mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
MIPLearn v0.3
This commit is contained in:
210
miplearn/extractors/AlvLouWeh2017.py
Normal file
210
miplearn/extractors/AlvLouWeh2017.py
Normal file
@@ -0,0 +1,210 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from typing import Tuple, Optional
|
||||
|
||||
import numpy as np
|
||||
|
||||
from miplearn.extractors.abstract import FeaturesExtractor
|
||||
from miplearn.h5 import H5File
|
||||
|
||||
|
||||
class AlvLouWeh2017Extractor(FeaturesExtractor):
|
||||
def __init__(
|
||||
self,
|
||||
with_m1: bool = True,
|
||||
with_m2: bool = True,
|
||||
with_m3: bool = True,
|
||||
):
|
||||
self.with_m1 = with_m1
|
||||
self.with_m2 = with_m2
|
||||
self.with_m3 = with_m3
|
||||
|
||||
def get_instance_features(self, h5: H5File) -> np.ndarray:
|
||||
raise NotImplemented()
|
||||
|
||||
def get_var_features(self, h5: H5File) -> np.ndarray:
|
||||
"""
|
||||
Computes static variable features described in:
|
||||
Alvarez, A. M., Louveaux, Q., & Wehenkel, L. (2017). A machine learning-based
|
||||
approximation of strong branching. INFORMS Journal on Computing, 29(1),
|
||||
185-195.
|
||||
"""
|
||||
A = h5.get_sparse("static_constr_lhs")
|
||||
b = h5.get_array("static_constr_rhs")
|
||||
c = h5.get_array("static_var_obj_coeffs")
|
||||
c_sa_up = h5.get_array("lp_var_sa_obj_up")
|
||||
c_sa_down = h5.get_array("lp_var_sa_obj_down")
|
||||
values = h5.get_array("lp_var_values")
|
||||
|
||||
assert A is not None
|
||||
assert b is not None
|
||||
assert c is not None
|
||||
|
||||
nvars = len(c)
|
||||
curr = 0
|
||||
max_n_features = 40
|
||||
features = np.zeros((nvars, max_n_features))
|
||||
|
||||
def push(v: np.ndarray) -> None:
|
||||
nonlocal curr
|
||||
assert v.shape == (nvars,), f"{v.shape} != ({nvars},)"
|
||||
features[:, curr] = v
|
||||
curr += 1
|
||||
|
||||
def push_sign_abs(v: np.ndarray) -> None:
|
||||
assert v.shape == (nvars,), f"{v.shape} != ({nvars},)"
|
||||
push(np.sign(v))
|
||||
push(np.abs(v))
|
||||
|
||||
def maxmin(M: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||
M_max = np.ravel(M.max(axis=0).todense())
|
||||
M_min = np.ravel(M.min(axis=0).todense())
|
||||
return M_max, M_min
|
||||
|
||||
with np.errstate(divide="ignore", invalid="ignore"):
|
||||
# Feature 1
|
||||
push(np.sign(c))
|
||||
|
||||
# Feature 2
|
||||
c_pos_sum = c[c > 0].sum()
|
||||
push(np.abs(c) / c_pos_sum)
|
||||
|
||||
# Feature 3
|
||||
c_neg_sum = -c[c < 0].sum()
|
||||
push(np.abs(c) / c_neg_sum)
|
||||
|
||||
if A is not None and self.with_m1:
|
||||
# Compute A_ji / |b_j|
|
||||
M1 = A.T.multiply(1.0 / np.abs(b)).T.tocsr()
|
||||
|
||||
# Select rows with positive b_j and compute max/min
|
||||
M1_pos = M1[b > 0, :]
|
||||
if M1_pos.shape[0] > 0:
|
||||
M1_pos_max = np.asarray(M1_pos.max(axis=0).todense()).flatten()
|
||||
M1_pos_min = np.asarray(M1_pos.min(axis=0).todense()).flatten()
|
||||
else:
|
||||
M1_pos_max = np.zeros(nvars)
|
||||
M1_pos_min = np.zeros(nvars)
|
||||
|
||||
# Select rows with negative b_j and compute max/min
|
||||
M1_neg = M1[b < 0, :]
|
||||
if M1_neg.shape[0] > 0:
|
||||
M1_neg_max = np.asarray(M1_neg.max(axis=0).todense()).flatten()
|
||||
M1_neg_min = np.asarray(M1_neg.min(axis=0).todense()).flatten()
|
||||
else:
|
||||
M1_neg_max = np.zeros(nvars)
|
||||
M1_neg_min = np.zeros(nvars)
|
||||
|
||||
# Features 4-11
|
||||
push_sign_abs(M1_pos_min)
|
||||
push_sign_abs(M1_pos_max)
|
||||
push_sign_abs(M1_neg_min)
|
||||
push_sign_abs(M1_neg_max)
|
||||
|
||||
if A is not None and self.with_m2:
|
||||
# Compute |c_i| / A_ij
|
||||
