Unify code style and rename some variables

master
Alinson S. Xavier 11 years ago
parent 5d4a6649aa
commit 8051b1afcf

@ -248,10 +248,10 @@ int re_optimize_integral(struct BNC *bnc){
int node_count = data->graph->node_count;
int cluster_count = data->cluster_count;
int edge_count = data->graph->edge_count;
struct TOUR * tour = (struct TOUR*) NULL;
struct Tour * tour = (struct Tour*) NULL;
//intialize the tour
tour = (struct TOUR *) malloc( cluster_count * sizeof(struct TOUR));
tour = (struct Tour *) malloc( cluster_count * sizeof(struct Tour));
for (i = 0; i < edge_count; i++){
tour[i].vertex = -1;
tour[i].next = -1;
@ -312,20 +312,20 @@ int optimize_vertex_in_cluster(struct BNC *bnc, double best_val)
//reoptmizing the your with two-opt
//rval = two_opt(cluster_count, tour, data->dist_matrix);
//Optimizing the vertices inside the clusters
//Optimizing the vertices inside the node_to_cluster
int current_cluster = 0;
int insertion_cost = 0;
//printf(" o-- val = %.2lf **\n", best_val);
for(i = 1; i < cluster_count - 2; i++){
//printf(" vertex in tour = %d **\n", tour[current_vertex]);
current_cluster = data->clusters[tour[i]];
current_cluster = data->node_to_cluster[tour[i]];
//printf(" o-- val = %.2lf **\n", best_val);
insertion_cost = data->dist_matrix[tour[i-1]][tour[i]] +
data->dist_matrix[tour[i]][tour[i+1]];
//printf(" o-- val = %.2lf **\n", best_val);
for(j = 0; j < node_count; j++)
if (current_cluster == data->clusters[j])
if (current_cluster == data->node_to_cluster[j])
if (insertion_cost > data->dist_matrix[j][tour[i]] +
data->dist_matrix[j][tour[i+1]]){
log_info("Optmize vertex in cluster improved the bound\n");

@ -3,12 +3,6 @@
#include "lp.h"
struct TOUR {
int vertex;
int next;
int prev;
};
struct BNC
{
struct LP *lp;
@ -41,5 +35,4 @@ int re_optimize_integral(struct BNC *bnc);
extern int BNC_NODE_COUNT;
#endif //_PROJECT_BRANCH_AND_CUT_H_

@ -72,7 +72,7 @@ int add_comb_cut(
// {
// double val;
// struct Node *n = &graph->nodes[i];
// int c = clusters[n->index];
// int c = node_to_cluster[n->index];
//
// if (components[c] == current_component)
// val = (teeth[c] < 0 ? 1.0 : 0.0);
@ -273,7 +273,7 @@ static int shrink_clusters(
double *y_coords = 0;
int *cluster_sizes = 0;
const int *clusters = data->clusters;
const int *clusters = data->node_to_cluster;
const int cluster_count = data->cluster_count;
const struct Graph *graph = data->graph;
@ -429,7 +429,7 @@ int find_comb_cuts(struct LP *lp, struct GTSP *data)
if (tooth_count % 2 == 0) continue;
rval = add_comb_cut(lp, data->graph, i, data->clusters, components,
rval = add_comb_cut(lp, data->graph, i, data->node_to_cluster, components,
component_sizes, teeth, tooth_count, x);
abort_if(rval, "add_comb_cut failed");
}

@ -56,7 +56,7 @@ int static build_flow_digraph(
for (int i = 0; i < node_count; i++)
{
struct Node *n = &graph->nodes[i];
int cl = data->clusters[n->index];
int cl = data->node_to_cluster[n->index];
digraph_edges[ke++] = n->index;
digraph_edges[ke++] = node_count + cl;
@ -260,7 +260,7 @@ int find_exact_subtour_cuts_node_to_node(
double *flow = 0;
