mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Add more variable features
This commit is contained in:
@@ -16,7 +16,7 @@ from .components.static_lazy import StaticLazyConstraintsComponent
|
|||||||
from .features import (
|
from .features import (
|
||||||
Features,
|
Features,
|
||||||
TrainingSample,
|
TrainingSample,
|
||||||
VariableFeatures,
|
Variable,
|
||||||
InstanceFeatures,
|
InstanceFeatures,
|
||||||
)
|
)
|
||||||
from .instance.base import Instance
|
from .instance.base import Instance
|
||||||
|
|||||||
@@ -36,9 +36,22 @@ class InstanceFeatures:
|
|||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class VariableFeatures:
|
class Variable:
|
||||||
|
basis_status: Optional[str] = None
|
||||||
category: Optional[Hashable] = None
|
category: Optional[Hashable] = None
|
||||||
|
lower_bound: Optional[float] = None
|
||||||
|
obj_coeff: Optional[float] = None
|
||||||
|
reduced_cost: Optional[float] = None
|
||||||
|
sa_lb_down: Optional[float] = None
|
||||||
|
sa_lb_up: Optional[float] = None
|
||||||
|
sa_obj_down: Optional[float] = None
|
||||||
|
sa_obj_up: Optional[float] = None
|
||||||
|
sa_ub_down: Optional[float] = None
|
||||||
|
sa_ub_up: Optional[float] = None
|
||||||
|
type: Optional[str] = None
|
||||||
|
upper_bound: Optional[float] = None
|
||||||
user_features: Optional[List[float]] = None
|
user_features: Optional[List[float]] = None
|
||||||
|
value: Optional[float] = None
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
@@ -59,7 +72,7 @@ class Constraint:
|
|||||||
@dataclass
|
@dataclass
|
||||||
class Features:
|
class Features:
|
||||||
instance: Optional[InstanceFeatures] = None
|
instance: Optional[InstanceFeatures] = None
|
||||||
variables: Optional[Dict[str, VariableFeatures]] = None
|
variables: Optional[Dict[str, Variable]] = None
|
||||||
constraints: Optional[Dict[str, Constraint]] = None
|
constraints: Optional[Dict[str, Constraint]] = None
|
||||||
|
|
||||||
|
|
||||||
@@ -78,8 +91,8 @@ class FeaturesExtractor:
|
|||||||
def _extract_variables(
|
def _extract_variables(
|
||||||
self,
|
self,
|
||||||
instance: "Instance",
|
instance: "Instance",
|
||||||
) -> Dict[VariableName, VariableFeatures]:
|
) -> Dict[VariableName, Variable]:
|
||||||
result: Dict[VariableName, VariableFeatures] = {}
|
result: Dict[VariableName, Variable] = {}
|
||||||
for var_name in self.solver.get_variable_names():
|
for var_name in self.solver.get_variable_names():
|
||||||
user_features: Optional[List[float]] = None
|
user_features: Optional[List[float]] = None
|
||||||
category: Category = instance.get_variable_category(var_name)
|
category: Category = instance.get_variable_category(var_name)
|
||||||
@@ -102,7 +115,7 @@ class FeaturesExtractor:
|
|||||||
f"Found {type(v).__name__} instead "
|
f"Found {type(v).__name__} instead "
|
||||||
f"for var={var_name}."
|
f"for var={var_name}."
