|
|
|
@ -8,6 +8,8 @@ using HiGHS
|
|
|
|
|
using Random
|
|
|
|
|
using DataStructures
|
|
|
|
|
|
|
|
|
|
import ..H5FieldsExtractor
|
|
|
|
|
|
|
|
|
|
global ExpertDualGmiComponent = PyNULL()
|
|
|
|
|
global KnnDualGmiComponent = PyNULL()
|
|
|
|
|
|
|
|
|
@ -253,138 +255,6 @@ function collect_gmi_dual(
|
|
|
|
|
)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function ExpertDualGmiComponent_before_mip(test_h5, model, _)
|
|
|
|
|
# Read cuts and optimal solution
|
|
|
|
|
h5 = H5File(test_h5, "r")
|
|
|
|
|
sol_opt_dict = Dict(
|
|
|
|
|
zip(
|
|
|
|
|
h5.get_array("static_var_names"),
|
|
|
|
|
convert(Array{Float64}, h5.get_array("mip_var_values")),
|
|
|
|
|
),
|
|
|
|
|
)
|
|
|
|
|
cut_basis_vars = h5.get_array("cuts_basis_vars")
|
|
|
|
|
cut_basis_sizes = h5.get_array("cuts_basis_sizes")
|
|
|
|
|
cut_rows = h5.get_array("cuts_rows")
|
|
|
|
|
obj_mip = h5.get_scalar("mip_lower_bound")
|
|
|
|
|
if obj_mip === nothing
|
|
|
|
|
obj_mip = h5.get_scalar("mip_obj_value")
|
|
|
|
|
end
|
|
|
|
|
h5.close()
|
|
|
|
|
|
|
|
|
|
# Initialize stats
|
|
|
|
|
stats_time_convert = 0
|
|
|
|
|
stats_time_tableau = 0
|
|
|
|
|
stats_time_gmi = 0
|
|
|
|
|
all_cuts = nothing
|
|
|
|
|
|
|
|
|
|
stats_time_convert = @elapsed begin
|
|
|
|
|
# Extract problem data
|
|
|
|
|
data = ProblemData(model)
|
|
|
|
|
|
|
|
|
|
# Construct optimal solution vector (with correct variable sequence)
|
|
|
|
|
sol_opt = [sol_opt_dict[n] for n in data.var_names]
|
|
|
|
|
|
|
|
|
|
# Assert optimal solution is feasible for the original problem
|
|
|
|
|
assert_leq(data.constr_lb, data.constr_lhs * sol_opt)
|
|
|
|
|
assert_leq(data.constr_lhs * sol_opt, data.constr_ub)
|
|
|
|
|
|
|
|
|
|
# Convert to standard form
|
|
|
|
|
data_s, transforms = convert_to_standard_form(data)
|
|
|
|
|
model_s = to_model(data_s)
|
|
|
|
|
set_optimizer(model_s, HiGHS.Optimizer)
|
|
|
|
|
relax_integrality(model_s)
|
|
|
|
|
|
|
|
|
|
# Convert optimal solution to standard form
|
|
|
|
|
sol_opt_s = forward(transforms, sol_opt)
|
|
|
|
|
|
|
|
|
|
# Assert converted solution is feasible for standard form problem
|
|
|
|
|
assert_eq(data_s.constr_lhs * sol_opt_s, data_s.constr_lb)
|
|
|
|
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
current_basis = nothing
|
|
|
|
|
for (r, row) in enumerate(cut_rows)
|
|
|
|
|
stats_time_tableau += @elapsed begin
|
|
|
|
|
if r == 1 || cut_basis_vars[r, :] != cut_basis_vars[r-1, :]
