Armin's heuristics
This commit is contained in:
@@ -4,6 +4,8 @@
|
||||
#include "lp.h"
|
||||
#include "branch_and_cut.h"
|
||||
#include "util.h"
|
||||
#include "gtsp.h"
|
||||
|
||||
|
||||
int BNC_NODE_COUNT = 0;
|
||||
|
||||
@@ -15,6 +17,8 @@ static int BNC_is_integral(double *x, int num_cols);
|
||||
|
||||
static int BNC_find_best_branching_var(double *x, int num_cols);
|
||||
|
||||
//int optimize_vertex_in_cluster(struct BNC *bnc, double best_val);
|
||||
|
||||
int BNC_init(struct BNC *bnc)
|
||||
{
|
||||
int rval = 0;
|
||||
@@ -145,6 +149,8 @@ static int BNC_solve_node(struct BNC *bnc, int depth)
|
||||
bnc->best_x = x;
|
||||
x = 0;
|
||||
|
||||
|
||||
|
||||
log_info("Found a better integral solution:\n");
|
||||
log_info(" obj val = %.2lf **\n", objval);
|
||||
|
||||
@@ -227,3 +233,130 @@ static int BNC_find_best_branching_var(double *x, int num_cols)
|
||||
|
||||
return best_index;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
int re_optimize_integral(struct BNC *bnc){
|
||||
int i = 0 , current_vertex = 0, rval = 0;
|
||||
struct GTSP* data;
|
||||
data = bnc->problem_data;
|
||||
int node_count = data->graph->node_count;
|
||||
int cluster_count = data->cluster_count;
|
||||
int edge_count = data->graph->edge_count;
|
||||
struct TOUR * tour = (struct TOUR*) NULL;
|
||||
|
||||
//intialize the tour
|
||||
tour = (struct TOUR *) malloc( cluster_count * sizeof(struct TOUR));
|
||||
for (i = 0; i < edge_count; i++){
|
||||
tour[i].vertex = -1;
|
||||
tour[i].next = -1;
|
||||
tour[i].prev = -1;
|
||||
}
|
||||
|
||||
//Constructing the tour with vertices
|
||||
for (i = 0; i < edge_count; i++){
|
||||
if (bnc->best_x[i + node_count] > LP_EPSILON) {
|
||||
tour[current_vertex].vertex = data->graph->edges[i].from->index;
|
||||
current_vertex += 1;
|
||||
printf("From node %d \t", data->graph->edges[i].from->index);
|
||||
printf("TO node %d \n", data->graph->edges[i].to->index);
|
||||
}
|
||||
}
|
||||
//printf("Edgese in solution %d \n", current_vertex);
|
||||
|
||||
|
||||
return rval;
|
||||
CLEANUP:
|
||||
if (data) free(data);
|
||||
|
||||
}
|
||||
*/
|
||||
/*
|
||||
int optimize_vertex_in_cluster(struct BNC *bnc, double best_val)
|
||||
{
|
||||
|
||||
int i = 0 , j, current_vertex = 0, rval = 0;
|
||||
int tour_cost = 0;
|
||||
struct GTSP* data;
|
||||
data = bnc->problem_data;
|
||||
//rval = GTSP_init_data(&data);
|
||||
//data = bnc->problem_data;
|
||||
//data = (struct GTSP) malloc(sizeof(struct GTSP));
|
||||
|
||||
//data = &bnc->problem_data;
|
||||
int node_count = data->graph->node_count;
|
||||
int cluster_count = data->cluster_count;
|
||||
int edge_count = data->graph->edge_count;
|
||||
int * tour = (int*) NULL;
|
||||
tour = (int *) malloc( cluster_count * sizeof(int));
|
||||
//Constructing the tour with vertices
|
||||
for (i = 0; i < edge_count; i++)
|
||||
{ //printf(" edge %lf **\n", bnc->best_x[i]);
|
||||
|
||||
if ((bnc->best_x[i] > 1 - LP_EPSILON)){
|
||||
//printf(" x[i] = %lf **\n", bnc->best_x[i]);
|
||||
tour[current_vertex] = (data->graph->edges[i].from)->index;
|
||||