|
||||||
)
|
)
|
||||||
result[var_name] = VariableFeatures(
|
result[var_name] = Variable(
|
||||||
category=category,
|
category=category,
|
||||||
user_features=user_features,
|
user_features=user_features,
|
||||||
)
|
)
|
||||||
|
|||||||
@@ -10,7 +10,7 @@ from typing import List, Any, Dict, Optional, Hashable
|
|||||||
|
|
||||||
from overrides import overrides
|
from overrides import overrides
|
||||||
|
|
||||||
from miplearn.features import Constraint
|
from miplearn.features import Constraint, Variable
|
||||||
from miplearn.instance.base import Instance
|
from miplearn.instance.base import Instance
|
||||||
from miplearn.solvers import _RedirectOutput
|
from miplearn.solvers import _RedirectOutput
|
||||||
from miplearn.solvers.internal import (
|
from miplearn.solvers.internal import (
|
||||||
@@ -415,6 +415,49 @@ class GurobiSolver(InternalSolver):
|
|||||||
capacity=67.0,
|
capacity=67.0,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@overrides
|
||||||
|
def get_variables(self) -> Dict[str, Variable]:
|
||||||
|
assert self.model is not None
|
||||||
|
variables = {}
|
||||||
|
for gp_var in self.model.getVars():
|
||||||
|
name = gp_var.varName
|
||||||
|
assert len(name) > 0, f"empty variable name detected"
|
||||||
|
assert name not in variables, f"duplicated variable name detected: {name}"
|
||||||
|
var = self._parse_gurobi_var(gp_var)
|
||||||
|
variables[name] = var
|
||||||
|
return variables
|
||||||
|
|
||||||
|
def _parse_gurobi_var(self, gp_var: Any) -> Variable:
|
||||||
|
assert self.model is not None
|
||||||
|
var = Variable()
|
||||||
|
var.lower_bound = gp_var.lb
|
||||||
|
var.upper_bound = gp_var.ub
|
||||||
|
var.obj_coeff = gp_var.obj
|
||||||
|
var.type = gp_var.vtype
|
||||||
|
|
||||||
|
if self._has_lp_solution:
|
||||||
|
var.reduced_cost = gp_var.rc
|
||||||
|
var.sa_obj_up = gp_var.saobjUp
|
||||||
|
var.sa_obj_down = gp_var.saobjLow
|
||||||
|
var.sa_ub_up = gp_var.saubUp
|
||||||
|
var.sa_ub_down = gp_var.saubLow
|
||||||
|
var.sa_lb_up = gp_var.salbUp
|
||||||
|
var.sa_lb_down = gp_var.salbLow
|
||||||
|
vbasis = gp_var.vbasis
|
||||||
|
if vbasis == 0:
|
||||||
|
var.basis_status = "B"
|
||||||
|
elif vbasis == -1:
|
||||||
|
var.basis_status = "L"
|
||||||
|
elif vbasis == -2:
|
||||||
|
var.basis_status = "U"
|
||||||
|
elif vbasis == -3:
|
||||||
|
var.basis_status = "S"
|
||||||
|
else:
|
||||||
|
raise Exception(f"unknown vbasis: {vbasis}")
|
||||||
|
if self._has_lp_solution or self._has_mip_solution:
|
||||||
|
var.value = gp_var.x
|
||||||
|
return var
|
||||||
|
|
||||||
@overrides
|
@overrides
|
||||||
def get_constraints(self) -> Dict[str, Constraint]:
|
def get_constraints(self) -> Dict[str, Constraint]:
|
||||||
assert self.model is not None
|
assert self.model is not None
|
||||||
@@ -443,11 +486,11 @@ class GurobiSolver(InternalSolver):
|
|||||||
if self._has_lp_solution:
|
if self._has_lp_solution:
|
||||||
constr.dual_value = gp_constr.pi
|
constr.dual_value = gp_constr.pi
|
||||||
constr.sa_rhs_up = gp_constr.sarhsup
|
constr.sa_rhs_up = gp_constr.sarhsup
|
||||||
constr.sa_rhs_low = gp_constr.sarhslow
|
constr.sa_rhs_down = gp_constr.sarhslow
|
||||||
if gp_constr.cbasis == 0:
|
if gp_constr.cbasis == 0:
|
||||||
constr.basis_status = "b"
|
constr.basis_status = "B"
|
||||||
elif gp_constr.cbasis == -1:
|
elif gp_constr.cbasis == -1:
|
||||||
constr.basis_status = "n"
|
constr.basis_status = "N"
|
||||||
else:
|
else:
|
||||||
raise Exception(f"unknown cbasis: {gp_constr.cbasis}")
|
raise Exception(f"unknown cbasis: {gp_constr.cbasis}")
|
||||||
if self._has_lp_solution or self._has_mip_solution:
|
if self._has_lp_solution or self._has_mip_solution:
|
||||||
@@ -474,6 +517,26 @@ class GurobiSolver(InternalSolver):
|
|||||||
"user_features",
|
"user_features",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
@overrides
|
||||||
|
def get_variable_attrs(self) -> List[str]:
|
||||||
|
return [
|
||||||
|
"basis_status",
|
||||||
|
"category",
|
||||||
|
"lower_bound",
|
||||||
|
"obj_coeff",
|
||||||
|
"reduced_cost",
|
||||||
|
"sa_lb_down",
|
||||||
|
"sa_lb_up",
|
||||||
|
"sa_obj_down",
|
||||||
|
"sa_obj_up",
|
||||||
|
"sa_ub_down",
|
||||||
|
"sa_ub_up",
|
||||||
|
"type",
|
||||||
|
"upper_bound",
|
||||||
|
"user_features",
|
||||||
|
"value",
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
class GurobiTestInstanceInfeasible(Instance):
|
class GurobiTestInstanceInfeasible(Instance):
|
||||||
@overrides
|
@overrides
|
||||||
|
|||||||
@@ -8,7 +8,7 @@ from typing import Any, Dict, List, Optional
|
|||||||
|
|
||||||
from overrides import EnforceOverrides
|
from overrides import EnforceOverrides
|
||||||
|
|
||||||
from miplearn.features import Constraint
|
from miplearn.features import Constraint, Variable
|
||||||
from miplearn.instance.base import Instance
|
from miplearn.instance.base import Instance
|
||||||
from miplearn.types import (
|
from miplearn.types import (
|
||||||
LPSolveStats,
|
LPSolveStats,
|
||||||
@@ -247,9 +247,21 @@ class InternalSolver(ABC, EnforceOverrides):
|
|||||||
"""
|
"""
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def get_variables(self) -> Dict[str, Variable]:
|
||||||
|
pass
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def get_constraint_attrs(self) -> List[str]:
|
def get_constraint_attrs(self) -> List[str]:
|
||||||
"""
|
"""
|
||||||
Returns a list of constraint attributes supported by this solver.