|
|
|
|
|
vbb, vnn, cbb, cnn = cut_basis_sizes[r, :]
|
|
|
|
|
current_basis = Basis(;
|
|
|
|
|
var_basic = cut_basis_vars[r, 1:vbb],
|
|
|
|
|
var_nonbasic = cut_basis_vars[r, vbb+1:vbb+vnn],
|
|
|
|
|
constr_basic = cut_basis_vars[r, vbb+vnn+1:vbb+vnn+cbb],
|
|
|
|
|
constr_nonbasic = cut_basis_vars[r, vbb+vnn+cbb+1:vbb+vnn+cbb+cnn],
|
|
|
|
|
)
|
|
|
|
|
end
|
|
|
|
|
tableau = compute_tableau(data_s, current_basis, rows = [row])
|
|
|
|
|
assert_eq(tableau.lhs * sol_opt_s, tableau.rhs)
|
|
|
|
|
end
|
|
|
|
|
stats_time_gmi += @elapsed begin
|
|
|
|
|
cuts_s = compute_gmi(data_s, tableau)
|
|
|
|
|
assert_does_not_cut_off(cuts_s, sol_opt_s)
|
|
|
|
|
end
|
|
|
|
|
cuts = backwards(transforms, cuts_s)
|
|
|
|
|
assert_does_not_cut_off(cuts, sol_opt)
|
|
|
|
|
|
|
|
|
|
if all_cuts === nothing
|
|
|
|
|
all_cuts = cuts
|
|
|
|
|
else
|
|
|
|
|
all_cuts.lhs = [all_cuts.lhs; cuts.lhs]
|
|
|
|
|
all_cuts.lb = [all_cuts.lb; cuts.lb]
|
|
|
|
|
all_cuts.ub = [all_cuts.ub; cuts.ub]
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
# Strategy 1: Add all cuts during the first call
|
|
|
|
|
function cut_callback_1(cb_data)
|
|
|
|
|
if all_cuts !== nothing
|
|
|
|
|
constrs = build_constraints(model, all_cuts)
|
|
|
|
|
@info "Enforcing $(length(constrs)) cuts..."
|
|
|
|
|
for c in constrs
|
|
|
|
|
MOI.submit(model, MOI.UserCut(cb_data), c)
|
|
|
|
|
end
|
|
|
|
|
all_cuts = nothing
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
# Strategy 2: Add violated cuts repeatedly until unable to separate
|
|
|
|
|
callback_disabled = false
|
|
|
|
|
function cut_callback_2(cb_data)
|
|
|
|
|
if callback_disabled
|
|
|
|
|
return
|
|
|
|
|
end
|
|
|
|
|
x = all_variables(model)
|
|
|
|
|
x_val = callback_value.(cb_data, x)
|
|
|
|
|
lhs_val = all_cuts.lhs * x_val
|
|
|
|
|
is_violated = lhs_val .> all_cuts.ub
|
|
|
|
|
selected_idx = findall(is_violated .== true)
|
|
|
|
|
selected_cuts = ConstraintSet(
|
|
|
|
|
lhs=all_cuts.lhs[selected_idx, :],
|
|
|
|
|
ub=all_cuts.ub[selected_idx],
|
|
|
|
|
lb=all_cuts.lb[selected_idx],
|
|
|
|
|
)
|
|
|
|
|
constrs = build_constraints(model, selected_cuts)
|
|
|
|
|
if length(constrs) > 0
|
|
|
|
|
@info "Enforcing $(length(constrs)) cuts..."
|
|
|
|
|
for c in constrs
|
|
|
|
|
MOI.submit(model, MOI.UserCut(cb_data), c)
|
|
|
|
|
end
|
|
|
|
|
else
|
|
|
|
|
@info "No violated cuts found. Disabling callback."