current_vertex += 1;
|
||||
//printf(" Edge No = %d **\n", i);
|
||||
printf(" FROM No = %d **\n", (data->graph->edges[i].from)->index);
|
||||
printf(" TO No = %d **\n", (data->graph->edges[i].to)->index);
|
||||
|
||||
//printf(" current vertex = %d **\n", current_vertex);
|
||||
}
|
||||
}
|
||||
|
||||
//reoptmizing the your with two-opt
|
||||
//rval = two_opt(cluster_count, tour, data->dist_matrix);
|
||||
//Optimizing the vertices inside the clusters
|
||||
int current_cluster = 0;
|
||||
int insertion_cost = 0;
|
||||
|
||||
//printf(" o-- val = %.2lf **\n", best_val);
|
||||
for(i = 1; i < cluster_count - 2; i++){
|
||||
//printf(" vertex in tour = %d **\n", tour[current_vertex]);
|
||||
current_cluster = data->clusters[tour[i]];
|
||||
//printf(" o-- val = %.2lf **\n", best_val);
|
||||
insertion_cost = data->dist_matrix[tour[i-1]][tour[i]] +
|
||||
data->dist_matrix[tour[i]][tour[i+1]];
|
||||
//printf(" o-- val = %.2lf **\n", best_val);
|
||||
for(j = 0; j < node_count; j++)
|
||||
if (current_cluster == data->clusters[j])
|
||||
if (insertion_cost > data->dist_matrix[j][tour[i]] +
|
||||
data->dist_matrix[j][tour[i+1]]){
|
||||
log_info("Optmize vertex in cluster improved the bound\n");
|
||||
insertion_cost = data->dist_matrix[j][tour[i]] +
|
||||
data->dist_matrix[j][tour[i+1]];
|
||||
tour[i] = j;
|
||||
}
|
||||
}
|
||||
printf(" o-- val = %.2lf **\n", best_val);
|
||||
for(i = 0; i< cluster_count ; i++){
|
||||
if (i == cluster_count - 1)
|
||||
tour_cost += data->dist_matrix[tour[i]][tour[0]];
|
||||
else
|
||||
tour_cost += data->dist_matrix[tour[i]][tour[i+1]];
|
||||
if(tour_cost < bnc->best_obj_val)
|
||||
bnc->best_obj_val = tour_cost;
|
||||
}
|
||||
return rval;
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
static int two_opt(int tour_length, int*tour, int** dist_matrix){
|
||||
int rval = 0, i;
|
||||
for (i = 1; i < tour_length - 2; i++){
|
||||
int current_cost = dist_matrix[tour[i-1]][tour[i]] +
|
||||
dist_matrix[tour[i+1]][tour[i+2]];
|
||||
int temp_cost = dist_matrix[tour[i-1]][tour[i+1]] +
|
||||
dist_matrix[tour[i]][tour[i+2]];
|
||||
if(current_cost > temp_cost){
|
||||
log_info("Two opt improved the bound\n");
|
||||
int temp_vertex = tour[i];
|
||||
tour[i] = tour[i+1];
|
||||
tour[i+1] = temp_vertex;
|
||||
}
|
||||
}
|
||||
return rval;
|
||||
}
|
||||
*/
|
||||
|
||||
@@ -3,6 +3,12 @@
|
||||
|
||||
#include "lp.h"
|
||||
|
||||
struct TOUR {
|
||||
int vertex;
|
||||
int next;
|
||||
int prev;
|
||||
};
|
||||
|
||||
struct BNC
|
||||
{
|
||||
struct LP *lp;
|
||||
@@ -29,6 +35,11 @@ int BNC_init_lp(struct BNC *bnc);
|
||||
|
||||
void BNC_free(struct BNC *bnc);
|
||||
|
||||
int re_optimize_integral(struct BNC *bnc);
|
||||
|
||||
//int optimize_vertex_in_cluster(struct BNC *bnc, double best_val);
|
||||
|
||||
extern int BNC_NODE_COUNT;
|
||||
|
||||
|
||||
#endif //_PROJECT_BRANCH_AND_CUT_H_
|
||||
|
||||
@@ -111,6 +111,21 @@ int generate_random_clusters_2d(
|
||||
return rval;
|
||||
}
|
||||
|
||||
int generate_dist_matrix(
|
||||
int node_count,
|
||||
double *x_coordinates,
|
||||
