DualGMI: Use compressed basis representation

dev
Alinson S. Xavier 2 months ago
parent 5c522dbc5f
commit c3a8fa6a08

@ -311,6 +311,46 @@ function _dualgmi_features(h5_filename, extractor)
end end
end end
function _dualgmi_compress_h5(h5_filename)
vars_to_basis_offset = Dict()
basis_vars = []
basis_sizes = []
cut_basis::Array{Int} = []
cut_row::Array{Int} = []
h5 = H5File(h5_filename, "r")
orig_cut_basis_vars = h5.get_array("cuts_basis_vars")
orig_cut_basis_sizes = h5.get_array("cuts_basis_sizes")
orig_cut_rows = h5.get_array("cuts_rows")
ncuts, _ = size(orig_cut_basis_vars)
h5.close()
for i in 1:ncuts
vars = orig_cut_basis_vars[i, :]
sizes = orig_cut_basis_sizes[i, :]
row = orig_cut_rows[i]
if vars keys(vars_to_basis_offset)
offset = size(basis_vars)[1] + 1
vars_to_basis_offset[vars] = offset
push!(basis_vars, vars)
push!(basis_sizes, sizes)
end
offset = vars_to_basis_offset[vars]
push!(cut_basis, offset)
push!(cut_row, row)
end
basis_vars = hcat(basis_vars...)'
basis_sizes = hcat(basis_sizes...)'
h5 = H5File(h5_filename, "r+")
h5.put_array("gmi_basis_vars", basis_vars)
h5.put_array("gmi_basis_sizes", basis_sizes)
h5.put_array("gmi_cut_basis", cut_basis)
h5.put_array("gmi_cut_row", cut_row)
h5.file.close()
end
function _dualgmi_generate(train_h5, model) function _dualgmi_generate(train_h5, model)
@timeit "Read problem data" begin @timeit "Read problem data" begin
data = ProblemData(model) data = ProblemData(model)
@ -318,54 +358,65 @@ function _dualgmi_generate(train_h5, model)
@timeit "Convert to standard form" begin @timeit "Convert to standard form" begin
data_s, transforms = convert_to_standard_form(data) data_s, transforms = convert_to_standard_form(data)
end end
@timeit "Collect cuts from H5 files" begin @timeit "Collect cuts from H5 files" begin
vars_to_unique_basis_offset = Dict() basis_vars_to_basis_offset = Dict()
unique_basis_vars = nothing combined_basis_vars = []
unique_basis_sizes = nothing combined_basis_sizes = []
unique_basis_rows = nothing combined_cut_rows = []
for h5_filename in train_h5 for h5_filename in train_h5
h5 = H5File(h5_filename, "r") @timeit "get_array (new)" begin
cut_basis_vars = h5.get_array("cuts_basis_vars") h5 = H5File(h5_filename, "r")
cut_basis_sizes = h5.get_array("cuts_basis_sizes") gmi_basis_vars = h5.get_array("gmi_basis_vars")
cut_rows = h5.get_array("cuts_rows") gmi_basis_sizes = h5.get_array("gmi_basis_sizes")
ncuts, nvars = size(cut_basis_vars) gmi_cut_basis = h5.get_array("gmi_cut_basis")
if unique_basis_vars === nothing gmi_cut_row = h5.get_array("gmi_cut_row")
unique_basis_vars = Matrix{Int}(undef, 0, nvars) h5.close()
unique_basis_sizes = Matrix{Int}(undef, 0, 4) end
unique_basis_rows = Dict{Int,Set{Int}}() @timeit "combine basis" begin
nbasis, _ = size(gmi_basis_vars)
local_to_combined_offset = Dict()
for local_offset in 1:nbasis
vars = gmi_basis_vars[local_offset, :]
sizes = gmi_basis_sizes[local_offset, :]
if vars keys(basis_vars_to_basis_offset)
combined_offset = length(combined_basis_vars) + 1
basis_vars_to_basis_offset[vars] = combined_offset
push!(combined_basis_vars, vars)
push!(combined_basis_sizes, sizes)
push!(combined_cut_rows, Set{Int}())
end
combined_offset = basis_vars_to_basis_offset[vars]
local_to_combined_offset[local_offset] = combined_offset
end
end end
for i in 1:ncuts @timeit "combine rows" begin
vars = cut_basis_vars[i, :] ncuts = length(gmi_cut_row)
sizes = cut_basis_sizes[i, :] for i in 1:ncuts
row = cut_rows[i] local_offset = gmi_cut_basis[i]
if vars keys(vars_to_unique_basis_offset) combined_offset = local_to_combined_offset[local_offset]
offset = size(unique_basis_vars)[1] + 1 row = gmi_cut_row[i]
vars_to_unique_basis_offset[vars] = offset push!(combined_cut_rows[combined_offset], row)
unique_basis_vars = [unique_basis_vars; vars']
unique_basis_sizes = [unique_basis_sizes; sizes']
unique_basis_rows[offset] = Set()
end end
offset = vars_to_unique_basis_offset[vars]
push!(unique_basis_rows[offset], row)
end end
h5.close() @timeit "convert lists to matrices" begin
combined_basis_vars = hcat(combined_basis_vars...)'
combined_basis_sizes = hcat(combined_basis_sizes...)'
end
end end
end end
@timeit "Compute tableaus and cuts" begin @timeit "Compute tableaus and cuts" begin
all_cuts = nothing all_cuts = nothing
for (offset, rows) in unique_basis_rows nbasis = length(combined_cut_rows)
for offset in 1:nbasis
rows = combined_cut_rows[offset]
try try
vbb, vnn, cbb, cnn = unique_basis_sizes[offset, :] vbb, vnn, cbb, cnn = combined_basis_sizes[offset, :]
current_basis = Basis(; current_basis = Basis(;
var_basic = unique_basis_vars[offset, 1:vbb], var_basic = combined_basis_vars[offset, 1:vbb],
var_nonbasic = unique_basis_vars[offset, vbb+1:vbb+vnn], var_nonbasic = combined_basis_vars[offset, vbb+1:vbb+vnn],
constr_basic = unique_basis_vars[offset, vbb+vnn+1:vbb+vnn+cbb], constr_basic = combined_basis_vars[offset, vbb+vnn+1:vbb+vnn+cbb],
constr_nonbasic = unique_basis_vars[offset, vbb+vnn+cbb+1:vbb+vnn+cbb+cnn], constr_nonbasic = combined_basis_vars[offset, vbb+vnn+cbb+1:vbb+vnn+cbb+cnn],
) )
tableau = compute_tableau(data_s, current_basis; rows=collect(rows)) tableau = compute_tableau(data_s, current_basis; rows=collect(rows))
cuts_s = compute_gmi(data_s, tableau) cuts_s = compute_gmi(data_s, tableau)
cuts = backwards(transforms, cuts_s) cuts = backwards(transforms, cuts_s)

Loading…
Cancel
Save