Implement expert and knn dual gmi component

feature/replay^2
Alinson S. Xavier 1 year ago
parent 00fe4d07d2
commit beab75a16d
Signed by: isoron
GPG Key ID: 0DA8E4B9E1109DCA

@ -4,6 +4,8 @@
module Cuts
using PyCall
import ..to_str_array
include("tableau/structs.jl")
@ -16,4 +18,8 @@ include("tableau/moi.jl")
include("tableau/tableau.jl")
include("tableau/transform.jl")
function __init__()
__init_gmi_dual__()
end
end # module

@ -4,6 +4,17 @@
using Printf
using JuMP
using HiGHS
global ExpertDualGmiComponent = PyNULL()
global KnnDualGmiComponent = PyNULL()
Base.@kwdef mutable struct _KnnDualGmiData
k = nothing
extractor = nothing
train_h5 = nothing
model = nothing
end
Base.@kwdef mutable struct ConstraintSet_v2
lhs::SparseMatrixCSC
@ -106,7 +117,10 @@ function collect_gmi_dual(
if round == 1
# Assert standard form problem has same value as original
assert_eq(obj, obj_lp)
if obj_lp !== nothing
assert_eq(obj, obj_lp)
end
obj_lp = obj
push!(stats_obj, obj)
push!(stats_gap, gap(obj))
push!(stats_ncuts, 0)
@ -128,7 +142,7 @@ function collect_gmi_dual(
# Compute selected tableau rows
stats_time_tableau += @elapsed begin
tableau = compute_tableau(data_s, basis, sol_frac, rows = selected_rows)
tableau = compute_tableau(data_s, basis, x = sol_frac, rows = selected_rows)
# Assert tableau rows have been computed correctly
assert_eq(tableau.lhs * sol_frac, tableau.rhs)
@ -147,7 +161,7 @@ function collect_gmi_dual(
# Abort if no cuts are left
if length(cuts_s.lb) == 0
@info "No cuts generated. Aborting."
continue
break
end
end
@ -194,7 +208,7 @@ function collect_gmi_dual(
set_optimizer(model, optimizer)
optimize!(model)
n_obj = objective_value(model)
@assert obj n_obj
assert_eq(obj, n_obj, atol = 0.01)
end
undo_relax()
end
@ -240,26 +254,26 @@ function collect_gmi_dual(
end
basis = original_basis
cut_sizezz = length(all_cuts_v2.Bv)
var_totall =
length(basis.var_basic) +
length(basis.var_nonbasic) +
length(basis.constr_basic) +
length(basis.constr_nonbasic)
bm_size = Array{Int64,2}(undef, cut_sizezz, 4)
basis_matrix = Array{Int64,2}(undef, cut_sizezz, var_totall)
for ii = 1:cut_sizezz
vb = all_cuts_v2.Bss[ii].var_basic
vn = all_cuts_v2.Bss[ii].var_nonbasic
cb = all_cuts_v2.Bss[ii].constr_basic
cn = all_cuts_v2.Bss[ii].constr_nonbasic
bm_size[ii, :] = [length(vb) length(vn) length(cb) length(cn)]
basis_matrix[ii, :] = [vb' vn' cb' cn']
end
# Store cuts
if all_cuts !== nothing
cut_sizezz = length(all_cuts_v2.Bv)
var_totall =
length(basis.var_basic) +
length(basis.var_nonbasic) +
length(basis.constr_basic) +
length(basis.constr_nonbasic)
bm_size = Array{Int64,2}(undef, cut_sizezz, 4)
basis_matrix = Array{Int64,2}(undef, cut_sizezz, var_totall)
for ii = 1:cut_sizezz
vb = all_cuts_v2.Bss[ii].var_basic
vn = all_cuts_v2.Bss[ii].var_nonbasic
cb = all_cuts_v2.Bss[ii].constr_basic
cn = all_cuts_v2.Bss[ii].constr_nonbasic
bm_size[ii, :] = [length(vb) length(vn) length(cb) length(cn)]
basis_matrix[ii, :] = [vb' vn' cb' cn']
end
# Store cuts
@info "Storing $(length(all_cuts.ub)) GMI cuts..."
h5 = H5File(h5_filename)
h5.put_sparse("cuts_lhs", all_cuts.lhs)
@ -287,7 +301,101 @@ function collect_gmi_dual(
"stats_gap" => stats_gap,
"stats_ncuts" => length(keep),
)
end
function ExpertDualGmiComponent_before_mip(test_h5, model, stats)
# Read cuts and optimal solution
h5 = H5File(test_h5)
sol_opt_dict = Dict(
zip(
h5.get_array("static_var_names"),
convert(Array{Float64}, h5.get_array("mip_var_values")),
),
)
cut_basis_vars = h5.get_array("cuts_basis_vars")
cut_basis_sizes = h5.get_array("cuts_basis_sizes")
cut_rows = h5.get_array("cuts_rows")
obj_mip = h5.get_scalar("mip_lower_bound")
if obj_mip === nothing
obj_mip = h5.get_scalar("mip_obj_value")
end
h5.close()
# Initialize stats
stats_time_convert = 0
stats_time_tableau = 0
stats_time_gmi = 0
all_cuts = []
stats_time_convert = @elapsed begin
# Extract problem data
data = ProblemData(model)
# Construct optimal solution vector (with correct variable sequence)
sol_opt = [sol_opt_dict[n] for n in data.var_names]
# Assert optimal solution is feasible for the original problem
assert_leq(data.constr_lb, data.constr_lhs * sol_opt)
assert_leq(data.constr_lhs * sol_opt, data.constr_ub)
# Convert to standard form
data_s, transforms = convert_to_standard_form(data)
model_s = to_model(data_s)
set_optimizer(model_s, HiGHS.Optimizer)
relax_integrality(model_s)
# Convert optimal solution to standard form
sol_opt_s = forward(transforms, sol_opt)