|
|
|
|
|
callback_disabled = true
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
# Set up cut callback
|
|
|
|
|
set_attribute(model, MOI.UserCutCallback(), cut_callback_1)
|
|
|
|
|
# set_attribute(model, MOI.UserCutCallback(), cut_callback_2)
|
|
|
|
|
|
|
|
|
|
stats = Dict()
|
|
|
|
|
stats["ExpertDualGmi: cuts"] = length(all_cuts.lb)
|
|
|
|
|
stats["ExpertDualGmi: time convert"] = stats_time_convert
|
|
|
|
|
stats["ExpertDualGmi: time tableau"] = stats_time_tableau
|
|
|
|
|
stats["ExpertDualGmi: time gmi"] = stats_time_gmi
|
|
|
|
|
return stats
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function add_constraint_set_dual_v2(model::JuMP.Model, cs::ConstraintSet)
|
|
|
|
|
vars = all_variables(model)
|
|
|
|
|
nrows, ncols = size(cs.lhs)
|
|
|
|
@ -441,6 +311,49 @@ function _dualgmi_features(h5_filename, extractor)
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function _dualgmi_compress_h5(h5_filename)
|
|
|
|
|
vars_to_basis_offset = Dict()
|
|
|
|
|
basis_vars = []
|
|
|
|
|
basis_sizes = []
|
|
|
|
|
cut_basis::Array{Int} = []
|
|
|
|
|
cut_row::Array{Int} = []
|
|
|
|
|
|
|
|
|
|
h5 = H5File(h5_filename, "r")
|
|
|
|
|
orig_cut_basis_vars = h5.get_array("cuts_basis_vars")
|
|
|
|
|
orig_cut_basis_sizes = h5.get_array("cuts_basis_sizes")
|
|
|
|
|
orig_cut_rows = h5.get_array("cuts_rows")
|
|
|
|
|
if orig_cut_basis_vars === nothing
|
|
|
|
|
return
|
|
|
|
|
end
|
|
|
|
|
ncuts, _ = size(orig_cut_basis_vars)
|
|
|
|
|
h5.close()
|
|
|
|
|
|
|
|
|
|
for i in 1:ncuts
|
|
|
|
|
vars = orig_cut_basis_vars[i, :]
|
|
|
|
|
sizes = orig_cut_basis_sizes[i, :]
|
|
|
|
|
row = orig_cut_rows[i]
|
|
|
|
|
if vars ∉ keys(vars_to_basis_offset)
|
|
|
|
|
offset = size(basis_vars)[1] + 1
|
|
|
|
|
vars_to_basis_offset[vars] = offset
|
|
|
|
|
push!(basis_vars, vars)
|
|
|
|
|
push!(basis_sizes, sizes)
|
|
|
|
|
end
|
|
|
|
|
offset = vars_to_basis_offset[vars]
|
|
|
|
|
push!(cut_basis, offset)
|
|
|
|
|
push!(cut_row, row)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
basis_vars = hcat(basis_vars...)'
|
|
|
|
|
basis_sizes = hcat(basis_sizes...)'
|
|
|
|
|
|
|
|
|
|
h5 = H5File(h5_filename, "r+")
|
|
|
|
|
h5.put_array("gmi_basis_vars", basis_vars)
|
|
|
|
|
h5.put_array("gmi_basis_sizes", basis_sizes)
|
|
|
|
|
h5.put_array("gmi_cut_basis", cut_basis)
|
|
|
|
|
h5.put_array("gmi_cut_row", cut_row)
|
|
|
|
|
h5.file.close()
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function _dualgmi_generate(train_h5, model)
|
|
|
|
|
@timeit "Read problem data" begin
|
|
|
|
|
data = ProblemData(model)
|
|
|
|
@ -448,54 +361,67 @@ function _dualgmi_generate(train_h5, model)
|
|
|
|
|
@timeit "Convert to standard form" begin
|
|
|
|
|
data_s, transforms = convert_to_standard_form(data)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
@timeit "Collect cuts from H5 files" begin
|
|
|
|
|
vars_to_unique_basis_offset = Dict()
|
|
|
|
|
unique_basis_vars = nothing
|
|
|
|
|
unique_basis_sizes = nothing
|
|
|
|
|