double *y_coordinates, int** dist_matrix)
|
||||
{
|
||||
int i,j;
|
||||
for (i = 0; i < node_count; i++){
|
||||
for (j = 0; j < node_count; j++){
|
||||
dist_matrix[i][j] =
|
||||
get_euclidean_distance(x_coordinates, y_coordinates, i, j);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int get_euclidean_distance(
|
||||
double *x_coordinates,
|
||||
double *y_coordinates,
|
||||
|
||||
@@ -21,4 +21,8 @@ int get_euclidean_distance(
|
||||
int p1_index,
|
||||
int p2_index);
|
||||
|
||||
int generate_dist_matrix(
|
||||
int node_count,
|
||||
double *x_coordinates,
|
||||
double *y_coordinates, int** dist_matrix);
|
||||
#endif //_PROJECT_GEOMETRY_H_
|
||||
|
||||
236
src/gtsp.c
236
src/gtsp.c
@@ -36,6 +36,8 @@ int GTSP_init_data(struct GTSP *data)
|
||||
data->graph = (struct Graph *) malloc(sizeof(struct Graph));
|
||||
abort_if(!data->graph, "could not allocate data->graph");
|
||||
|
||||
data->vertex_set = (struct CLUSTER *) malloc(sizeof(struct CLUSTER));
|
||||
|
||||
graph_init(data->graph);
|
||||
|
||||
CLEANUP:
|
||||
@@ -58,11 +60,13 @@ int GTSP_create_random_problem(
|
||||
int node_count, int cluster_count, int grid_size, struct GTSP *data)
|
||||
{
|
||||
int rval = 0;
|
||||
|
||||
int i = 0;
|
||||
int *edges = 0;
|
||||
int *weights = 0;
|
||||
int *clusters = 0;
|
||||
|
||||
int ** dist_matrix = 0;
|
||||
|
||||
double *x_coords = 0;
|
||||
double *y_coords = 0;
|
||||
|
||||
@@ -78,7 +82,7 @@ int GTSP_create_random_problem(
|
||||
edges = (int *) malloc(2 * edge_count * sizeof(int));
|
||||
weights = (int *) malloc(edge_count * sizeof(int));
|
||||
clusters = (int *) malloc(node_count * sizeof(int));
|
||||
|
||||
abort_if(!data->graph, "could not allocate data->graph");
|
||||
abort_if(!edges, "could not allocate data->edges\n");
|
||||
abort_if(!weights, "could not allocate weights\n");
|
||||
abort_if(!clusters, "could not allocate clusters\n");
|
||||
@@ -89,14 +93,48 @@ int GTSP_create_random_problem(
|
||||
abort_if(!x_coords, "could not allocate x_coords\n");
|
||||
abort_if(!y_coords, "could not allocate y_coords\n");
|
||||
|
||||
dist_matrix = (int **) malloc(node_count * sizeof(int*));
|
||||
for(i=0; i<node_count; i++)
|
||||
dist_matrix[i] = (int *) malloc(node_count * sizeof(int));
|
||||
abort_if(!dist_matrix, "could not allocate dist_matrix\n");
|
||||
|
||||
|
||||
rval = generate_random_clusters_2d(node_count, cluster_count, grid_size,
|
||||
x_coords, y_coords, clusters);
|
||||
abort_if(rval, "generate_random_clusters_2d failed");
|
||||
|
||||
rval = generate_dist_matrix(node_count,
|
||||
x_coords, y_coords, dist_matrix);
|
||||
abort_if(rval, "generate_distance_matrix_2d failed");
|
||||
|
||||
struct CLUSTER *cluster_member;
|
||||
cluster_member = (struct CLUSTER *) malloc(cluster_count * sizeof(struct CLUSTER));
|
||||
for (int j=0; j<cluster_count; j++){
|
||||
cluster_member[j].size = 0;
|
||||
for(int i=0; i<node_count; i++)
|
||||
if(clusters[i] == j)
|
||||
cluster_member[j].size+= 1;
|
||||
}
|
||||
for (int j=0; j<cluster_count; j++)
|
||||
