Compare commits

...

4 Commits

@ -8,6 +8,8 @@ using HiGHS
using Random
using DataStructures
import ..H5FieldsExtractor
global ExpertDualGmiComponent = PyNULL()
global KnnDualGmiComponent = PyNULL()
@ -253,138 +255,6 @@ function collect_gmi_dual(
)
end
function ExpertDualGmiComponent_before_mip(test_h5, model, _)
# Read cuts and optimal solution
h5 = H5File(test_h5, "r")
sol_opt_dict = Dict(
zip(
h5.get_array("static_var_names"),
convert(Array{Float64}, h5.get_array("mip_var_values")),
),
)
cut_basis_vars = h5.get_array("cuts_basis_vars")
cut_basis_sizes = h5.get_array("cuts_basis_sizes")
cut_rows = h5.get_array("cuts_rows")
obj_mip = h5.get_scalar("mip_lower_bound")
if obj_mip === nothing
obj_mip = h5.get_scalar("mip_obj_value")
end
h5.close()
# Initialize stats
stats_time_convert = 0
stats_time_tableau = 0
stats_time_gmi = 0
all_cuts = nothing
stats_time_convert = @elapsed begin
# Extract problem data
data = ProblemData(model)
# Construct optimal solution vector (with correct variable sequence)
sol_opt = [sol_opt_dict[n] for n in data.var_names]
# Assert optimal solution is feasible for the original problem
assert_leq(data.constr_lb, data.constr_lhs * sol_opt)
assert_leq(data.constr_lhs * sol_opt, data.constr_ub)
# Convert to standard form
data_s, transforms = convert_to_standard_form(data)
model_s = to_model(data_s)
set_optimizer(model_s, HiGHS.Optimizer)
relax_integrality(model_s)
# Convert optimal solution to standard form
sol_opt_s = forward(transforms, sol_opt)
# Assert converted solution is feasible for standard form problem
assert_eq(data_s.constr_lhs * sol_opt_s, data_s.constr_lb)
end
current_basis = nothing
for (r, row) in enumerate(cut_rows)
stats_time_tableau += @elapsed begin
if r == 1 || cut_basis_vars[r, :] != cut_basis_vars[r-1, :]
vbb, vnn, cbb, cnn = cut_basis_sizes[r, :]
current_basis = Basis(;
var_basic = cut_basis_vars[r, 1:vbb],
var_nonbasic = cut_basis_vars[r, vbb+1:vbb+vnn],
constr_basic = cut_basis_vars[r, vbb+vnn+1:vbb+vnn+cbb],
constr_nonbasic = cut_basis_vars[r, vbb+vnn+cbb+1:vbb+vnn+cbb+cnn],
)
end
tableau = compute_tableau(data_s, current_basis, rows = [row])
assert_eq(tableau.lhs * sol_opt_s, tableau.rhs)
end
stats_time_gmi += @elapsed begin
cuts_s = compute_gmi(data_s, tableau)
assert_does_not_cut_off(cuts_s, sol_opt_s)
end
cuts = backwards(transforms, cuts_s)
assert_does_not_cut_off(cuts, sol_opt)
if all_cuts === nothing
all_cuts = cuts
else
all_cuts.lhs = [all_cuts.lhs; cuts.lhs]
all_cuts.lb = [all_cuts.lb; cuts.lb]
all_cuts.ub = [all_cuts.ub; cuts.ub]
end
end
# Strategy 1: Add all cuts during the first call
function cut_callback_1(cb_data)
if all_cuts !== nothing
constrs = build_constraints(model, all_cuts)
@info "Enforcing $(length(constrs)) cuts..."
for c in constrs
MOI.submit(model, MOI.UserCut(cb_data), c)
end
all_cuts = nothing
end
end
# Strategy 2: Add violated cuts repeatedly until unable to separate
callback_disabled = false
function cut_callback_2(cb_data)
if callback_disabled
return
end
x = all_variables(model)
x_val = callback_value.(cb_data, x)
lhs_val = all_cuts.lhs * x_val
is_violated = lhs_val .> all_cuts.ub
selected_idx = findall(is_violated .== true)
selected_cuts = ConstraintSet(
lhs=all_cuts.lhs[selected_idx, :],
ub=all_cuts.ub[selected_idx],
lb=all_cuts.lb[selected_idx],
)
constrs = build_constraints(model, selected_cuts)
if length(constrs) > 0
@info "Enforcing $(length(constrs)) cuts..."
for c in constrs
MOI.submit(model, MOI.UserCut(cb_data), c)
end
else
@info "No violated cuts found. Disabling callback."