struct Graph *graph = data->graph;
int *clusters = data->clusters;
int *clusters = data->node_to_cluster;
cut_edges = (struct Edge **) malloc(
graph->edge_count * sizeof(struct Edge *));
@ -344,7 +344,7 @@ int find_exact_subtour_cuts_node_to_cluster(
double *flow = 0;
struct Graph *graph = data->graph;
int *clusters = data->clusters;
int *clusters = data->node_to_cluster;
cut_edges = (struct Edge **) malloc(
graph->edge_count * sizeof(struct Edge *));

@ -1,13 +1,11 @@
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <getopt.h>
#include <math.h>
#include "gtsp.h"
#include "geometry.h"
#include "util.h"
#include "flow.h"
#include "branch_and_cut.h"
#include "gtsp-subtour.h"
#include "gtsp-comb.h"
@ -17,14 +15,14 @@ int GTSP_init_data(struct GTSP *data)
{
int rval = 0;
data->clusters = 0;
data->node_to_cluster = 0;
data->cluster_count = 0;
data->graph = (struct Graph *) malloc(sizeof(struct Graph));
abort_if(!data->graph, "could not allocate data->graph");
data->vertex_set = (struct CLUSTER *) malloc(sizeof(struct CLUSTER));
data->clusters = (struct Cluster *) malloc(sizeof(struct Cluster));
graph_init(data->graph);
CLEANUP:
@ -38,19 +36,19 @@ void GTSP_free(struct GTSP *data)
graph_free(data->graph);
free(data->graph);
if (data->clusters) free(data->clusters);
if (data->node_to_cluster) free(data->node_to_cluster);
}
int GTSP_create_random_problem(
int node_count, int cluster_count, int grid_size, struct GTSP *data)
{
int rval = 0;
int i = 0;
int i = 0;
int *edges = 0;
int *weights = 0;
int *clusters = 0;
int ** dist_matrix = 0;
int **dist_matrix = 0;
double *x_coords = 0;
double *y_coords = 0;
@ -66,10 +64,10 @@ int GTSP_create_random_problem(
edges = (int *) malloc(2 * edge_count * sizeof(int));
weights = (int *) malloc(edge_count * sizeof(int));
clusters = (int *) malloc(node_count * sizeof(int));
abort_if(!data->graph, "could not allocate data->graph");
abort_if(!data->graph, "could not allocate data->graph");
abort_if(!edges, "could not allocate data->edges\n");
abort_if(!weights, "could not allocate weights\n");
abort_if(!clusters, "could not allocate clusters\n");
abort_if(!clusters, "could not allocate node_to_cluster\n");
x_coords = (double *) malloc(node_count * sizeof(double));
y_coords = (double *) malloc(node_count * sizeof(double));
@ -77,50 +75,52 @@ abort_if(!data->graph, "could not allocate data->graph");
abort_if(!x_coords, "could not allocate x_coords\n");
abort_if(!y_coords, "could not allocate y_coords\n");
dist_matrix = (int **) malloc(node_count * sizeof(int*));
for(i=0; i<node_count; i++)
dist_matrix[i] = (int *) malloc(node_count * sizeof(int));
abort_if(!dist_matrix, "could not allocate dist_matrix\n");
dist_matrix = (int **) malloc(node_count * sizeof(int *));
for (i = 0; i < node_count; i++)
dist_matrix[i] = (int *) malloc(node_count * sizeof(int));
abort_if(!dist_matrix, "could not allocate dist_matrix\n");
rval = generate_random_clusters_2d(node_count, cluster_count, grid_size,
x_coords, y_coords, clusters);
abort_if(rval, "generate_random_clusters_2d failed");
rval = generate_dist_matrix(node_count,
