parent
e96f678518
commit
077d5326bc
@ -0,0 +1,50 @@
|
|||||||
|
# MIPLearn: A Machine-Learning Framework for Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||||
|
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pyomo.environ as pe
|
||||||
|
import networkx as nx
|
||||||
|
from miplearn import Instance
|
||||||
|
import random
|
||||||
|
|
||||||
|
|
||||||
|
class MaxStableSetGenerator:
|
||||||
|
def __init__(self, graph, base_weights, perturbation_scale=1.0):
|
||||||
|
self.graph = graph
|
||||||
|
self.base_weights = base_weights
|
||||||
|
self.perturbation_scale = perturbation_scale
|
||||||
|
|
||||||
|
def generate(self):
|
||||||
|
perturbation = np.random.rand(self.graph.number_of_nodes()) * self.perturbation_scale
|
||||||
|
weights = self.base_weights + perturbation
|
||||||
|
return MaxStableSetInstance(self.graph, weights)
|
||||||
|
|
||||||
|
|
||||||
|
class MaxStableSetInstance(Instance):
|
||||||
|
def __init__(self, graph, weights):
|
||||||
|
self.graph = graph
|
||||||
|
self.weights = weights
|
||||||
|
self.model = None
|
||||||
|
|
||||||
|
def to_model(self):
|
||||||
|
nodes = list(self.graph.nodes)
|
||||||
|
edges = list(self.graph.edges)
|
||||||
|
self.model = model = pe.ConcreteModel()
|
||||||
|
model.x = pe.Var(nodes, domain=pe.Binary)
|
||||||
|
model.OBJ = pe.Objective(rule=lambda m : sum(m.x[v] * self.weights[v] for v in nodes),
|
||||||
|
sense=pe.maximize)
|
||||||
|
model.edge_eqs = pe.ConstraintList()
|
||||||
|
for edge in edges:
|
||||||
|
model.edge_eqs.add(model.x[edge[0]] + model.x[edge[1]] <= 1)
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
def get_instance_features(self):
|
||||||
|
return np.array(self.weights)
|
||||||
|
|
||||||
|
def get_variable_features(self, var, index):
|
||||||
|
return np.ones(0)
|
||||||
|
|
||||||
|
def get_variable_category(self, var, index):
|
||||||
|
return index
|
@ -0,0 +1,31 @@
|
|||||||
|
# MIPLearn: A Machine-Learning Framework for Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
||||||
|
# Written by Alinson S. Xavier <axavier@anl.gov>
|
||||||
|
|
||||||
|
from miplearn import LearningSolver
|
||||||
|
from miplearn.problems.stab import MaxStableSetInstance, MaxStableSetGenerator
|
||||||
|
import networkx as nx
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
def test_stab():
|
||||||
|
graph = nx.cycle_graph(5)
|
||||||
|
weights = [1.0, 2.0, 3.0, 4.0, 5.0]
|
||||||
|
instance = MaxStableSetInstance(graph, weights)
|
||||||
|
solver = LearningSolver()
|
||||||
|
solver.solve(instance)
|
||||||
|
assert instance.model.OBJ() == 8.0
|
||||||
|
|
||||||
|
|
||||||
|
def test_stab_generator():
|
||||||
|
graph = nx.cycle_graph(5)
|
||||||
|
base_weights = [1.0, 2.0, 3.0, 4.0, 5.0]
|
||||||
|
generator = MaxStableSetGenerator(graph=graph,
|
||||||
|
base_weights=base_weights,
|
||||||
|
perturbation_scale=1.0)
|
||||||
|
instances = [generator.generate() for _ in range(100_000)]
|
||||||
|
weights = np.array([instance.weights for instance in instances])
|
||||||
|
weights_avg = np.round(np.average(weights, axis=0), 2)
|
||||||
|
weights_std = np.round(np.std(weights, axis=0), 2)
|
||||||
|
assert list(weights_avg) == [1.50, 2.50, 3.50, 4.50, 5.50]
|
||||||
|
assert list(weights_std) == [0.29] * 5
|
Loading…
Reference in new issue