# Assert converted solution is feasible for standard form problem
assert_eq(data_s.constr_lhs * sol_opt_s, data_s.constr_lb)
end
current_basis = nothing
for (r, row) in enumerate(cut_rows)
stats_time_tableau += @elapsed begin
if r == 1 || cut_basis_vars[r, :] != cut_basis_vars[r-1, :]
vbb, vnn, cbb, cnn = cut_basis_sizes[r, :]
current_basis = Basis(;
var_basic = cut_basis_vars[r, 1:vbb],
var_nonbasic = cut_basis_vars[r, vbb+1:vbb+vnn],
constr_basic = cut_basis_vars[r, vbb+vnn+1:vbb+vnn+cbb],
constr_nonbasic = cut_basis_vars[r, vbb+vnn+cbb+1:vbb+vnn+cbb+cnn],
)
end
tableau = compute_tableau(data_s, current_basis, rows = [row])
assert_eq(tableau.lhs * sol_opt_s, tableau.rhs)
end
stats_time_gmi += @elapsed begin
cuts_s = compute_gmi(data_s, tableau)
assert_does_not_cut_off(cuts_s, sol_opt_s)
end
cuts = backwards(transforms, cuts_s)
assert_does_not_cut_off(cuts, sol_opt)
push!(all_cuts, cuts)
end
function cut_callback(cb_data)
if all_cuts !== nothing
@info "Enforcing dual GMI cuts..."
for cuts in all_cuts
constrs = build_constraints(model, cuts)
for c in constrs
MOI.submit(model, MOI.UserCut(cb_data), c)
end
end
all_cuts = nothing
end
end
# Set up cut callback
set_attribute(model, MOI.UserCutCallback(), cut_callback)
stats["gmi_time_convert"] = stats_time_convert
stats["gmi_time_tableau"] = stats_time_tableau
stats["gmi_time_gmi"] = stats_time_gmi
return
end
function add_constraint_set_dual_v2(model::JuMP.Model, cs::ConstraintSet)
@ -320,4 +428,106 @@ function add_constraint_set_dual_v2(model::JuMP.Model, cs::ConstraintSet)
return constrs, gmi_exps
end
export collect_gmi_dual
function _dualgmi_features(h5_filename, extractor)
h5 = H5File(h5_filename, "r")
try
return extractor.get_instance_features(h5)
finally
h5.close()
end
end
function _dualgmi_generate(train_h5, model)
data = ProblemData(model)
data_s, transforms = convert_to_standard_form(data)
all_cuts = []
for h5_filename in train_h5
h5 = H5File(h5_filename)
cut_basis_vars = h5.get_array("cuts_basis_vars")
cut_basis_sizes = h5.get_array("cuts_basis_sizes")
cut_rows = h5.get_array("cuts_rows")
h5.close()
current_basis = nothing
for (r, row) in enumerate(cut_rows)
if r == 1 || cut_basis_vars[r, :] != cut_basis_vars[r-1, :]
vbb, vnn, cbb, cnn = cut_basis_sizes[r, :]
current_basis = Basis(;
var_basic = cut_basis_vars[r, 1:vbb],
var_nonbasic = cut_basis_vars[r, vbb+1:vbb+vnn],
constr_basic = cut_basis_vars[r, vbb+vnn+1:vbb+vnn+cbb],
constr_nonbasic = cut_basis_vars[r, vbb+vnn+cbb+1:vbb+vnn+cbb+cnn],
)
end
tableau = compute_tableau(data_s, current_basis, rows = [row])
cuts_s = compute_gmi(data_s, tableau)
cuts = backwards(transforms, cuts_s)
push!(all_cuts, cuts)
end
end
return all_cuts
end
function _dualgmi_set_callback(model, all_cuts)
function cut_callback(cb_data)
if all_cuts !== nothing
@info "Dual GMI: Submitting cuts..."
for cuts in all_cuts
constrs = build_constraints(model, cuts)
for c in constrs
MOI.submit(model, MOI.UserCut(cb_data), c)
end
end
all_cuts = nothing
end
end
set_attribute(model, MOI.UserCutCallback(), cut_callback)
end
function KnnDualGmiComponent_fit(data::_KnnDualGmiData, train_h5)
x = hcat([
_dualgmi_features(filename, data.extractor)
for filename in train_h5
]...)'
model = pyimport("sklearn.neighbors").NearestNeighbors(n_neighbors=data.k)
model.fit(x)
data.model = model
data.train_h5 = train_h5
end
function KnnDualGmiComponent_before_mip(data::_KnnDualGmiData, test_h5, model, stats)
x = _dualgmi_features(test_h5, data.extractor)
x = reshape(x, 1, length(x))
selected = vec(data.model.kneighbors(x, return_distance=false)) .+ 1
@info "Dual GMI: Nearest neighbors:"
for h5_filename in data.train_h5[selected]
@info " $(h5_filename)"
end
cuts = _dualgmi_generate(data.train_h5[selected], model)
_dualgmi_set_callback(model, cuts)
end
function __init_gmi_dual__()
@pydef mutable struct Class1
function fit(_, _) end
function before_mip(self, test_h5, model, stats)
ExpertDualGmiComponent_before_mip(test_h5, model.inner, stats)
end
end
copy!(ExpertDualGmiComponent, Class1)
@pydef mutable struct Class2
function __init__(self; extractor, k = 3)
self.data = _KnnDualGmiData(; extractor, k)
end
function fit(self, train_h5)
KnnDualGmiComponent_fit(self.data, train_h5)
end
function before_mip(self, test_h5, model, stats)
KnnDualGmiComponent_before_mip(self.data, test_h5, model.inner, stats)
end
end
copy!(KnnDualGmiComponent, Class2)
end
export collect_gmi_dual, expert_gmi_dual, ExpertDualGmiComponent, KnnDualGmiComponent

