mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Add more variable features
This commit is contained in:
@@ -16,7 +16,7 @@ from .components.static_lazy import StaticLazyConstraintsComponent
|
||||
from .features import (
|
||||
Features,
|
||||
TrainingSample,
|
||||
VariableFeatures,
|
||||
Variable,
|
||||
InstanceFeatures,
|
||||
)
|
||||
from .instance.base import Instance
|
||||
|
||||
@@ -36,9 +36,22 @@ class InstanceFeatures:
|
||||
|
||||
|
||||
@dataclass
|
||||
class VariableFeatures:
|
||||
class Variable:
|
||||
basis_status: Optional[str] = None
|
||||
category: Optional[Hashable] = None
|
||||
lower_bound: Optional[float] = None
|
||||
obj_coeff: Optional[float] = None
|
||||
reduced_cost: Optional[float] = None
|
||||
sa_lb_down: Optional[float] = None
|
||||
sa_lb_up: Optional[float] = None
|
||||
sa_obj_down: Optional[float] = None
|
||||
sa_obj_up: Optional[float] = None
|
||||
sa_ub_down: Optional[float] = None
|
||||
sa_ub_up: Optional[float] = None
|
||||
type: Optional[str] = None
|
||||
upper_bound: Optional[float] = None
|
||||
user_features: Optional[List[float]] = None
|
||||
value: Optional[float] = None
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -59,7 +72,7 @@ class Constraint:
|
||||
@dataclass
|
||||
class Features:
|
||||
instance: Optional[InstanceFeatures] = None
|
||||
variables: Optional[Dict[str, VariableFeatures]] = None
|
||||
variables: Optional[Dict[str, Variable]] = None
|
||||
constraints: Optional[Dict[str, Constraint]] = None
|
||||
|
||||
|
||||
@@ -78,8 +91,8 @@ class FeaturesExtractor:
|
||||
def _extract_variables(
|
||||
self,
|
||||
instance: "Instance",
|
||||
) -> Dict[VariableName, VariableFeatures]:
|
||||
result: Dict[VariableName, VariableFeatures] = {}
|
||||
) -> Dict[VariableName, Variable]:
|
||||
result: Dict[VariableName, Variable] = {}
|
||||
for var_name in self.solver.get_variable_names():
|
||||
user_features: Optional[List[float]] = None
|
||||
category: Category = instance.get_variable_category(var_name)
|
||||
@@ -102,7 +115,7 @@ class FeaturesExtractor:
|
||||
f"Found {type(v).__name__} instead "
|
||||
f"for var={var_name}."
|
||||
)
|
||||
result[var_name] = VariableFeatures(
|
||||
result[var_name] = Variable(
|
||||
category=category,
|
||||
user_features=user_features,
|
||||
)
|
||||
|
||||
@@ -10,7 +10,7 @@ from typing import List, Any, Dict, Optional, Hashable
|
||||
|
||||
from overrides import overrides
|
||||
|
||||
from miplearn.features import Constraint
|
||||
from miplearn.features import Constraint, Variable
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.solvers import _RedirectOutput
|
||||
from miplearn.solvers.internal import (
|
||||
@@ -415,6 +415,49 @@ class GurobiSolver(InternalSolver):
|
||||
capacity=67.0,
|
||||
)
|
||||
|
||||
@overrides
|
||||
def get_variables(self) -> Dict[str, Variable]:
|
||||
assert self.model is not None
|
||||
variables = {}
|
||||
for gp_var in self.model.getVars():
|
||||
name = gp_var.varName
|
||||
assert len(name) > 0, f"empty variable name detected"
|
||||
assert name not in variables, f"duplicated variable name detected: {name}"