unique_basis_rows = nothing
|
|
|
|
|
|
|
|
|
|
basis_vars_to_basis_offset = Dict()
|
|
|
|
|
combined_basis_sizes = nothing
|
|
|
|
|
combined_basis_sizes_list = Any[]
|
|
|
|
|
combined_basis_vars = nothing
|
|
|
|
|
combined_basis_vars_list = Any[]
|
|
|
|
|
combined_cut_rows = Any[]
|
|
|
|
|
for h5_filename in train_h5
|
|
|
|
|
h5 = H5File(h5_filename, "r")
|
|
|
|
|
cut_basis_vars = h5.get_array("cuts_basis_vars")
|
|
|
|
|
cut_basis_sizes = h5.get_array("cuts_basis_sizes")
|
|
|
|
|
cut_rows = h5.get_array("cuts_rows")
|
|
|
|
|
ncuts, nvars = size(cut_basis_vars)
|
|
|
|
|
if unique_basis_vars === nothing
|
|
|
|
|
unique_basis_vars = Matrix{Int}(undef, 0, nvars)
|
|
|
|
|
unique_basis_sizes = Matrix{Int}(undef, 0, 4)
|
|
|
|
|
unique_basis_rows = Dict{Int,Set{Int}}()
|
|
|
|
|
@timeit "get_array (new)" begin
|
|
|
|
|
h5 = H5File(h5_filename, "r")
|
|
|
|
|
gmi_basis_vars = h5.get_array("gmi_basis_vars")
|
|
|
|
|
gmi_basis_sizes = h5.get_array("gmi_basis_sizes")
|
|
|
|
|
gmi_cut_basis = h5.get_array("gmi_cut_basis")
|
|
|
|
|
gmi_cut_row = h5.get_array("gmi_cut_row")
|
|
|
|
|
h5.close()
|
|
|
|
|
end
|
|
|
|
|
@timeit "combine basis" begin
|
|
|
|
|
nbasis, _ = size(gmi_basis_vars)
|
|
|
|
|
local_to_combined_offset = Dict()
|
|
|
|
|
for local_offset in 1:nbasis
|
|
|
|
|
vars = gmi_basis_vars[local_offset, :]
|
|
|
|
|
sizes = gmi_basis_sizes[local_offset, :]
|
|
|
|
|
if vars ∉ keys(basis_vars_to_basis_offset)
|
|
|
|
|
combined_offset = length(combined_basis_vars_list) + 1
|
|
|
|
|
basis_vars_to_basis_offset[vars] = combined_offset
|
|
|
|
|
push!(combined_basis_vars_list, vars)
|
|
|
|
|
push!(combined_basis_sizes_list, sizes)
|
|
|
|
|
push!(combined_cut_rows, Set{Int}())
|
|
|
|
|
end
|
|
|
|
|
combined_offset = basis_vars_to_basis_offset[vars]
|
|
|
|
|
local_to_combined_offset[local_offset] = combined_offset
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
for i in 1:ncuts
|
|
|
|
|
vars = cut_basis_vars[i, :]
|
|
|
|
|
sizes = cut_basis_sizes[i, :]
|
|
|
|
|
row = cut_rows[i]
|
|
|
|
|
if vars ∉ keys(vars_to_unique_basis_offset)
|
|
|
|
|
offset = size(unique_basis_vars)[1] + 1
|
|
|
|
|
vars_to_unique_basis_offset[vars] = offset
|
|
|
|
|
unique_basis_vars = [unique_basis_vars; vars']
|
|
|
|
|
unique_basis_sizes = [unique_basis_sizes; sizes']
|
|
|
|
|
unique_basis_rows[offset] = Set()
|
|
|
|
|
@timeit "combine rows" begin
|
|
|
|
|
ncuts = length(gmi_cut_row)
|
|
|
|
|
for i in 1:ncuts
|
|
|
|
|
local_offset = gmi_cut_basis[i]
|
|
|
|
|
combined_offset = local_to_combined_offset[local_offset]
|
|
|
|
|
row = gmi_cut_row[i]
|
|
|
|
|
push!(combined_cut_rows[combined_offset], row)
|
|
|
|
|
end
|
|
|
|
|
offset = vars_to_unique_basis_offset[vars]
|
|
|
|
|
push!(unique_basis_rows[offset], row)
|
|
|
|
|
end
|
|
|
|
|
h5.close()
|
|
|
|
|
@timeit "convert lists to matrices" begin
|
|
|
|
|
combined_basis_vars = hcat(combined_basis_vars_list...)'
|
|
|
|
|
combined_basis_sizes = hcat(combined_basis_sizes_list...)'