callback_disabled = true
end
end
# Set up cut callback
set_attribute(model, MOI.UserCutCallback(), cut_callback_1)
# set_attribute(model, MOI.UserCutCallback(), cut_callback_2)
stats = Dict()
stats["ExpertDualGmi: cuts"] = length(all_cuts.lb)
stats["ExpertDualGmi: time convert"] = stats_time_convert
stats["ExpertDualGmi: time tableau"] = stats_time_tableau
stats["ExpertDualGmi: time gmi"] = stats_time_gmi
return stats
end
function add_constraint_set_dual_v2(model::JuMP.Model, cs::ConstraintSet)
vars = all_variables(model)
nrows, ncols = size(cs.lhs)
@ -441,6 +311,49 @@ function _dualgmi_features(h5_filename, extractor)
end
end
function _dualgmi_compress_h5(h5_filename)
vars_to_basis_offset = Dict()
basis_vars = []
basis_sizes = []
cut_basis::Array{Int} = []
cut_row::Array{Int} = []
h5 = H5File(h5_filename, "r")
orig_cut_basis_vars = h5.get_array("cuts_basis_vars")
orig_cut_basis_sizes = h5.get_array("cuts_basis_sizes")
orig_cut_rows = h5.get_array("cuts_rows")
if orig_cut_basis_vars === nothing
return
end
ncuts, _ = size(orig_cut_basis_vars)
h5.close()
for i in 1:ncuts
vars = orig_cut_basis_vars[i, :]
sizes = orig_cut_basis_sizes[i, :]
row = orig_cut_rows[i]
if vars keys(vars_to_basis_offset)
offset = size(basis_vars)[1] + 1
vars_to_basis_offset[vars] = offset
push!(basis_vars, vars)
push!(basis_sizes, sizes)
end
offset = vars_to_basis_offset[vars]
push!(cut_basis, offset)
push!(cut_row, row)
end
basis_vars = hcat(basis_vars...)'
basis_sizes = hcat(basis_sizes...)'
h5 = H5File(h5_filename, "r+")
h5.put_array("gmi_basis_vars", basis_vars)
h5.put_array("gmi_basis_sizes", basis_sizes)
h5.put_array("gmi_cut_basis", cut_basis)
h5.put_array("gmi_cut_row", cut_row)
h5.file.close()
end
function _dualgmi_generate(train_h5, model)
@timeit "Read problem data" begin
data = ProblemData(model)
@ -448,54 +361,67 @@ function _dualgmi_generate(train_h5, model)
@timeit "Convert to standard form" begin
data_s, transforms = convert_to_standard_form(data)
end
@timeit "Collect cuts from H5 files" begin
vars_to_unique_basis_offset = Dict()
unique_basis_vars = nothing
unique_basis_sizes = nothing
unique_basis_rows = nothing
basis_vars_to_basis_offset = Dict()
combined_basis_sizes = nothing
combined_basis_sizes_list = Any[]
combined_basis_vars = nothing
combined_basis_vars_list = Any[]
combined_cut_rows = Any[]
for h5_filename in train_h5
h5 = H5File(h5_filename, "r")
cut_basis_vars = h5.get_array("cuts_basis_vars")
cut_basis_sizes = h5.get_array("cuts_basis_sizes")
cut_rows = h5.get_array("cuts_rows")
ncuts, nvars = size(cut_basis_vars)
if unique_basis_vars === nothing
unique_basis_vars = Matrix{Int}(undef, 0, nvars)
unique_basis_sizes = Matrix{Int}(undef, 0, 4)
unique_basis_rows = Dict{Int,Set{Int}}()
@timeit "get_array (new)" begin
h5 = H5File(h5_filename, "r")
gmi_basis_vars = h5.get_array("gmi_basis_vars")
gmi_basis_sizes = h5.get_array("gmi_basis_sizes")
gmi_cut_basis = h5.get_array("gmi_cut_basis")
gmi_cut_row = h5.get_array("gmi_cut_row")
h5.close()
end
@timeit "combine basis" begin
nbasis, _ = size(gmi_basis_vars)
local_to_combined_offset = Dict()
for local_offset in 1:nbasis
vars = gmi_basis_vars[local_offset, :]
sizes = gmi_basis_sizes[local_offset, :]
if vars keys(basis_vars_to_basis_offset)
combined_offset = length(combined_basis_vars_list) + 1
basis_vars_to_basis_offset[vars] = combined_offset
push!(combined_basis_vars_list, vars)
push!(combined_basis_sizes_list, sizes)
push!(combined_cut_rows, Set{Int}())
end