x_coords, y_coords, dist_matrix);
rval = generate_dist_matrix(node_count, x_coords, y_coords, dist_matrix);
abort_if(rval, "generate_distance_matrix_2d failed");
struct CLUSTER *cluster_member;
cluster_member = (struct CLUSTER *) malloc(cluster_count * sizeof(struct CLUSTER));
for (int j=0; j<cluster_count; j++){
cluster_member[j].size = 0;
for(int i=0; i<node_count; i++)
if(clusters[i] == j)
cluster_member[j].size+= 1;
}
for (int j=0; j<cluster_count; j++)
cluster_member[j].set = (int *) malloc(cluster_member[j].size * sizeof(int));
int current_vertex = 0;
for (int j=0; j<cluster_count; j++){
current_vertex = 0;
for(int i=0; i<node_count; i++)
if(clusters[i] == j){
cluster_member[j].set[current_vertex] = i;
current_vertex += 1;
}
}
struct Cluster *cluster_member;
cluster_member = (struct Cluster *) malloc(
cluster_count * sizeof(struct Cluster));
for (int j = 0; j < cluster_count; j++)
{
cluster_member[j].size = 0;
for (int i = 0; i < node_count; i++)
if (clusters[i] == j)
cluster_member[j].size += 1;
}
for (int j = 0; j < cluster_count; j++)
cluster_member[j].nodes = (int *) malloc(
cluster_member[j].size * sizeof(int));
int current_vertex = 0;
for (int j = 0; j < cluster_count; j++)
{
current_vertex = 0;
for (int i = 0; i < node_count; i++)
if (clusters[i] == j)
{
cluster_member[j].nodes[current_vertex] = i;
current_vertex += 1;
}
}
int curr_edge = 0;
for (int i = 0; i < edge_count; i++)
for (int j = i + 1; j < node_count; j++)
{
if (clusters[i] == clusters[j]) continue;
edges[curr_edge * 2] = i;
edges[curr_edge * 2 + 1] = j;
weights[curr_edge] = get_euclidean_distance(x_coords, y_coords, i,
@ -138,12 +138,12 @@ abort_if(!data->graph, "could not allocate data->graph");
graph->edges[i].weight = weights[i];
data->graph = graph;
data->clusters = clusters;
data->node_to_cluster = clusters;
data->cluster_count = cluster_count;
graph->x_coordinates = x_coords;
graph->y_coordinates = y_coords;
data->dist_matrix = dist_matrix;
data->vertex_set = cluster_member;
data->dist_matrix = dist_matrix;
data->clusters = cluster_member;
CLEANUP:
if (weights) free(weights);
@ -162,7 +162,7 @@ int GTSP_init_lp(struct LP *lp, struct GTSP *data)
int node_count = data->graph->node_count;
int edge_count = data->graph->edge_count;
int cluster_count = data->cluster_count;
int *clusters = data->clusters;
int *clusters = data->node_to_cluster;
struct Edge *edges = data->graph->edges;
for (int i = 0; i < node_count; i++)
@ -273,7 +273,7 @@ int GTSP_write_problem(struct GTSP *data, char *filename)
for (int i = 0; i < graph->node_count; i++)
{
fprintf(file, "%.2lf %.2lf %d\n", graph->x_coordinates[i],
graph->y_coordinates[i], data->clusters[i]);
graph->y_coordinates[i], data->node_to_cluster[i]);
}
CLEANUP:
@ -350,7 +350,7 @@ int GTSP_read_solution(struct GTSP *gtsp, char *filename, double **p_x)
{
for (int j = i + 1; j < node_count; j++)
{
if (gtsp->clusters[i] == gtsp->clusters[j]) continue;
if (gtsp->node_to_cluster[i] == gtsp->node_to_cluster[j]) continue;
edge_map[i * node_count + j] = k;
edge_map[j * node_count + i] = k;
k++;