@ -140,28 +140,36 @@ function to_model(data::ProblemData, tol = 1e-6)::Model
end
function add_constraint_set(model::JuMP.Model, cs::ConstraintSet)
constrs = build_constraints(model, cs)
for c in constrs
add_constraint(model, c)
end
return constrs
end
function set_warm_start(model::JuMP.Model, x::Vector{Float64})
vars = all_variables(model)
for (i, xi) in enumerate(x)
set_start_value(vars[i], xi)
end
end
function build_constraints(model::JuMP.Model, cs::ConstraintSet)
vars = all_variables(model)
nrows, _ = size(cs.lhs)
constrs = []
for i = 1:nrows
c = nothing
if isinf(cs.ub[i])
c = @constraint(model, cs.lb[i] <= dot(cs.lhs[i, :], vars))
c = @build_constraint(cs.lb[i] <= dot(cs.lhs[i, :], vars))
elseif isinf(cs.lb[i])
c = @constraint(model, dot(cs.lhs[i, :], vars) <= cs.ub[i])
c = @build_constraint(dot(cs.lhs[i, :], vars) <= cs.ub[i])
else
c = @constraint(model, cs.lb[i] <= dot(cs.lhs[i, :], vars) <= cs.ub[i])
c = @build_constraint(cs.lb[i] <= dot(cs.lhs[i, :], vars) <= cs.ub[i])
end
push!(constrs, c)
end
return constrs
end
function set_warm_start(model::JuMP.Model, x::Vector{Float64})
vars = all_variables(model)
for (i, xi) in enumerate(x)
set_start_value(vars[i], xi)
end
end
export to_model, ProblemData, add_constraint_set, set_warm_start
export to_model, ProblemData, add_constraint_set, set_warm_start, build_constraints