M2 = A.power(-1).multiply(np.abs(c)).tocsc()
|
||||
|
||||
# Compute max/min
|
||||
M2_max, M2_min = maxmin(M2)
|
||||
|
||||
# Make copies of M2 and erase elements based on sign(c)
|
||||
M2_pos_max = M2_max.copy()
|
||||
M2_neg_max = M2_max.copy()
|
||||
M2_pos_min = M2_min.copy()
|
||||
M2_neg_min = M2_min.copy()
|
||||
M2_pos_max[c <= 0] = 0
|
||||
M2_pos_min[c <= 0] = 0
|
||||
M2_neg_max[c >= 0] = 0
|
||||
M2_neg_min[c >= 0] = 0
|
||||
|
||||
# Features 12-19
|
||||
push_sign_abs(M2_pos_min)
|
||||
push_sign_abs(M2_pos_max)
|
||||
push_sign_abs(M2_neg_min)
|
||||
push_sign_abs(M2_neg_max)
|
||||
|
||||
if A is not None and self.with_m3:
|
||||
# Compute row sums
|
||||
S_pos = A.maximum(0).sum(axis=1)
|
||||
S_neg = np.abs(A.minimum(0).sum(axis=1))
|
||||
|
||||
# Divide A by positive and negative row sums
|
||||
M3_pos = A.multiply(1 / S_pos).tocsr()
|
||||
M3_neg = A.multiply(1 / S_neg).tocsr()
|
||||
|
||||
# Remove +inf and -inf generated by division by zero
|
||||
M3_pos.data[~np.isfinite(M3_pos.data)] = 0.0
|
||||
M3_neg.data[~np.isfinite(M3_neg.data)] = 0.0
|
||||
M3_pos.eliminate_zeros()
|
||||
M3_neg.eliminate_zeros()
|
||||
|
||||
# Split each matrix into positive and negative parts
|
||||
M3_pos_pos = M3_pos.maximum(0)
|
||||
M3_pos_neg = -(M3_pos.minimum(0))
|
||||
M3_neg_pos = M3_neg.maximum(0)
|
||||
M3_neg_neg = -(M3_neg.minimum(0))
|
||||
|
||||
# Calculate max/min
|
||||
M3_pos_pos_max, M3_pos_pos_min = maxmin(M3_pos_pos)
|
||||
M3_pos_neg_max, M3_pos_neg_min = maxmin(M3_pos_neg)
|
||||
M3_neg_pos_max, M3_neg_pos_min = maxmin(M3_neg_pos)
|
||||
M3_neg_neg_max, M3_neg_neg_min = maxmin(M3_neg_neg)
|
||||
|
||||
# Features 20-35
|
||||
push_sign_abs(M3_pos_pos_max)
|
||||
push_sign_abs(M3_pos_pos_min)
|
||||
push_sign_abs(M3_pos_neg_max)
|
||||
push_sign_abs(M3_pos_neg_min)
|
||||
push_sign_abs(M3_neg_pos_max)
|
||||
push_sign_abs(M3_neg_pos_min)
|
||||
push_sign_abs(M3_neg_neg_max)
|
||||
push_sign_abs(M3_neg_neg_min)
|
||||
|
||||
# Feature 36: only available during B&B
|
||||
|
||||
# Feature 37
|
||||
if values is not None:
|
||||
push(
|
||||
np.minimum(
|
||||
values - np.floor(values),
|
||||
np.ceil(values) - values,
|
||||
)
|
||||
)
|
||||
|
||||
# Features 38-43: only available during B&B
|
||||
|
||||
# Feature 44
|
||||
if c_sa_up is not None:
|
||||
assert c_sa_down is not None
|
||||
|
||||
# Features 44 and 46
|
||||
push(np.sign(c_sa_up))
|
||||
push(np.sign(c_sa_down))
|
||||
|
||||
# Feature 45 is duplicated
|
||||
|
||||
# Feature 47-48
|
||||
push(np.log(c - c_sa_down / np.sign(c)))
|
||||
push(np.log(c - c_sa_up / np.sign(c)))
|
||||
|
||||
# Features 49-64: only available during B&B
|
||||
|
||||
features = features[:, 0:curr]
|
||||
_fix_infinity(features)
|
||||
return features
|
||||
|
||||
def get_constr_features(self, h5: H5File) -> np.ndarray:
|
||||
raise NotImplemented()
|
||||
|
||||
|
||||
def _fix_infinity(m: Optional[np.ndarray]) -> None:
|
||||
if m is None:
|
||||
return
|
||||
masked = np.ma.masked_invalid(m) # type: ignore
|
||||
max_values = np.max(masked, axis=0)
|
||||
min_values = np.min(masked, axis=0)
|
||||
m[:] = np.maximum(np.minimum(m, max_values), min_values)
|
||||
m[~np.isfinite(m)] = 0.0
|
||||
0
miplearn/extractors/__init__.py
Normal file
0
miplearn/extractors/__init__.py
Normal file
19
miplearn/extractors/abstract.py
Normal file
19
miplearn/extractors/abstract.py
Normal file
@@ -0,0 +1,19 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
import numpy as np
|
||||
|
||||
from miplearn.h5 import H5File
|
||||
|
||||
|
||||
class FeaturesExtractor(ABC):
|
||||
@abstractmethod