|
||||
var = self._parse_gurobi_var(gp_var)
|
||||
variables[name] = var
|
||||
return variables
|
||||
|
||||
def _parse_gurobi_var(self, gp_var: Any) -> Variable:
|
||||
assert self.model is not None
|
||||
var = Variable()
|
||||
var.lower_bound = gp_var.lb
|
||||
var.upper_bound = gp_var.ub
|
||||
var.obj_coeff = gp_var.obj
|
||||
var.type = gp_var.vtype
|
||||
|
||||
if self._has_lp_solution:
|
||||
var.reduced_cost = gp_var.rc
|
||||
var.sa_obj_up = gp_var.saobjUp
|
||||
var.sa_obj_down = gp_var.saobjLow
|
||||
var.sa_ub_up = gp_var.saubUp
|
||||
var.sa_ub_down = gp_var.saubLow
|
||||
var.sa_lb_up = gp_var.salbUp
|
||||
var.sa_lb_down = gp_var.salbLow
|
||||
vbasis = gp_var.vbasis
|
||||
if vbasis == 0:
|
||||
var.basis_status = "B"
|
||||
elif vbasis == -1:
|
||||
var.basis_status = "L"
|
||||
elif vbasis == -2:
|
||||
var.basis_status = "U"
|
||||
elif vbasis == -3:
|
||||
var.basis_status = "S"
|
||||
else:
|
||||
raise Exception(f"unknown vbasis: {vbasis}")
|
||||
if self._has_lp_solution or self._has_mip_solution:
|
||||
var.value = gp_var.x
|
||||
return var
|
||||
|
||||
@overrides
|
||||
def get_constraints(self) -> Dict[str, Constraint]:
|
||||
assert self.model is not None
|
||||
@@ -443,11 +486,11 @@ class GurobiSolver(InternalSolver):
|
||||
if self._has_lp_solution:
|
||||
constr.dual_value = gp_constr.pi
|
||||
constr.sa_rhs_up = gp_constr.sarhsup
|
||||
constr.sa_rhs_low = gp_constr.sarhslow
|
||||
constr.sa_rhs_down = gp_constr.sarhslow
|
||||
if gp_constr.cbasis == 0:
|
||||
constr.basis_status = "b"
|
||||
constr.basis_status = "B"
|
||||
elif gp_constr.cbasis == -1:
|
||||
constr.basis_status = "n"
|
||||
constr.basis_status = "N"
|
||||
else:
|
||||
raise Exception(f"unknown cbasis: {gp_constr.cbasis}")
|
||||
if self._has_lp_solution or self._has_mip_solution:
|
||||
@@ -474,6 +517,26 @@ class GurobiSolver(InternalSolver):
|
||||
"user_features",
|
||||
]
|
||||
|
||||
@overrides
|
||||
def get_variable_attrs(self) -> List[str]:
|
||||
return [
|
||||
"basis_status",
|
||||
"category",
|
||||
"lower_bound",
|
||||
"obj_coeff",
|
||||
"reduced_cost",
|
||||
"sa_lb_down",
|
||||
"sa_lb_up",
|
||||
"sa_obj_down",
|
||||
"sa_obj_up",
|
||||
"sa_ub_down",
|
||||
"sa_ub_up",
|
||||
"type",
|
||||
"upper_bound",
|
||||
"user_features",
|
||||
"value",
|
||||
]
|
||||
|
||||
|
||||
class GurobiTestInstanceInfeasible(Instance):
|
||||
@overrides
|
||||
|
||||
@@ -8,7 +8,7 @@ from typing import Any, Dict, List, Optional
|
||||
|
||||
from overrides import EnforceOverrides
|
||||
|
||||
from miplearn.features import Constraint
|
||||
from miplearn.features import Constraint, Variable
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.types import (
|
||||
LPSolveStats,
|
||||
@@ -247,9 +247,21 @@ class InternalSolver(ABC, EnforceOverrides):
|
||||
"""
|
||||
return False
|
||||
|
||||
@abstractmethod
|
||||
def get_variables(self) -> Dict[str, Variable]:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_constraint_attrs(self) -> List[str]:
|
||||
"""
|
||||
Returns a list of constraint attributes supported by this solver.