@ -431,7 +431,7 @@ int GTSP_check_solution(struct GTSP *data, double *x)
while (stack_top > 0)
{
struct Node *n = stack[--stack_top];
cluster_mark[data->clusters[n->index]]++;
cluster_mark[data->node_to_cluster[n->index]]++;
for (int i = 0; i < n->degree; i++)
{
@ -480,7 +480,7 @@ int GTSP_solution_found(struct GTSP *data, double *x)
static const struct option options_tab[] = {{"help", no_argument, 0, 'h'},
{"nodes", required_argument, 0, 'n'},
{"clusters", required_argument, 0, 'm'},
{"node_to_cluster", required_argument, 0, 'm'},
{"grid-size", required_argument, 0, 'g'},
{"optimal", required_argument, 0, 'x'},
{"seed", required_argument, 0, 's'},
@ -495,7 +495,7 @@ static void GTSP_print_usage()
{
printf("Parameters:\n");
printf("%4s %-13s %s\n", "-n", "--nodes", "number of nodes");
printf("%4s %-13s %s\n", "-m", "--clusters", "number of clusters");
printf("%4s %-13s %s\n", "-m", "--node_to_cluster", "number of node_to_cluster");
printf("%4s %-13s %s\n", "-s", "--seed", "random seed");
printf("%4s %-13s %s\n", "-g", "--grid-size",
"size of the box used for generating random points");
@ -567,7 +567,7 @@ static int GTSP_parse_args(int argc, char **argv)
if (input_cluster_count > input_node_count)
{
printf("Number of clusters must be at most number of nodes.\n");
printf("Number of node_to_cluster must be at most number of nodes.\n");
rval = 1;
}
@ -615,9 +615,11 @@ int GTSP_main(int argc, char **argv)
rval = GTSP_create_random_problem(input_node_count, input_cluster_count,
grid_size, &data);
abort_if(rval, "GTSP_create_random_problem failed");
int init_val ;
init_val = inital_tour_value(&data);
int init_val;
rval = inital_tour_value(&data, &init_val);
abort_if(rval, "initial_tour_value failed");
log_info("Writing random instance to file gtsp.in\n");
rval = GTSP_write_problem(&data, "gtsp.in");
@ -708,127 +710,146 @@ int GTSP_main(int argc, char **argv)
return rval;
}
int inital_tour_value(struct GTSP *data)
int inital_tour_value(struct GTSP *data, int *tour_cost)
{
int cluster_count = data->cluster_count;
int * tour;
int * uncovered_sets;
int min_vertex = -1;
int min_cost = 100000000;
int tour_cost = 0;
int* cluster_in_tour;
cluster_in_tour = (int *) malloc(cluster_count*sizeof(int));
tour = (int *) malloc(cluster_count*sizeof(int));
uncovered_sets = (int *) malloc((cluster_count-1)*sizeof(int));
int cluster_num = 0;
for(int i =0; i< cluster_count; i++){
cluster_in_tour[i] = 0;
if(data->clusters[0] != i){
uncovered_sets[cluster_num] = i;
cluster_num += 1;
}
}
int new_vertex = 1;
tour[0] = 0;
cluster_in_tour[0] = 1;
while(new_vertex <= data->cluster_count){
min_vertex = -1;
min_cost = 100000000;
for (int i = 1; i < data->graph->node_count; i++) {
if (cluster_in_tour[data->clusters[i]] == 0){
for (int k = 0; k < new_vertex; k++) {
int cost = data->dist_matrix[i][tour[k]];
if (cost < min_cost) {
min_cost = cost;
min_vertex = i;
}
}
}
}
tour[new_vertex] = min_vertex;
cluster_in_tour[data->clusters[min_vertex]] = 1;
new_vertex += 1;
}
int rval = 0;
tour_cost = Larg_neighborhood_search(tour, data);
//tour_cost = optimize_vertex_in_cluster(tour, data);