combined_offset = basis_vars_to_basis_offset[vars]
local_to_combined_offset[local_offset] = combined_offset
end
end
for i in 1:ncuts
vars = cut_basis_vars[i, :]
sizes = cut_basis_sizes[i, :]
row = cut_rows[i]
if vars keys(vars_to_unique_basis_offset)
offset = size(unique_basis_vars)[1] + 1
vars_to_unique_basis_offset[vars] = offset
unique_basis_vars = [unique_basis_vars; vars']
unique_basis_sizes = [unique_basis_sizes; sizes']
unique_basis_rows[offset] = Set()
@timeit "combine rows" begin
ncuts = length(gmi_cut_row)
for i in 1:ncuts
local_offset = gmi_cut_basis[i]
combined_offset = local_to_combined_offset[local_offset]
row = gmi_cut_row[i]
push!(combined_cut_rows[combined_offset], row)
end
offset = vars_to_unique_basis_offset[vars]
push!(unique_basis_rows[offset], row)
end
h5.close()
@timeit "convert lists to matrices" begin
combined_basis_vars = hcat(combined_basis_vars_list...)'
combined_basis_sizes = hcat(combined_basis_sizes_list...)'
end
end
end
@timeit "Compute tableaus and cuts" begin
all_cuts = nothing
for (offset, rows) in unique_basis_rows
nbasis = length(combined_cut_rows)
for offset in 1:nbasis
rows = combined_cut_rows[offset]
try
vbb, vnn, cbb, cnn = unique_basis_sizes[offset, :]
vbb, vnn, cbb, cnn = combined_basis_sizes[offset, :]
current_basis = Basis(;
var_basic = unique_basis_vars[offset, 1:vbb],
var_nonbasic = unique_basis_vars[offset, vbb+1:vbb+vnn],
constr_basic = unique_basis_vars[offset, vbb+vnn+1:vbb+vnn+cbb],
constr_nonbasic = unique_basis_vars[offset, vbb+vnn+cbb+1:vbb+vnn+cbb+cnn],
var_basic = combined_basis_vars[offset, 1:vbb],
var_nonbasic = combined_basis_vars[offset, vbb+1:vbb+vnn],
constr_basic = combined_basis_vars[offset, vbb+vnn+1:vbb+vnn+cbb],
constr_nonbasic = combined_basis_vars[offset, vbb+vnn+cbb+1:vbb+vnn+cbb+cnn],
)
tableau = compute_tableau(data_s, current_basis; rows=collect(rows))
cuts_s = compute_gmi(data_s, tableau)
cuts = backwards(transforms, cuts_s)
@ -599,15 +525,7 @@ function KnnDualGmiComponent_before_mip(data::_KnnDualGmiData, test_h5, model, _
end
function __init_gmi_dual__()
@pydef mutable struct Class1
function fit(_, _) end
function before_mip(self, test_h5, model, stats)
ExpertDualGmiComponent_before_mip(test_h5, model.inner, stats)
end
end
copy!(ExpertDualGmiComponent, Class1)
@pydef mutable struct Class2
@pydef mutable struct KnnDualGmiComponentPy
function __init__(self; extractor, k = 3, strategy = "near")
self.data = _KnnDualGmiData(; extractor, k, strategy)
end
@ -618,7 +536,23 @@ function __init_gmi_dual__()
return @time KnnDualGmiComponent_before_mip(self.data, test_h5, model.inner, stats)
end
end
copy!(KnnDualGmiComponent, Class2)
copy!(KnnDualGmiComponent, KnnDualGmiComponentPy)
@pydef mutable struct ExpertDualGmiComponentPy
function __init__(self)
self.inner = KnnDualGmiComponentPy(
extractor=H5FieldsExtractor(instance_fields=["static_var_obj_coeffs"]),
k=1,
)
end
function fit(self, train_h5)
end
function before_mip(self, test_h5, model, stats)
self.inner.fit([test_h5])
return self.inner.before_mip(test_h5, model, stats)
end
end
copy!(ExpertDualGmiComponent, ExpertDualGmiComponentPy)
end
export collect_gmi_dual, expert_gmi_dual, ExpertDualGmiComponent, KnnDualGmiComponent

@ -95,7 +95,7 @@ function _extract_after_load_vars(model::JuMP.Model, h5)
obj_coeffs_linear = [v keys(obj.aff.terms) ? obj.aff.terms[v] : 0.0 for v in vars]
# Quadratic obj terms
if length(obj) > 0
if length(obj.terms) > 0
nvars = length(vars)
obj_coeffs_quad = zeros(nvars, nvars)
for (pair, coeff) in obj.terms

Loading…
Cancel
Save