|
||||
def get_instance_features(self, h5: H5File) -> np.ndarray:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_var_features(self, h5: H5File) -> np.ndarray:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_constr_features(self, h5: H5File) -> np.ndarray:
|
||||
pass
|
||||
24
miplearn/extractors/dummy.py
Normal file
24
miplearn/extractors/dummy.py
Normal file
@@ -0,0 +1,24 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
import numpy as np
|
||||
|
||||
from miplearn.extractors.abstract import FeaturesExtractor
|
||||
from miplearn.h5 import H5File
|
||||
|
||||
|
||||
class DummyExtractor(FeaturesExtractor):
|
||||
def get_instance_features(self, h5: H5File) -> np.ndarray:
|
||||
return np.zeros(1)
|
||||
|
||||
def get_var_features(self, h5: H5File) -> np.ndarray:
|
||||
var_types = h5.get_array("static_var_types")
|
||||
assert var_types is not None
|
||||
n_vars = len(var_types)
|
||||
return np.zeros((n_vars, 1))
|
||||
|
||||
def get_constr_features(self, h5: H5File) -> np.ndarray:
|
||||
constr_sense = h5.get_array("static_constr_sense")
|
||||
assert constr_sense is not None
|
||||
n_constr = len(constr_sense)
|
||||
return np.zeros((n_constr, 1))
|
||||
69
miplearn/extractors/fields.py
Normal file
69
miplearn/extractors/fields.py
Normal file
@@ -0,0 +1,69 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
from typing import Optional, List
|
||||
|
||||
import numpy as np
|
||||
|
||||
from miplearn.extractors.abstract import FeaturesExtractor
|
||||
from miplearn.h5 import H5File
|
||||
|
||||
|
||||
class H5FieldsExtractor(FeaturesExtractor):
|
||||
def __init__(
|
||||
self,
|
||||
instance_fields: Optional[List[str]] = None,
|
||||
var_fields: Optional[List[str]] = None,
|
||||
constr_fields: Optional[List[str]] = None,
|
||||
):
|
||||
self.instance_fields = instance_fields
|
||||
self.var_fields = var_fields
|
||||
self.constr_fields = constr_fields
|
||||
|
||||
def get_instance_features(self, h5: H5File) -> np.ndarray:
|
||||
if self.instance_fields is None:
|
||||
raise Exception("No instance fields provided")
|
||||
x = []
|
||||
for field in self.instance_fields:
|
||||
try:
|
||||
data = h5.get_array(field)
|
||||
except ValueError:
|
||||
data = h5.get_scalar(field)
|
||||
assert data is not None
|
||||
x.append(data)
|
||||
x = np.hstack(x)
|
||||
assert len(x.shape) == 1
|
||||
return x
|
||||
|
||||
def get_var_features(self, h5: H5File) -> np.ndarray:
|
||||
var_types = h5.get_array("static_var_types")
|
||||
assert var_types is not None
|
||||
n_vars = len(var_types)
|
||||
if self.var_fields is None:
|
||||
raise Exception("No var fields provided")
|
||||
return self._extract(h5, self.var_fields, n_vars)
|
||||
|
||||
def get_constr_features(self, h5: H5File) -> np.ndarray:
|
||||
constr_sense = h5.get_array("static_constr_sense")
|
||||
assert constr_sense is not None
|
||||
n_constr = len(constr_sense)
|
||||
if self.constr_fields is None:
|
||||
raise Exception("No constr fields provided")
|
||||
return self._extract(h5, self.constr_fields, n_constr)
|
||||
|
||||
def _extract(self, h5, fields, n_expected):
|
||||
x = []
|
||||
for field in fields:
|
||||
try:
|
||||
data = h5.get_array(field)
|
||||
except ValueError:
|
||||
v = h5.get_scalar(field)
|
||||
data = np.repeat(v, n_expected)
|
||||
assert data is not None
|
||||
assert len(data.shape) == 1
|
||||
assert data.shape[0] == n_expected
|
||||
x.append(data)
|
||||
features = np.vstack(x).T
|
||||
assert len(features.shape) == 2
|
||||
assert features.shape[0] == n_expected
|
||||
return features
|
||||
Reference in New Issue
Block a user