|
|
|
@ -311,6 +311,46 @@ function _dualgmi_features(h5_filename, extractor)
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function _dualgmi_compress_h5(h5_filename)
|
|
|
|
|
vars_to_basis_offset = Dict()
|
|
|
|
|
basis_vars = []
|
|
|
|
|
basis_sizes = []
|
|
|
|
|
cut_basis::Array{Int} = []
|
|
|
|
|
cut_row::Array{Int} = []
|
|
|
|
|
|
|
|
|
|
h5 = H5File(h5_filename, "r")
|
|
|
|
|
orig_cut_basis_vars = h5.get_array("cuts_basis_vars")
|
|
|
|
|
orig_cut_basis_sizes = h5.get_array("cuts_basis_sizes")
|
|
|
|
|
orig_cut_rows = h5.get_array("cuts_rows")
|
|
|
|
|
ncuts, _ = size(orig_cut_basis_vars)
|
|
|
|
|
h5.close()
|
|
|
|
|
|
|
|
|
|
for i in 1:ncuts
|
|
|
|
|
vars = orig_cut_basis_vars[i, :]
|
|
|
|
|
sizes = orig_cut_basis_sizes[i, :]
|
|
|
|
|
row = orig_cut_rows[i]
|
|
|
|
|
if vars ∉ keys(vars_to_basis_offset)
|
|
|
|
|
offset = size(basis_vars)[1] + 1
|
|
|
|
|
vars_to_basis_offset[vars] = offset
|
|
|
|
|
push!(basis_vars, vars)
|
|
|
|
|
push!(basis_sizes, sizes)
|
|
|
|
|
end
|
|
|
|
|
offset = vars_to_basis_offset[vars]
|
|
|
|
|
push!(cut_basis, offset)
|
|
|
|
|
push!(cut_row, row)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
basis_vars = hcat(basis_vars...)'
|
|
|
|
|
basis_sizes = hcat(basis_sizes...)'
|
|
|
|
|
|
|
|
|
|
h5 = H5File(h5_filename, "r+")
|
|
|
|
|
h5.put_array("gmi_basis_vars", basis_vars)
|
|
|
|
|
h5.put_array("gmi_basis_sizes", basis_sizes)
|
|
|
|
|
h5.put_array("gmi_cut_basis", cut_basis)
|
|
|
|
|
h5.put_array("gmi_cut_row", cut_row)
|
|
|
|
|
h5.file.close()
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function _dualgmi_generate(train_h5, model)
|
|
|
|
|
@timeit "Read problem data" begin
|
|
|
|
|
data = ProblemData(model)
|
|
|
|
@ -318,54 +358,65 @@ function _dualgmi_generate(train_h5, model)
|
|
|
|
|
@timeit "Convert to standard form" begin
|
|
|
|
|
data_s, transforms = convert_to_standard_form(data)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
@timeit "Collect cuts from H5 files" begin
|
|
|
|
|
vars_to_unique_basis_offset = Dict()
|
|
|
|
|
unique_basis_vars = nothing
|
|
|
|
|
unique_basis_sizes = nothing
|
|
|
|
|
unique_basis_rows = nothing
|
|
|
|
|
|
|
|
|
|
basis_vars_to_basis_offset = Dict()
|
|
|
|
|
combined_basis_vars = []
|
|
|
|
|
combined_basis_sizes = []
|
|
|
|
|
combined_cut_rows = []
|
|
|
|
|
for h5_filename in train_h5
|
|
|
|
|
h5 = H5File(h5_filename, "r")
|
|
|
|
|
cut_basis_vars = h5.get_array("cuts_basis_vars")
|
|
|
|
|
cut_basis_sizes = h5.get_array("cuts_basis_sizes")
|
|
|
|
|
cut_rows = h5.get_array("cuts_rows")
|
|
|
|
|
ncuts, nvars = size(cut_basis_vars)
|
|
|
|
|
if unique_basis_vars === nothing
|
|
|
|
|
unique_basis_vars = Matrix{Int}(undef, 0, nvars)
|
|
|
|
|
unique_basis_sizes = Matrix{Int}(undef, 0, 4)
|
|
|
|
|
unique_basis_rows = Dict{Int,Set{Int}}()
|
|
|
|
|
@timeit "get_array (new)" begin
|
|
|
|
|
h5 = H5File(h5_filename, "r")
|
|
|
|
|
gmi_basis_vars = h5.get_array("gmi_basis_vars")
|
|
|
|
|
gmi_basis_sizes = h5.get_array("gmi_basis_sizes")
|
|
|
|
|
gmi_cut_basis = h5.get_array("gmi_cut_basis")
|
|
|
|
|
gmi_cut_row = h5.get_array("gmi_cut_row")
|
|
|
|
