vertex_set[current_cluster].size; j++){
int vertex = data->vertex_set[current_cluster].set[j];
if (insertion_cost > data->dist_matrix[vertex][tour[i]] +
data->dist_matrix[vertex][tour[i+1]]){
insertion_cost = data->dist_matrix[vertex][tour[i]] +
data->dist_matrix[vertex][tour[i+1]];
tour[i] = vertex;
}
}
}
int tour_cost = 0;
for(i = 0; i< data->cluster_count ; i++){
if (i == data->cluster_count - 1)
tour_cost += data->dist_matrix[tour[i]][tour[0]];
else
tour_cost += data->dist_matrix[tour[i]][tour[i+1]];
}
return tour_cost;
}
int two_opt(int* tour, struct GTSP *data){
int rval = 0, i;
for (i = 0; i < data->cluster_count; i++){
int vertex1 = i;
int vertex2 = i - 1;
int vertex3 = i + 1;
int vertex4 = i + 2;
if(i == 0)
vertex2 = data->cluster_count - 1;
if(i == data->cluster_count-2)
vertex4 = 0;
if(i == data->cluster_count-1){
vertex3 = 0;
vertex4 = 1;
}
int current_cost = data->dist_matrix[tour[vertex2]][tour[vertex1]] +
data->dist_matrix[tour[vertex3]][tour[vertex4]];
int temp_cost = data->dist_matrix[tour[vertex2]][tour[vertex3]] +
data->dist_matrix[tour[vertex1]][tour[vertex4]];
if(current_cost > temp_cost){
int temp_vertex = tour[vertex1];
tour[vertex1] = tour[vertex3];
tour[vertex3] = temp_vertex;
}
}
return rval;
}
/*
int K_opt(int* tour, struct GTSP *data){
int rval = 0, i, k, I, j;
int current_cost, temp_cost, J, temp_vertex;
int tour_length = data->cluster_count;
for (i = 1; i < tour_length - 2; i++){
I = (i+k)%(tour_length);
if (I == tour_length - 1){
current_cost = data->dist_matrix[tour[i-1]][tour[i]] +
data->dist_matrix[tour[I]][tour[0]];
temp_cost = data->dist_matrix[tour[i-1]][tour[I]] +
data->dist_matrix[tour[i]][tour[0]];
}else{
current_cost = data->dist_matrix[tour[i-1]][tour[i]] +
data->dist_matrix[tour[I]][tour[I+1]];
temp_cost = data->dist_matrix[tour[i-1]][tour[I]] +
data->dist_matrix[tour[i]][tour[I+1]];
}
if(current_cost > temp_cost){
log_info("K_opt improved the bound\n");
for(j = k; j > 0 ; j--){
if(i + j > tour_length - 1)
J = i + j - tour_length;
temp_vertex = tour[i + k - j];
tour[i + k - j] = tour[J];
tour[J] = temp_vertex;
}
}
}
return rval;
}*/
/*
int Larg_neighborhood_search(int* tour, struct GTSP *data){
int i ;
struct TOUR* vertex_seq;
vertex_seq = (struct TOUR*) malloc(data->cluster_count*sizeof(struct TOUR));
for(i = 0; i<data->cluster_count; i++){
vertex_seq[i].vertex = tour[i];
if ( i == 0){
vertex_seq[i].prev = tour[data->cluster_count-1];
}else{
vertex_seq[i].prev = tour[i - 1];
}
if ( i == data->cluster_count-1){
vertex_seq[i].next = tour[0];
}else{
vertex_seq[i].next = tour[i+1];
}
}
//Delete a vertex
int delete_vertex = rand()%(data->cluster_count - 1) + 1;
int prev_vertex = vertex_seq[delete_vertex].prev;
int next_vertex = vertex_seq[delete_vertex].next;
vertex_seq[prev_vertex].next = next_vertex;
vertex_seq[next_vertex].prev = prev_vertex;
int cluster_to_insert = data->clusters[vertex_seq[delete_vertex].vertex];
int min_cost = 10000000;
for(i =0 ; i < data->vertex_set[cluster_to_insert].size ; i++){
int current_vertex = data->vertex_set[cluster_to_insert].set[i];
for(int j = 0; j < data->cluster_count - 1; j++){
//int insert_cost =
}
}
}*/

@ -8,6 +8,12 @@
#include "lp.h"
#include "graph.h"
struct CLUSTER
{
int size;
int* set;
};
struct GTSP
{
struct Graph *graph;
@ -17,11 +23,15 @@ struct GTSP
double *x_coordinates;
double *y_coordinates;
int** dist_matrix;
struct CLUSTER *vertex_set;
};
int GTSP_create_random_problem(
int node_count, int cluster_count, int grid_size, struct GTSP *data);
int inital_tour_value(struct GTSP *data);
void GTSP_free(struct GTSP *data);
int GTSP_init_data(struct GTSP *data);
@ -36,6 +46,12 @@ int GTSP_write_solution(struct GTSP *data, char *filename, double *x);
int GTSP_main(int argc, char **argv);
int optimize_vertex_in_cluster(int* tour, struct GTSP *data);
int two_opt(int* tour, struct GTSP *data);
int K_opt(int* tour, struct GTSP *data);
extern double *OPTIMAL_X;
extern double FLOW_CPU_TIME;

@ -9,7 +9,7 @@
#define LOG_LEVEL_DEBUG 40
#define LOG_LEVEL_VERBOSE 50
#define LOG_LEVEL LOG_LEVEL_INFO
#define LOG_LEVEL LOG_LEVEL_DEBUG
#if LOG_LEVEL < LOG_LEVEL_VERBOSE
#define log_verbose(...)