parent
e96f678518
commit
077d5326bc
@ -0,0 +1,50 @@
|
||||
# MIPLearn: A Machine-Learning Framework for Mixed-Integer Optimization
|
||||
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||
|
||||
import numpy as np
|
||||
import pyomo.environ as pe
|
||||
import networkx as nx
|
||||
from miplearn import Instance
|
||||
import random
|
||||
|
||||
|
||||
class MaxStableSetGenerator:
|
||||
def __init__(self, graph, base_weights, perturbation_scale=1.0):
|
||||
self.graph = graph
|
||||
self.base_weights = base_weights
|
||||
self.perturbation_scale = perturbation_scale
|
||||
|
||||
def generate(self):
|
||||
perturbation = np.random.rand(self.graph.number_of_nodes()) * self.perturbation_scale
|
||||
weights = self.base_weights + perturbation
|
||||
return MaxStableSetInstance(self.graph, weights)
|
||||
|
||||
|
||||
class MaxStableSetInstance(Instance):
|
||||
def __init__(self, graph, weights):
|
||||
self.graph = graph
|
||||
self.weights = weights
|
||||
self.model = None
|
||||
|
||||
def to_model(self):
|
||||
nodes = list(self.graph.nodes)
|
||||
edges = list(self.graph.edges)
|
||||
self.model = model = pe.ConcreteModel()
|
||||
model.x = pe.Var(nodes, domain=pe.Binary)
|
||||
model.OBJ = pe.Objective(rule=lambda m : sum(m.x[v] * self.weights[v] for v in nodes),
|
||||
sense=pe.maximize)
|
||||
model.edge_eqs = pe.ConstraintList()
|
||||
for edge in edges:
|
||||
model.edge_eqs.add(model.x[edge[0]] + model.x[edge[1]] <= 1)
|
||||
|
||||
return model
|
||||
|
||||
def get_instance_features(self):
|
||||
return np.array(self.weights)
|
||||
|
||||
def get_variable_features(self, var, index):
|
||||
return np.ones(0)
|
||||
|
||||
def get_variable_category(self, var, index):
|
||||
return index
|
@ -0,0 +1,31 @@
|
||||
# MIPLearn: A Machine-Learning Framework for Mixed-Integer Optimization
|
||||
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||
|
||||
from miplearn import LearningSolver
|
||||
from miplearn.problems.stab import MaxStableSetInstance, MaxStableSetGenerator
|
||||
import networkx as nx
|
||||
import numpy as np
|
||||
|
||||
|
||||
def test_stab():
|
||||
graph = nx.cycle_graph(5)
|
||||
weights = [1.0, 2.0, 3.0, 4.0, 5.0]
|
||||
instance = MaxStableSetInstance(graph, weights)
|
||||
solver = LearningSolver()
|
||||
solver.solve(instance)
|
||||
assert instance.model.OBJ() == 8.0
|
||||
|
||||
|
||||
def test_stab_generator():
|
||||
graph = nx.cycle_graph(5)
|
||||
base_weights = [1.0, 2.0, 3.0, 4.0, 5.0]
|
||||
generator = MaxStableSetGenerator(graph=graph,
|
||||
base_weights=base_weights,
|
||||
perturbation_scale=1.0)
|
||||
instances = [generator.generate() for _ in range(100_000)]
|
||||
weights = np.array([instance.weights for instance in instances])
|
||||
weights_avg = np.round(np.average(weights, axis=0), 2)
|
||||
weights_std = np.round(np.std(weights, axis=0), 2)
|
||||
assert list(weights_avg) == [1.50, 2.50, 3.50, 4.50, 5.50]
|
||||
assert list(weights_std) == [0.29] * 5
|
@ -1,4 +1,5 @@
|
||||
pyomo
|
||||
numpy
|
||||
pytest
|
||||
sklearn
|
||||
sklearn
|
||||
networkx
|
Loading…
Reference in new issue