cluster_member[j].set = (int *) malloc(cluster_member[j].size * sizeof(int));
|
||||
|
||||
int current_vertex = 0;
|
||||
for (int j=0; j<cluster_count; j++){
|
||||
current_vertex = 0;
|
||||
for(int i=0; i<node_count; i++)
|
||||
if(clusters[i] == j){
|
||||
cluster_member[j].set[current_vertex] = i;
|
||||
|
||||
current_vertex += 1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int curr_edge = 0;
|
||||
for (int i = 0; i < edge_count; i++)
|
||||
for (int j = i + 1; j < node_count; j++)
|
||||
{
|
||||
|
||||
if (clusters[i] == clusters[j]) continue;
|
||||
|
||||
edges[curr_edge * 2] = i;
|
||||
@@ -120,6 +158,8 @@ int GTSP_create_random_problem(
|
||||
data->cluster_count = cluster_count;
|
||||
data->x_coordinates = x_coords;
|
||||
data->y_coordinates = y_coords;
|
||||
data->dist_matrix = dist_matrix;
|
||||
data->vertex_set = cluster_member;
|
||||
|
||||
CLEANUP:
|
||||
if (weights) free(weights);
|
||||
@@ -487,12 +527,14 @@ int GTSP_main(int argc, char **argv)
|
||||
rval = GTSP_create_random_problem(input_node_count, input_cluster_count,
|
||||
grid_size, &data);
|
||||
abort_if(rval, "GTSP_create_random_problem failed");
|
||||
int init_val ;
|
||||
|
||||
init_val = inital_tour_value(&data);
|
||||
log_info("Writing random instance to file gtsp.in\n");
|
||||
rval = GTSP_write_problem(&data, "gtsp.in");
|
||||
abort_if(rval, "GTSP_write_problem failed");
|
||||
|
||||
bnc.best_obj_val = DBL_MAX;
|
||||
bnc.best_obj_val = init_val;
|
||||
bnc.problem_data = (void *) &data;
|
||||
bnc.problem_init_lp = (int (*)(struct LP *, void *)) GTSP_init_lp;
|
||||
bnc.problem_add_cutting_planes = (int (*)(
|
||||
@@ -543,3 +585,191 @@ int GTSP_main(int argc, char **argv)
|
||||
BNC_free(&bnc);
|
||||
return rval;
|
||||
}
|
||||
|
||||
int inital_tour_value(struct GTSP *data)
|
||||
{
|
||||
int cluster_count = data->cluster_count;
|
||||
int * tour;
|
||||
int * uncovered_sets;
|
||||
int min_vertex = -1;
|
||||
int min_cost = 100000000;
|
||||
int tour_cost = 0;
|
||||
|
||||
int* cluster_in_tour;
|
||||
cluster_in_tour = (int *) malloc(cluster_count*sizeof(int));
|
||||
|
||||
tour = (int *) malloc(cluster_count*sizeof(int));
|
||||
uncovered_sets = (int *) malloc((cluster_count-1)*sizeof(int));
|
||||
|
||||
int cluster_num = 0;
|
||||
for(int i =0; i< cluster_count; i++){
|
||||
cluster_in_tour[i] = 0;
|
||||
if(data->clusters[0] != i){
|
||||
uncovered_sets[cluster_num] = i;
|
||||
cluster_num += 1;
|
||||
}
|
||||
}
|
||||
int new_vertex = 1;
|
||||
tour[0] = 0;
|
||||
cluster_in_tour[0] = 1;
|
||||
while(new_vertex <= data->cluster_count){
|
||||
min_vertex = -1;
|
||||
min_cost = 100000000;
|
||||
for (int i = 1; i < data->graph->node_count; i++) {
|
||||
if (cluster_in_tour[data->clusters[i]] == 0){
|
||||
for (int k = 0; k < new_vertex; k++) {
|
||||
int cost = data->dist_matrix[i][tour[k]];
|
||||
if (cost < min_cost) {
|
||||
min_cost = cost;
|
||||
min_vertex = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
tour[new_vertex] = min_vertex;
|
||||
cluster_in_tour[data->clusters[min_vertex]] = 1;
|
||||
new_vertex += 1;
|
||||
}
|
||||
|
||||
|
||||