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_variable_attrs(self) -> List[str]:
|
||||
"""
|
||||
Returns a list of variable attributes supported by this solver.
|
||||
"""
|
||||
pass
|
||||
|
||||
@@ -19,6 +19,7 @@ from pyomo.core.expr.numeric_expr import SumExpression, MonomialTermExpression
|
||||
from pyomo.opt import TerminationCondition
|
||||
from pyomo.opt.base.solvers import SolverFactory
|
||||
|
||||
from miplearn.features import Variable
|
||||
from miplearn.instance.base import Instance
|
||||
from miplearn.solvers import _RedirectOutput
|
||||
from miplearn.solvers.internal import (
|
||||
@@ -363,6 +364,19 @@ class BasePyomoSolver(InternalSolver):
|
||||
capacity=67.0,
|
||||
)
|
||||
|
||||
@overrides
|
||||
def get_variables(self) -> Dict[str, Variable]:
|
||||
assert self.model is not None
|
||||
variables = {}
|
||||
for var in self.model.component_objects(pyomo.core.Var):
|
||||
for idx in var:
|
||||
varname = f"{var}[{idx}]"
|
||||
variables[varname] = self._parse_pyomo_variable(var[idx])
|
||||
return variables
|
||||
|
||||
def _parse_pyomo_variable(self, var: pyomo.core.Var) -> Variable:
|
||||
return Variable()
|
||||
|
||||
@overrides
|
||||
def get_constraints(self) -> Dict[str, Constraint]:
|
||||
assert self.model is not None
|
||||
@@ -385,6 +399,7 @@ class BasePyomoSolver(InternalSolver):
|
||||
self,
|
||||
pyomo_constr: pyomo.core.Constraint,
|
||||
) -> Constraint:
|
||||
assert self.model is not None
|
||||
constr = Constraint()
|
||||
|
||||
# Extract RHS and sense
|
||||
@@ -448,6 +463,26 @@ class BasePyomoSolver(InternalSolver):
|
||||
"user_features",
|
||||
]
|
||||
|
||||
@overrides
|
||||
def get_variable_attrs(self) -> List[str]:
|
||||
return [
|
||||
# "basis_status",
|
||||
# "category",
|
||||
# "lower_bound",
|
||||
# "obj_coeff",
|
||||
# "reduced_cost",
|
||||
# "sa_lb_down",
|
||||
# "sa_lb_up",
|
||||
# "sa_obj_down",
|
||||
# "sa_obj_up",
|
||||
# "sa_ub_down",
|
||||
# "sa_ub_up",
|
||||
# "type",
|
||||
# "upper_bound",
|
||||
# "user_features",
|
||||
# "value",
|
||||
]
|
||||
|
||||
|
||||
class PyomoTestInstanceInfeasible(Instance):
|
||||
@overrides
|
||||
|
||||
@@ -4,9 +4,10 @@
|
||||
|
||||
from typing import Any, Dict
|
||||
|
||||
from miplearn.features import Constraint
|
||||
from miplearn.features import Constraint, Variable
|
||||
from miplearn.solvers.internal import InternalSolver
|
||||
|
||||
inf = float("inf")
|
||||
|
||||
# NOTE:
|
||||
# This file is in the main source folder, so that it can be called from Julia.
|
||||
@@ -20,10 +21,30 @@ def _round_constraints(constraints: Dict[str, Constraint]) -> Dict[str, Constrai
|
||||
return constraints
|
||||
|
||||
|
||||
def _round_variables(vars: Dict[str, Variable]) -> Dict[str, Variable]:
|
||||
for (cname, c) in vars.items():
|
||||
for attr in [
|
||||
"upper_bound",
|
||||
"lower_bound",
|
||||
"obj_coeff",
|
||||
"value",
|
||||
"reduced_cost",
|
||||
"sa_obj_up",
|
||||
"sa_obj_down",
|
||||
"sa_ub_up",
|
||||
"sa_ub_down",
|
||||
"sa_lb_up",
|
||||
"sa_lb_down",
|
||||
]:
|