log_info("Initial upper-bound: %d \n", tour_cost);
return tour_cost;
}
int cluster_count = data->cluster_count;
int *tour = 0;
int *uncovered_sets = 0;
int *cluster_in_tour = 0;
tour = (int *) malloc(cluster_count * sizeof(int));
uncovered_sets = (int *) malloc((cluster_count - 1) * sizeof(int));
cluster_in_tour = (int *) malloc(cluster_count * sizeof(int));
abort_if(!tour, "could not allocate tour");
abort_if(!uncovered_sets, "could not allocate uncovered_sets");
abort_if(!cluster_in_tour, "could not allocate cluster_in_tour");
int cluster_num = 0;
for (int i = 0; i < cluster_count; i++)
{
cluster_in_tour[i] = 0;
if (data->node_to_cluster[0] != i)
{
uncovered_sets[cluster_num] = i;
cluster_num += 1;
}
}
int new_vertex = 1;
tour[0] = 0;
cluster_in_tour[0] = 1;
while (new_vertex <= data->cluster_count)
{
int min_vertex = -1;
int min_cost = INT_MAX;
for (int i = 1; i < data->graph->node_count; i++)
{
if (!cluster_in_tour[data->node_to_cluster[i]])
{
for (int k = 0; k < new_vertex; k++)
{
int cost = data->dist_matrix[i][tour[k]];
if (cost < min_cost)
{
min_cost = cost;
min_vertex = i;
}
}
}
}
tour[new_vertex] = min_vertex;
cluster_in_tour[data->node_to_cluster[min_vertex]] = 1;
new_vertex += 1;
}
rval = large_neighborhood_search(tour, data, tour_cost);
abort_if(rval, "large_neighborhood_search failed");
//tour_cost = optimize_vertex_in_cluster(tour, data);
log_info("Initial upper-bound: %d \n", *tour_cost);
int optimize_vertex_in_cluster(struct TOUR * tour, struct GTSP *data)
CLEANUP:
if (cluster_in_tour) free(cluster_in_tour);
return rval;
}
int optimize_vertex_in_cluster(struct Tour *tour, struct GTSP *data)
{
int i = 0 , j, current_cluster, tour_cost;
int insertion_cost = 1000000;
int rval = 0;
if(rval)
printf("Larg_neighborhood_search stopped unexpectedly");
for(i = 0; i < data->cluster_count ; i++){
int vertex = tour[i].vertex;
int prev_vertex = tour[tour[i].prev].vertex;
int next_vertex = tour[tour[i].next].vertex;
current_cluster = data->clusters[vertex];
insertion_cost = data->dist_matrix[prev_vertex][vertex] +
data->dist_matrix[vertex][next_vertex];
for(j = 0; j < data->vertex_set[current_cluster].size; j++){
int vertex_in_cluster = data->vertex_set[current_cluster].set[j];
int cost = data->dist_matrix[vertex_in_cluster][prev_vertex] +
data->dist_matrix[vertex_in_cluster][next_vertex];
if (insertion_cost > cost){
insertion_cost = cost;
tour[i].vertex = vertex_in_cluster;
}
}
}
return 0;
int current_cluster;
int insertion_cost;
int **dist_matrix = data->dist_matrix;
int cluster_count = data->cluster_count;
struct Cluster *vertex_set = data->clusters;
for (int i = 0; i < cluster_count; i++)
{
int vertex = tour[i].vertex;
int prev_vertex = tour[tour[i].prev].vertex;
int next_vertex = tour[tour[i].next].vertex;
current_cluster = data->node_to_cluster[vertex];
insertion_cost = dist_matrix[prev_vertex][vertex] +
dist_matrix[vertex][next_vertex];
for (int j = 0; j < vertex_set[current_cluster].size; j++)
{
int vertex_in_cluster = vertex_set[current_cluster].nodes[j];
int cost = dist_matrix[vertex_in_cluster][prev_vertex] +
dist_matrix[vertex_in_cluster][next_vertex];