tour_cost = optimize_vertex_in_cluster(tour, data);
|
||||
log_info("Initial upper-bound: %d \n", tour_cost);
|
||||
return tour_cost;
|
||||
}
|
||||
|
||||
|
||||
|
||||
int optimize_vertex_in_cluster(int* tour, struct GTSP *data)
|
||||
{
|
||||
|
||||
int i = 0 , j, current_cluster;
|
||||
int insertion_cost = 0;
|
||||
int rval = 0;
|
||||
rval = two_opt(tour, data);
|
||||
if(rval)
|
||||
printf("Two opt local search stopped unexpectedly");
|
||||
//rval = K_opt(tour, data);
|
||||
|
||||
for(i = 1; i < data->cluster_count - 2; i++){
|
||||
current_cluster = data->clusters[tour[i]];
|
||||
insertion_cost = data->dist_matrix[tour[i-1]][tour[i]] +
|
||||
data->dist_matrix[tour[i]][tour[i+1]];
|
||||
current_cluster = data->clusters[i];
|
||||
for(j = 0; j < data->vertex_set[current_cluster].size; j++){
|
||||
int vertex = data->vertex_set[current_cluster].set[j];
|
||||
if (insertion_cost > data->dist_matrix[vertex][tour[i]] +
|
||||
data->dist_matrix[vertex][tour[i+1]]){
|
||||
insertion_cost = data->dist_matrix[vertex][tour[i]] +
|
||||
data->dist_matrix[vertex][tour[i+1]];
|
||||
tour[i] = vertex;
|
||||
}
|
||||
}
|
||||
}
|
||||
int tour_cost = 0;
|
||||
for(i = 0; i< data->cluster_count ; i++){
|
||||
if (i == data->cluster_count - 1)
|
||||
tour_cost += data->dist_matrix[tour[i]][tour[0]];
|
||||
else
|
||||
tour_cost += data->dist_matrix[tour[i]][tour[i+1]];
|
||||
}
|
||||
return tour_cost;
|
||||
}
|
||||
|
||||
int two_opt(int* tour, struct GTSP *data){
|
||||
int rval = 0, i;
|
||||
for (i = 0; i < data->cluster_count; i++){
|
||||
int vertex1 = i;
|
||||
int vertex2 = i - 1;
|
||||
int vertex3 = i + 1;
|
||||
int vertex4 = i + 2;
|
||||
if(i == 0)
|
||||
vertex2 = data->cluster_count - 1;
|
||||
|
||||
if(i == data->cluster_count-2)
|
||||
vertex4 = 0;
|
||||
|
||||
if(i == data->cluster_count-1){
|
||||
vertex3 = 0;
|
||||
vertex4 = 1;
|
||||
}
|
||||
|
||||
int current_cost = data->dist_matrix[tour[vertex2]][tour[vertex1]] +
|
||||
data->dist_matrix[tour[vertex3]][tour[vertex4]];
|
||||
int temp_cost = data->dist_matrix[tour[vertex2]][tour[vertex3]] +
|
||||
data->dist_matrix[tour[vertex1]][tour[vertex4]];
|
||||
if(current_cost > temp_cost){
|
||||
int temp_vertex = tour[vertex1];
|
||||
tour[vertex1] = tour[vertex3];
|
||||
tour[vertex3] = temp_vertex;
|
||||
}
|
||||
}
|
||||
return rval;
|
||||
}
|
||||
/*
|
||||
int K_opt(int* tour, struct GTSP *data){
|
||||
int rval = 0, i, k, I, j;
|
||||
int current_cost, temp_cost, J, temp_vertex;
|
||||
int tour_length = data->cluster_count;
|
||||
|
||||
for (i = 1; i < tour_length - 2; i++){
|
||||
I = (i+k)%(tour_length);
|
||||
if (I == tour_length - 1){
|
||||
current_cost = data->dist_matrix[tour[i-1]][tour[i]] +
|
||||
data->dist_matrix[tour[I]][tour[0]];
|
||||
temp_cost = data->dist_matrix[tour[i-1]][tour[I]] +
|
||||
data->dist_matrix[tour[i]][tour[0]];
|
||||
}else{
|
||||
current_cost = data->dist_matrix[tour[i-1]][tour[i]] +
|
||||
data->dist_matrix[tour[I]][tour[I+1]];
|
||||
temp_cost = data->dist_matrix[tour[i-1]][tour[I]] +
|
||||
data->dist_matrix[tour[i]][tour[I+1]];