||||
if getattr(c, attr) is not None:
|
||||
setattr(c, attr, round(getattr(c, attr), 6))
|
||||
return vars
|
||||
|
||||
|
||||
def _remove_unsupported_constr_attrs(
|
||||
solver: InternalSolver,
|
||||
constraints: Dict[str, Constraint],
|
||||
):
|
||||
) -> Dict[str, Constraint]:
|
||||
for (cname, c) in constraints.items():
|
||||
to_remove = []
|
||||
for k in c.__dict__.keys():
|
||||
@@ -34,6 +55,20 @@ def _remove_unsupported_constr_attrs(
|
||||
return constraints
|
||||
|
||||
|
||||
def _remove_unsupported_var_attrs(
|
||||
solver: InternalSolver,
|
||||
variables: Dict[str, Variable],
|
||||
) -> Dict[str, Variable]:
|
||||
for (cname, c) in variables.items():
|
||||
to_remove = []
|
||||
for k in c.__dict__.keys():
|
||||
if k not in solver.get_variable_attrs():
|
||||
to_remove.append(k)
|
||||
for k in to_remove:
|
||||
setattr(c, k, None)
|
||||
return variables
|
||||
|
||||
|
||||
def run_internal_solver_tests(solver: InternalSolver) -> None:
|
||||
run_basic_usage_tests(solver.clone())
|
||||
run_warm_start_tests(solver.clone())
|
||||
@@ -51,8 +86,36 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
|
||||
# Fetch variables (after-load)
|
||||
assert_equals(
|
||||
solver.get_variable_names(),
|
||||
["x[0]", "x[1]", "x[2]", "x[3]"],
|
||||
_round_variables(solver.get_variables()),
|
||||
_remove_unsupported_var_attrs(
|
||||
solver,
|
||||
{
|
||||
"x[0]": Variable(
|
||||
lower_bound=0.0,
|
||||
obj_coeff=505.0,
|
||||
type="B",
|
||||
upper_bound=1.0,
|
||||
),
|
||||
"x[1]": Variable(
|
||||
lower_bound=0.0,
|
||||
obj_coeff=352.0,
|
||||
type="B",
|
||||
upper_bound=1.0,
|
||||
),
|
||||
"x[2]": Variable(
|
||||
lower_bound=0.0,
|
||||
obj_coeff=458.0,
|
||||
type="B",
|
||||
upper_bound=1.0,
|
||||
),
|
||||
"x[3]": Variable(
|
||||
lower_bound=0.0,
|
||||
obj_coeff=220.0,
|
||||
type="B",
|
||||
upper_bound=1.0,
|
||||
),
|
||||
},
|
||||
),
|
||||
)
|
||||
|
||||
# Fetch constraints (after-load)
|
||||
@@ -75,17 +138,75 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
assert_equals(round(lp_stats["LP value"], 3), 1287.923)
|
||||
assert len(lp_stats["LP log"]) > 100
|
||||
|
||||
# Fetch variables (after-lp)
|
||||
solution = solver.get_solution()
|
||||
assert solution is not None
|
||||
assert solution["x[0]"] is not None
|
||||
assert solution["x[1]"] is not None
|
||||
assert solution["x[2]"] is not None
|
||||
assert solution["x[3]"] is not None
|
||||
assert_equals(round(solution["x[0]"], 3), 1.000)
|
||||
assert_equals(round(solution["x[1]"], 3), 0.923)
|
||||
assert_equals(round(solution["x[2]"], 3), 1.000)
|
||||
assert_equals(round(solution["x[3]"], 3), 0.000)
|
||||
# Fetch variables (after-load)
|
||||
assert_equals(
|
||||
_round_variables(solver.get_variables()),
|
||||
_remove_unsupported_var_attrs(
|
||||
solver,
|
||||
{
|
||||
"x[0]": Variable(
|
||||
basis_status="U",
|
||||
lower_bound=0.0,
|
||||
obj_coeff=505.0,
|
||||
reduced_cost=193.615385,
|
||||
sa_lb_down=-inf,
|
||||
sa_lb_up=1.0,
|
||||
sa_obj_down=311.384615,
|
||||
sa_obj_up=inf,
|
||||