|
h5.close()
|
|
|
|
|
end
|
|
|
|
|
@timeit "combine basis" begin
|
|
|
|
|
nbasis, _ = size(gmi_basis_vars)
|
|
|
|
|
local_to_combined_offset = Dict()
|
|
|
|
|
for local_offset in 1:nbasis
|
|
|
|
|
vars = gmi_basis_vars[local_offset, :]
|
|
|
|
|
sizes = gmi_basis_sizes[local_offset, :]
|
|
|
|
|
if vars ∉ keys(basis_vars_to_basis_offset)
|
|
|
|
|
combined_offset = length(combined_basis_vars) + 1
|
|
|
|
|
basis_vars_to_basis_offset[vars] = combined_offset
|
|
|
|
|
push!(combined_basis_vars, vars)
|
|
|
|
|
push!(combined_basis_sizes, sizes)
|
|
|
|
|
push!(combined_cut_rows, Set{Int}())
|
|
|
|
|
end
|
|
|
|
|
combined_offset = basis_vars_to_basis_offset[vars]
|
|
|
|
|
local_to_combined_offset[local_offset] = combined_offset
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
for i in 1:ncuts
|
|
|
|
|
vars = cut_basis_vars[i, :]
|
|
|
|
|
sizes = cut_basis_sizes[i, :]
|
|
|
|
|
row = cut_rows[i]
|
|
|
|
|
if vars ∉ keys(vars_to_unique_basis_offset)
|
|
|
|
|
offset = size(unique_basis_vars)[1] + 1
|
|
|
|
|
vars_to_unique_basis_offset[vars] = offset
|
|
|
|
|
unique_basis_vars = [unique_basis_vars; vars']
|
|
|
|
|
unique_basis_sizes = [unique_basis_sizes; sizes']
|
|
|
|
|
unique_basis_rows[offset] = Set()
|
|
|
|
|
@timeit "combine rows" begin
|
|
|
|
|
ncuts = length(gmi_cut_row)
|
|
|
|
|
for i in 1:ncuts
|
|
|
|
|
local_offset = gmi_cut_basis[i]
|
|
|
|
|
combined_offset = local_to_combined_offset[local_offset]
|
|
|
|
|
row = gmi_cut_row[i]
|
|
|
|
|
push!(combined_cut_rows[combined_offset], row)
|
|
|
|
|
end
|
|
|
|
|
offset = vars_to_unique_basis_offset[vars]
|
|
|
|
|
push!(unique_basis_rows[offset], row)
|
|
|
|
|
end
|
|
|
|
|
h5.close()
|
|
|
|
|
@timeit "convert lists to matrices" begin
|
|
|
|
|
combined_basis_vars = hcat(combined_basis_vars...)'
|
|
|
|
|
combined_basis_sizes = hcat(combined_basis_sizes...)'
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
@timeit "Compute tableaus and cuts" begin
|
|
|
|
|
all_cuts = nothing
|
|
|
|
|
for (offset, rows) in unique_basis_rows
|
|
|
|
|
nbasis = length(combined_cut_rows)
|
|
|
|
|
for offset in 1:nbasis
|
|
|
|
|
rows = combined_cut_rows[offset]
|
|
|
|
|
try
|
|
|
|
|
vbb, vnn, cbb, cnn = unique_basis_sizes[offset, :]
|
|
|
|
|
vbb, vnn, cbb, cnn = combined_basis_sizes[offset, :]
|
|
|
|
|
current_basis = Basis(;
|
|
|
|
|
var_basic = unique_basis_vars[offset, 1:vbb],
|
|
|
|
|
var_nonbasic = unique_basis_vars[offset, vbb+1:vbb+vnn],
|
|
|
|
|
constr_basic = unique_basis_vars[offset, vbb+vnn+1:vbb+vnn+cbb],
|
|
|
|
|
constr_nonbasic = unique_basis_vars[offset, vbb+vnn+cbb+1:vbb+vnn+cbb+cnn],
|
|
|
|
|
var_basic = combined_basis_vars[offset, 1:vbb],
|
|
|
|
|
var_nonbasic = combined_basis_vars[offset, vbb+1:vbb+vnn],
|
|
|
|
|
constr_basic = combined_basis_vars[offset, vbb+vnn+1:vbb+vnn+cbb],
|
|
|
|
|
constr_nonbasic = combined_basis_vars[offset, vbb+vnn+cbb+1:vbb+vnn+cbb+cnn],
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
tableau = compute_tableau(data_s, current_basis; rows=collect(rows))
|
|
|
|
|
cuts_s = compute_gmi(data_s, tableau)
|
|
|
|
|
cuts = backwards(transforms, cuts_s)
|
|
|
|
|