@ -54,8 +54,8 @@ end
function compute_tableau(
data::ProblemData,
basis::Basis,
x::Vector{Float64};
basis::Basis;
x::Union{Nothing,Vector{Float64}} = nothing,
rows::Union{Vector{Int},Nothing} = nothing,
tol = 1e-8,
)::Tableau
@ -73,7 +73,8 @@ function compute_tableau(
factor = klu(sparse(lhs_b'))
end
@timeit "Compute tableau LHS" begin
@timeit "Compute tableau" begin
tableau_rhs = []
tableau_lhs_I = Int[]
tableau_lhs_J = Int[]
tableau_lhs_V = Float64[]
@ -88,6 +89,8 @@ function compute_tableau(
end
@timeit "Multiply" begin
row = sol' * data.constr_lhs
rhs = sol' * data.constr_ub
push!(tableau_rhs, rhs)
end
@timeit "Sparsify & copy" begin
for (j, v) in enumerate(row)
@ -104,22 +107,19 @@ function compute_tableau(
sparse(tableau_lhs_I, tableau_lhs_J, tableau_lhs_V, length(rows), ncols)
end
@timeit "Compute tableau RHS" begin
tableau_rhs = [x[basis.var_basic]; zeros(length(basis.constr_basic))][rows]
end
@timeit "Compute tableau objective row" begin
sol = factor \ obj_b
tableau_obj = -data.obj' + sol' * data.constr_lhs
tableau_obj[abs.(tableau_obj).<tol] .= 0
end
return Tableau(
obj = tableau_obj,
lhs = tableau_lhs,
rhs = tableau_rhs,
z = dot(data.obj, x),
)
# Compute z if solution is provided
z = 0
if x !== nothing
z = dot(data.obj, x)
end
return Tableau(obj = tableau_obj, lhs = tableau_lhs, rhs = tableau_rhs, z = z)
end
export get_basis, get_x, compute_tableau

@ -2,9 +2,10 @@
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using SCIP
using HiGHS
function test_cuts_tableau_gmi_dual()
function test_cuts_tableau_gmi_dual_collect()
mps_filename = "$BASEDIR/../fixtures/bell5.mps.gz"
h5_filename = "$BASEDIR/../fixtures/bell5.h5"
stats = collect_gmi_dual(mps_filename, optimizer = HiGHS.Optimizer)
@ -14,9 +15,56 @@ function test_cuts_tableau_gmi_dual()
cuts_basis_sizes = h5.get_array("cuts_basis_sizes")
cuts_rows = h5.get_array("cuts_rows")
@test size(cuts_basis_vars) == (15, 402)
@test size(cuts_basis_sizes) == (15,4)
@test size(cuts_basis_sizes) == (15, 4)
@test size(cuts_rows) == (15,)
finally
h5.close()
end
end
function test_cuts_tableau_gmi_dual_usage()
function build_model(mps_filename)
model = read_from_file(mps_filename)
set_optimizer(model, SCIP.Optimizer)
return JumpModel(model)
end
mps_filename = "$BASEDIR/../fixtures/bell5.mps.gz"
h5_filename = "$BASEDIR/../fixtures/bell5.h5"
# rm(h5_filename, force=true)
# # Run basic collector
# bc = BasicCollector(write_mps = false, skip_lp = true)
# bc.collect([mps_filename], build_model)
# # Run dual GMI collector
# @info "Running dual GMI collector..."
# collect_gmi_dual(mps_filename, optimizer = HiGHS.Optimizer)
# # Test expert component
# solver = LearningSolver(
# components = [
# ExpertPrimalComponent(action = SetWarmStart()),
# ExpertDualGmiComponent(),
# ],
# skip_lp = true,
# )
# solver.optimize(mps_filename, build_model)
# Test kNN component
knn = KnnDualGmiComponent(
extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"]),
k = 2,
)
knn.fit([h5_filename, h5_filename])
solver = LearningSolver(
components = [
ExpertPrimalComponent(action = SetWarmStart()),
knn,
],
skip_lp = true,
)
solver.optimize(mps_filename, build_model)
return
end

Loading…
Cancel
Save