sa_ub_down=0.913043,
|
||||
sa_ub_up=2.043478,
|
||||
type="C",
|
||||
upper_bound=1.0,
|
||||
value=1.0,
|
||||
),
|
||||
"x[1]": Variable(
|
||||
basis_status="B",
|
||||
lower_bound=0.0,
|
||||
obj_coeff=352.0,
|
||||
reduced_cost=0.0,
|
||||
sa_lb_down=-inf,
|
||||
sa_lb_up=0.923077,
|
||||
sa_obj_down=317.777778,
|
||||
sa_obj_up=570.869565,
|
||||
sa_ub_down=0.923077,
|
||||
sa_ub_up=inf,
|
||||
type="C",
|
||||
upper_bound=1.0,
|
||||
value=0.923077,
|
||||
),
|
||||
"x[2]": Variable(
|
||||
basis_status="U",
|
||||
lower_bound=0.0,
|
||||
obj_coeff=458.0,
|
||||
reduced_cost=187.230769,
|
||||
sa_lb_down=-inf,
|
||||
sa_lb_up=1.0,
|
||||
sa_obj_down=270.769231,
|
||||
sa_obj_up=inf,
|
||||
sa_ub_down=0.9,
|
||||
sa_ub_up=2.2,
|
||||
type="C",
|
||||
upper_bound=1.0,
|
||||
value=1.0,
|
||||
),
|
||||
"x[3]": Variable(
|
||||
basis_status="L",
|
||||
lower_bound=0.0,
|
||||
obj_coeff=220.0,
|
||||
reduced_cost=-23.692308,
|
||||
sa_lb_down=-0.111111,
|
||||
sa_lb_up=1.0,
|
||||
sa_obj_down=-inf,
|
||||
sa_obj_up=243.692308,
|
||||
sa_ub_down=0.0,
|
||||
sa_ub_up=inf,
|
||||
type="C",
|
||||
upper_bound=1.0,
|
||||
value=0.0,
|
||||
),
|
||||
},
|
||||
),
|
||||
)
|
||||
|
||||
# Fetch constraints (after-lp)
|
||||
assert_equals(
|
||||
@@ -100,9 +221,9 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
sense="<",
|
||||
slack=0.0,
|
||||
dual_value=13.538462,
|
||||
sa_rhs_down=None,
|
||||
sa_rhs_down=43.0,
|
||||
sa_rhs_up=69.0,
|
||||
basis_status="n",
|
||||
basis_status="N",
|
||||
)
|
||||
},
|
||||
),
|
||||
@@ -122,17 +243,43 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
assert_equals(mip_stats["Sense"], "max")
|
||||
assert isinstance(mip_stats["Wallclock time"], float)
|
||||
|
||||
# Fetch variables (after-mip)
|
||||
solution = solver.get_solution()
|
||||
assert solution is not None
|
||||
assert solution["x[0]"] is not None
|
||||
assert solution["x[1]"] is not None
|
||||
assert solution["x[2]"] is not None
|
||||
assert solution["x[3]"] is not None
|
||||
assert_equals(solution["x[0]"], 1.0)
|
||||
assert_equals(solution["x[1]"], 0.0)
|
||||
assert_equals(solution["x[2]"], 1.0)
|
||||
assert_equals(solution["x[3]"], 1.0)
|
||||
# Fetch variables (after-load)
|
||||
assert_equals(
|
||||
_round_variables(solver.get_variables()),
|
||||
_remove_unsupported_var_attrs(
|
||||
solver,
|
||||
{
|
||||
"x[0]": Variable(
|
||||
lower_bound=0.0,
|
||||
obj_coeff=505.0,
|
||||
type="B",
|
||||
upper_bound=1.0,
|
||||
value=1.0,
|
||||
),
|
||||
"x[1]": Variable(
|
||||
lower_bound=0.0,
|
||||
obj_coeff=352.0,
|
||||
type="B",
|
||||
upper_bound=1.0,
|
||||
value=0.0,
|
||||
),
|
||||
"x[2]": Variable(
|
||||
lower_bound=0.0,
|
||||
obj_coeff=458.0,
|
||||
type="B",
|
||||
upper_bound=1.0,
|
||||
value=1.0,
|
||||
),
|
||||
"x[3]": Variable(
|
||||
lower_bound=0.0,
|
||||
obj_coeff=220.0,
|
||||
type="B",
|
||||
upper_bound=1.0,
|
||||
value=1.0,
|
||||
),
|
||||
},
|
||||
),
|
||||
)
|
||||
|
||||
# Fetch constraints (after-mip)
|
||||
assert_equals(
|
||||
|
||||
Reference in New Issue
Block a user