if (insertion_cost > cost)
{
insertion_cost = cost;
tour[i].vertex = vertex_in_cluster;
}
}
}
return 0;
}
int two_opt(struct TOUR* tour, struct GTSP *data){
int rval = 0, i;
for (i = 0; i < data->cluster_count; i++){
int vertex1 = tour[i].vertex;
int vertex2 = tour[tour[i].prev].vertex;
int vertex3 = tour[tour[i].next].vertex;
int vertex4 = tour[tour[tour[i].next].next].vertex;
int current_cost = data->dist_matrix[vertex2][vertex1] +
data->dist_matrix[vertex3][vertex4];
int temp_cost = data->dist_matrix[vertex2][vertex3] +
data->dist_matrix[vertex1][vertex4];
if(current_cost > temp_cost){
int temp_next = tour[i].next;
int temp_prev = tour[i].prev;
tour[i].next = tour[temp_next].next;
tour[i].prev = temp_next;
tour[tour[temp_next].next].prev = i;
tour[temp_next].next = i;
tour[temp_next].prev = temp_prev;
tour[temp_prev].next = temp_next;
}
}
return rval;
int two_opt(struct Tour *tour, struct GTSP *data)
{
int **dist_matrix = data->dist_matrix;
for (int i = 0; i < data->cluster_count; i++)
{
int v1 = tour[i].vertex;
int v2 = tour[tour[i].prev].vertex;
int v3 = tour[tour[i].next].vertex;
int v4 = tour[tour[tour[i].next].next].vertex;
int current_cost = dist_matrix[v2][v1] + dist_matrix[v3][v4];
int temp_cost = dist_matrix[v2][v3] + dist_matrix[v1][v4];
if (current_cost > temp_cost)
{
int temp_next = tour[i].next;
int temp_prev = tour[i].prev;
tour[i].next = tour[temp_next].next;
tour[i].prev = temp_next;
tour[tour[temp_next].next].prev = i;
tour[temp_next].next = i;
tour[temp_next].prev = temp_prev;
tour[temp_prev].next = temp_next;
}
}
return 0;
}
/*
int K_opt(int* tour, struct GTSP *data){
int rval = 0, i, k, I, j;
@ -863,118 +884,146 @@ int K_opt(int* tour, struct GTSP *data){
return rval;
}*/
int Larg_neighborhood_search(int* tour, struct GTSP *data){
int i, best_vertex, best_pose, tour_cost, rval;
struct TOUR *vertex_seq;
vertex_seq = (struct TOUR*) malloc(data->cluster_count*sizeof(struct TOUR));
//Construct the list
for(i = 0; i < data->cluster_count; i++){
vertex_seq[i].vertex = tour[i];
if ( i == 0){
vertex_seq[i].prev = data->cluster_count-1;
}else{
vertex_seq[i].prev = i - 1;
}
if ( i == data->cluster_count-1){
vertex_seq[i].next = 0;
}else{
vertex_seq[i].next = i + 1;
}
}
int large_neighborhood_search(int *tour, struct GTSP *data, int *tour_cost)
{
int rval = 0;
struct Tour *vertex_seq = 0;
//LNS starts
for(int iter = 0; iter < 1000; iter++){
//Delete a vertex
int delete_vertex = rand()%(data->cluster_count - 1) + 1;
int prev_vertex = vertex_seq[delete_vertex].prev;
int next_vertex = vertex_seq[delete_vertex].next;
vertex_seq[prev_vertex].next = next_vertex;
vertex_seq[next_vertex].prev = prev_vertex;
int cluster_to_insert = data->clusters[vertex_seq[delete_vertex].vertex];
int min_cost = 10000000;
for(i =0 ; i < data->vertex_set[cluster_to_insert].size ; i++){
int vertex_to_insert = data->vertex_set[cluster_to_insert].set[i];
int next_edge = vertex_seq[0].next;
for(int j = 1; j < data->cluster_count ; j++){
int vertex1 = vertex_seq[next_edge].vertex;
int vertex2 = vertex_seq[vertex_seq[next_edge].next].vertex;