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
@timeit "Compute tableaus and cuts" begin
|
|
|
|
|
all_cuts = nothing
|
|
|
|
|
for (offset, rows) in unique_basis_rows
|
|
|
|
|
nbasis = length(combined_cut_rows)
|
|
|
|
|
for offset in 1:nbasis
|
|
|
|
|
rows = combined_cut_rows[offset]
|
|
|
|
|
try
|
|
|
|
|
vbb, vnn, cbb, cnn = unique_basis_sizes[offset, :]
|
|
|
|
|
vbb, vnn, cbb, cnn = combined_basis_sizes[offset, :]
|
|
|
|
|
current_basis = Basis(;
|
|
|
|
|
var_basic = unique_basis_vars[offset, 1:vbb],
|
|
|
|
|
var_nonbasic = unique_basis_vars[offset, vbb+1:vbb+vnn],
|
|
|
|
|
constr_basic = unique_basis_vars[offset, vbb+vnn+1:vbb+vnn+cbb],
|
|
|
|
|
constr_nonbasic = unique_basis_vars[offset, vbb+vnn+cbb+1:vbb+vnn+cbb+cnn],
|
|
|
|
|
var_basic = combined_basis_vars[offset, 1:vbb],
|
|
|
|
|
var_nonbasic = combined_basis_vars[offset, vbb+1:vbb+vnn],
|
|
|
|
|
constr_basic = combined_basis_vars[offset, vbb+vnn+1:vbb+vnn+cbb],
|
|
|
|
|
constr_nonbasic = combined_basis_vars[offset, vbb+vnn+cbb+1:vbb+vnn+cbb+cnn],
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
tableau = compute_tableau(data_s, current_basis; rows=collect(rows))
|
|
|
|
|
cuts_s = compute_gmi(data_s, tableau)
|
|
|
|
|
cuts = backwards(transforms, cuts_s)
|
|
|
|
@ -599,15 +525,7 @@ function KnnDualGmiComponent_before_mip(data::_KnnDualGmiData, test_h5, model, _
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function __init_gmi_dual__()
|
|
|
|
|
@pydef mutable struct Class1
|
|
|
|
|
function fit(_, _) end
|
|
|
|
|
function before_mip(self, test_h5, model, stats)
|
|
|
|
|
ExpertDualGmiComponent_before_mip(test_h5, model.inner, stats)
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
copy!(ExpertDualGmiComponent, Class1)
|
|
|
|
|
|
|
|
|
|
@pydef mutable struct Class2
|
|
|
|
|
@pydef mutable struct KnnDualGmiComponentPy
|
|
|
|
|
function __init__(self; extractor, k = 3, strategy = "near")
|
|
|
|
|
self.data = _KnnDualGmiData(; extractor, k, strategy)
|
|
|
|
|
end
|
|
|
|
@ -618,7 +536,23 @@ function __init_gmi_dual__()
|
|
|
|
|
return @time KnnDualGmiComponent_before_mip(self.data, test_h5, model.inner, stats)
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
copy!(KnnDualGmiComponent, Class2)
|
|
|
|
|
copy!(KnnDualGmiComponent, KnnDualGmiComponentPy)
|
|
|
|
|
|
|
|
|
|
@pydef mutable struct ExpertDualGmiComponentPy
|
|
|
|
|
function __init__(self)
|
|
|
|
|
self.inner = KnnDualGmiComponentPy(
|
|
|
|
|
extractor=H5FieldsExtractor(instance_fields=["static_var_obj_coeffs"]),
|
|
|
|
|
k=1,
|
|
|
|
|
)
|
|
|
|
|
end
|
|
|
|
|
function fit(self, train_h5)
|
|
|
|
|
end
|
|
|
|
|
function before_mip(self, test_h5, model, stats)
|
|
|
|
|
self.inner.fit([test_h5])
|
|
|
|
|
return self.inner.before_mip(test_h5, model, stats)
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
copy!(ExpertDualGmiComponent, ExpertDualGmiComponentPy)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
export collect_gmi_dual, expert_gmi_dual, ExpertDualGmiComponent, KnnDualGmiComponent
|
|
|
|
|