Add Maximum-Weight Stable Set Problem

pull/1/head
Alinson S. Xavier 6 years ago
parent e96f678518
commit 077d5326bc

@ -0,0 +1,50 @@
# MIPLearn: A Machine-Learning Framework for Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
import numpy as np
import pyomo.environ as pe
import networkx as nx
from miplearn import Instance
import random
class MaxStableSetGenerator:
def __init__(self, graph, base_weights, perturbation_scale=1.0):
self.graph = graph
self.base_weights = base_weights
self.perturbation_scale = perturbation_scale
def generate(self):
perturbation = np.random.rand(self.graph.number_of_nodes()) * self.perturbation_scale
weights = self.base_weights + perturbation
return MaxStableSetInstance(self.graph, weights)
class MaxStableSetInstance(Instance):
def __init__(self, graph, weights):
self.graph = graph
self.weights = weights
self.model = None
def to_model(self):
nodes = list(self.graph.nodes)
edges = list(self.graph.edges)
self.model = model = pe.ConcreteModel()
model.x = pe.Var(nodes, domain=pe.Binary)
model.OBJ = pe.Objective(rule=lambda m : sum(m.x[v] * self.weights[v] for v in nodes),
sense=pe.maximize)
model.edge_eqs = pe.ConstraintList()
for edge in edges:
model.edge_eqs.add(model.x[edge[0]] + model.x[edge[1]] <= 1)
return model
def get_instance_features(self):
return np.array(self.weights)
def get_variable_features(self, var, index):
return np.ones(0)
def get_variable_category(self, var, index):
return index

@ -0,0 +1,31 @@
# MIPLearn: A Machine-Learning Framework for Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from miplearn import LearningSolver
from miplearn.problems.stab import MaxStableSetInstance, MaxStableSetGenerator
import networkx as nx
import numpy as np
def test_stab():
graph = nx.cycle_graph(5)
weights = [1.0, 2.0, 3.0, 4.0, 5.0]
instance = MaxStableSetInstance(graph, weights)
solver = LearningSolver()
solver.solve(instance)
assert instance.model.OBJ() == 8.0
def test_stab_generator():
graph = nx.cycle_graph(5)
base_weights = [1.0, 2.0, 3.0, 4.0, 5.0]
generator = MaxStableSetGenerator(graph=graph,
base_weights=base_weights,
perturbation_scale=1.0)
instances = [generator.generate() for _ in range(100_000)]
weights = np.array([instance.weights for instance in instances])
weights_avg = np.round(np.average(weights, axis=0), 2)
weights_std = np.round(np.std(weights, axis=0), 2)
assert list(weights_avg) == [1.50, 2.50, 3.50, 4.50, 5.50]
assert list(weights_std) == [0.29] * 5

@ -1,4 +1,5 @@
pyomo
numpy
pytest
sklearn
sklearn
networkx

@ -7,5 +7,5 @@ setup(
author='Alinson S. Xavier',
author_email='axavier@anl.gov',
packages=['miplearn'],
install_requires=['pyomo', 'numpy', 'sklearn'],
install_requires=['pyomo', 'numpy', 'sklearn', 'networkx'],
)
Loading…
Cancel
Save