|
||||
}
|
||||
|
||||
if(current_cost > temp_cost){
|
||||
log_info("K_opt improved the bound\n");
|
||||
for(j = k; j > 0 ; j--){
|
||||
if(i + j > tour_length - 1)
|
||||
J = i + j - tour_length;
|
||||
temp_vertex = tour[i + k - j];
|
||||
tour[i + k - j] = tour[J];
|
||||
tour[J] = temp_vertex;
|
||||
}
|
||||
}
|
||||
}
|
||||
return rval;
|
||||
}*/
|
||||
/*
|
||||
int Larg_neighborhood_search(int* tour, struct GTSP *data){
|
||||
int i ;
|
||||
struct TOUR* vertex_seq;
|
||||
vertex_seq = (struct TOUR*) malloc(data->cluster_count*sizeof(struct TOUR));
|
||||
for(i = 0; i<data->cluster_count; i++){
|
||||
vertex_seq[i].vertex = tour[i];
|
||||
if ( i == 0){
|
||||
vertex_seq[i].prev = tour[data->cluster_count-1];
|
||||
}else{
|
||||
vertex_seq[i].prev = tour[i - 1];
|
||||
}
|
||||
if ( i == data->cluster_count-1){
|
||||
vertex_seq[i].next = tour[0];
|
||||
}else{
|
||||
vertex_seq[i].next = tour[i+1];
|
||||
}
|
||||
}
|
||||
//Delete a vertex
|
||||
int delete_vertex = rand()%(data->cluster_count - 1) + 1;
|
||||
int prev_vertex = vertex_seq[delete_vertex].prev;
|
||||
int next_vertex = vertex_seq[delete_vertex].next;
|
||||
vertex_seq[prev_vertex].next = next_vertex;
|
||||
vertex_seq[next_vertex].prev = prev_vertex;
|
||||
int cluster_to_insert = data->clusters[vertex_seq[delete_vertex].vertex];
|
||||
int min_cost = 10000000;
|
||||
for(i =0 ; i < data->vertex_set[cluster_to_insert].size ; i++){
|
||||
int current_vertex = data->vertex_set[cluster_to_insert].set[i];
|
||||
for(int j = 0; j < data->cluster_count - 1; j++){
|
||||
|
||||
//int insert_cost =
|
||||
}
|
||||
}
|
||||
|
||||
}*/
|
||||
|
||||
16
src/gtsp.h
16
src/gtsp.h
@@ -8,6 +8,12 @@
|
||||
#include "lp.h"
|
||||
#include "graph.h"
|
||||
|
||||
struct CLUSTER
|
||||
{
|
||||
int size;
|
||||
int* set;
|
||||
};
|
||||
|
||||
struct GTSP
|
||||
{
|
||||
struct Graph *graph;
|
||||
@@ -17,11 +23,15 @@ struct GTSP
|
||||
|
||||
double *x_coordinates;
|
||||
double *y_coordinates;
|
||||
int** dist_matrix;
|
||||
struct CLUSTER *vertex_set;
|
||||
};
|
||||
|
||||
int GTSP_create_random_problem(
|
||||
int node_count, int cluster_count, int grid_size, struct GTSP *data);
|
||||
|
||||
int inital_tour_value(struct GTSP *data);
|
||||
|
||||
void GTSP_free(struct GTSP *data);
|
||||
|
||||
int GTSP_init_data(struct GTSP *data);
|
||||
@@ -36,6 +46,12 @@ int GTSP_write_solution(struct GTSP *data, char *filename, double *x);
|
||||
|
||||
int GTSP_main(int argc, char **argv);
|
||||
|
||||
int optimize_vertex_in_cluster(int* tour, struct GTSP *data);
|
||||
|
||||
int two_opt(int* tour, struct GTSP *data);
|
||||
|
||||
int K_opt(int* tour, struct GTSP *data);
|
||||
|
||||
extern double *OPTIMAL_X;
|
||||
extern double FLOW_CPU_TIME;
|
||||
|
||||
|
||||
@@ -9,7 +9,7 @@
|
||||
#define LOG_LEVEL_DEBUG 40
|
||||
#define LOG_LEVEL_VERBOSE 50
|
||||
|
||||
#define LOG_LEVEL LOG_LEVEL_INFO
|
||||
#define LOG_LEVEL LOG_LEVEL_DEBUG
|
||||
|
||||
#if LOG_LEVEL < LOG_LEVEL_VERBOSE
|
||||
#define log_verbose(...)
|
||||
|
||||
Reference in New Issue
Block a user