int insert_cost = data->dist_matrix[vertex1][vertex_to_insert] +
data->dist_matrix[vertex_to_insert][vertex2] -
data->dist_matrix[vertex1][vertex2];
if(insert_cost < min_cost){
min_cost = insert_cost;
best_pose = next_edge;
best_vertex = vertex_to_insert;
}
next_edge = vertex_seq[next_edge].next;
}
}
next_vertex = vertex_seq[best_pose].next;
vertex_seq[delete_vertex].prev = best_pose;
vertex_seq[delete_vertex].vertex = best_vertex;
vertex_seq[delete_vertex].next = next_vertex;
vertex_seq[best_pose].next = delete_vertex;
vertex_seq[next_vertex].prev = delete_vertex;
rval = optimize_vertex_in_cluster(vertex_seq, data);
}
//TWO OPT MOVE
rval = two_opt(vertex_seq, data);
tour_cost = list_length(vertex_seq, data);
return tour_cost;
int cluster_count = data->cluster_count;
int *clusters = data->node_to_cluster;
int **dist_matrix = data->dist_matrix;
struct Cluster *vertex_set = data->clusters;
vertex_seq = (struct Tour *) malloc(cluster_count * sizeof(struct Tour));
abort_if(!vertex_seq, "could not allocate vertex_seq");
//Construct the list
for (int i = 0; i < cluster_count; i++)
{
vertex_seq[i].vertex = tour[i];
if (i == 0)
vertex_seq[i].prev = cluster_count - 1;
else
vertex_seq[i].prev = i - 1;
if (i == cluster_count - 1)
vertex_seq[i].next = 0;
else
vertex_seq[i].next = i + 1;
}
//LNS starts
for (int iter = 0; iter < 1000; iter++)
{
//Delete a vertex
int delete_vertex = rand() % (cluster_count - 1) + 1;
int prev_vertex = vertex_seq[delete_vertex].prev;
int next_vertex = vertex_seq[delete_vertex].next;
vertex_seq[prev_vertex].next = next_vertex;
vertex_seq[next_vertex].prev = prev_vertex;
int cluster_to_insert = clusters[vertex_seq[delete_vertex].vertex];
int best_pose;
int best_vertex;
int min_cost = INT_MAX;
for (int i = 0; i < vertex_set[cluster_to_insert].size; i++)
{
int vertex_to_insert = vertex_set[cluster_to_insert].nodes[i];
int next_edge = vertex_seq[0].next;
for (int j = 1; j < cluster_count; j++)
{
int vertex1 = vertex_seq[next_edge].vertex;
int vertex2 = vertex_seq[vertex_seq[next_edge].next].vertex;
int insert_cost = dist_matrix[vertex1][vertex_to_insert] +
dist_matrix[vertex_to_insert][vertex2] -
dist_matrix[vertex1][vertex2];
if (insert_cost < min_cost)
{
min_cost = insert_cost;
best_pose = next_edge;
best_vertex = vertex_to_insert;
}
next_edge = vertex_seq[next_edge].next;
}
}
next_vertex = vertex_seq[best_pose].next;
vertex_seq[delete_vertex].prev = best_pose;
vertex_seq[delete_vertex].vertex = best_vertex;
vertex_seq[delete_vertex].next = next_vertex;
vertex_seq[best_pose].next = delete_vertex;
vertex_seq[next_vertex].prev = delete_vertex;
rval = optimize_vertex_in_cluster(vertex_seq, data);
abort_if(rval, "optimize_vertex_in_cluster failed");
}
rval = two_opt(vertex_seq, data);
abort_if(rval, "two_opt failed");
*tour_cost = list_length(vertex_seq, data);
CLEANUP:
if (vertex_seq) free(vertex_seq);
return rval;
}
int tour_length(int* tour, struct GTSP* data){
int tour_cost = 0;
for(int i = 0; i< data->cluster_count ; i++){
if(i==data->cluster_count-1){
tour_cost += data->dist_matrix[tour[i]][tour[0]];
}else{
tour_cost += data->dist_matrix[tour[i]][tour[i+1]];
}
}
return tour_cost;
int tour_length(int *tour, struct GTSP *data)
{
int tour_cost = 0;
for (int i = 0; i < data->cluster_count; i++)
{
if (i == data->cluster_count - 1)
tour_cost += data->dist_matrix[tour[i]][tour[0]];
else
tour_cost += data->dist_matrix[tour[i]][tour[i + 1]];
}
return tour_cost;
}
int list_length(struct TOUR *tour, struct GTSP* data){
int tour_cost = 0;
for(int i = 0; i< data->cluster_count ; i++){
int vertex1 = tour[i].vertex;
int vertex2 = tour[tour[i].next].vertex;
tour_cost += data->dist_matrix[vertex1][vertex2];
}
return tour_cost;
int list_length(struct Tour *tour, struct GTSP *data)
{
int tour_cost = 0;
for (int i = 0; i < data->cluster_count; i++)
{
int vertex1 = tour[i].vertex;
int vertex2 = tour[tour[i].next].vertex;
tour_cost += data->dist_matrix[vertex1][vertex2];
}
return tour_cost;
}
void print_tour(int* tour, struct GTSP* data){
void print_tour(int *tour, struct GTSP *data)
{
for (int i = 0; i < data->cluster_count; i++)
{
printf("%d\t", tour[i]);
}
for(int i = 0; i< data->cluster_count ; i++){
printf("%d\t", tour[i]);
}
printf("\n");
printf("\n");
}
void print_list(struct TOUR * tour, struct GTSP* data){
printf("%d\t", tour[0].vertex);
int vertex_next = tour[0].next;
for(int i = 1; i< data->cluster_count ; i++){
printf("%d\t", tour[vertex_next].vertex);
vertex_next = tour[vertex_next].next;
}
printf("\n");
void print_list(struct Tour *tour, struct GTSP *data)
{
printf("%d\t", tour[0].vertex);
int vertex_next = tour[0].next;
for (int i = 1; i < data->cluster_count; i++)
{
printf("%d\t", tour[vertex_next].vertex);
vertex_next = tour[vertex_next].next;
}
printf("\n");
}

@ -5,26 +5,34 @@
#include "graph.h"
#include "branch_and_cut.h"
struct CLUSTER
struct Tour
{
int vertex;
int next;
int prev;
};
struct Cluster
{
int size;
int* set;
int* nodes;
};
struct GTSP
{
struct Graph *graph;
int *clusters;
int cluster_count;
int** dist_matrix;
struct CLUSTER *vertex_set;
int cluster_count;
int *node_to_cluster;
struct Cluster *clusters;
};
int GTSP_create_random_problem(
int node_count, int cluster_count, int grid_size, struct GTSP *data);
int inital_tour_value(struct GTSP *data);
int inital_tour_value(struct GTSP *data, int *value);
void GTSP_free(struct GTSP *data);
@ -40,9 +48,9 @@ int GTSP_write_solution(struct GTSP *data, char *filename, double *x);
int GTSP_main(int argc, char **argv);
int optimize_vertex_in_cluster(struct TOUR * tour, struct GTSP *data);
int optimize_vertex_in_cluster(struct Tour * tour, struct GTSP *data);
int two_opt(struct TOUR* tour, struct GTSP *data);
int two_opt(struct Tour * tour, struct GTSP *data);
int K_opt(int* tour, struct GTSP *data);
@ -50,9 +58,9 @@ int tour_length(int* tour, struct GTSP* data);
void print_tour(int* tour, struct GTSP* data);
int list_length(struct TOUR* tour, struct GTSP* data);
int list_length(struct Tour * tour, struct GTSP* data);
void print_list(struct TOUR * tour, struct GTSP* data);
void print_list(struct Tour * tour, struct GTSP* data);
extern double *OPTIMAL_X;
extern double FLOW_CPU_TIME;