|
Returns a list of constraint attributes supported by this solver.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def get_variable_attrs(self) -> List[str]:
|
||||||
|
"""
|
||||||
|
Returns a list of variable attributes supported by this solver.
|
||||||
|
"""
|
||||||
pass
|
pass
|
||||||
|
|||||||
@@ -19,6 +19,7 @@ from pyomo.core.expr.numeric_expr import SumExpression, MonomialTermExpression
|
|||||||
from pyomo.opt import TerminationCondition
|
from pyomo.opt import TerminationCondition
|
||||||
from pyomo.opt.base.solvers import SolverFactory
|
from pyomo.opt.base.solvers import SolverFactory
|
||||||
|
|
||||||
|
from miplearn.features import Variable
|
||||||
from miplearn.instance.base import Instance
|
from miplearn.instance.base import Instance
|
||||||
from miplearn.solvers import _RedirectOutput
|
from miplearn.solvers import _RedirectOutput
|
||||||
from miplearn.solvers.internal import (
|
from miplearn.solvers.internal import (
|
||||||
@@ -363,6 +364,19 @@ class BasePyomoSolver(InternalSolver):
|
|||||||
capacity=67.0,
|
capacity=67.0,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@overrides
|
||||||
|
def get_variables(self) -> Dict[str, Variable]:
|
||||||
|
assert self.model is not None
|
||||||
|
variables = {}
|
||||||
|
for var in self.model.component_objects(pyomo.core.Var):
|
||||||
|
for idx in var:
|
||||||
|
varname = f"{var}[{idx}]"
|
||||||
|
variables[varname] = self._parse_pyomo_variable(var[idx])
|
||||||
|
return variables
|
||||||
|
|
||||||
|
def _parse_pyomo_variable(self, var: pyomo.core.Var) -> Variable:
|
||||||
|
return Variable()
|
||||||
|
|
||||||
@overrides
|
@overrides
|
||||||
def get_constraints(self) -> Dict[str, Constraint]:
|
def get_constraints(self) -> Dict[str, Constraint]:
|
||||||
assert self.model is not None
|
assert self.model is not None
|
||||||
@@ -385,6 +399,7 @@ class BasePyomoSolver(InternalSolver):
|
|||||||
self,
|
self,
|
||||||
pyomo_constr: pyomo.core.Constraint,
|
pyomo_constr: pyomo.core.Constraint,
|
||||||
) -> Constraint:
|
) -> Constraint:
|
||||||
|
assert self.model is not None
|
||||||
constr = Constraint()
|
constr = Constraint()
|
||||||
|
|
||||||
# Extract RHS and sense
|
# Extract RHS and sense
|
||||||
@@ -448,6 +463,26 @@ class BasePyomoSolver(InternalSolver):
|
|||||||
"user_features",
|
"user_features",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
@overrides
|
||||||
|
def get_variable_attrs(self) -> List[str]:
|
||||||
|
return [
|
||||||
|
# "basis_status",
|
||||||
|
# "category",
|
||||||
|
# "lower_bound",
|
||||||
|
# "obj_coeff",
|
||||||
|
# "reduced_cost",
|
||||||
|
# "sa_lb_down",
|
||||||
|
# "sa_lb_up",
|
||||||
|
# "sa_obj_down",
|
||||||
|
# "sa_obj_up",
|
||||||
|
# "sa_ub_down",
|
||||||
|
# "sa_ub_up",
|
||||||
|
# "type",
|
||||||
|
# "upper_bound",
|
||||||
|
# "user_features",
|
||||||
|
# "value",
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
class PyomoTestInstanceInfeasible(Instance):
|
class PyomoTestInstanceInfeasible(Instance):
|
||||||
@overrides
|
@overrides
|
||||||
|
|||||||
@@ -4,9 +4,10 @@
|
|||||||
|
|
||||||
from typing import Any, Dict
|
from typing import Any, Dict
|
||||||
|
|
||||||
from miplearn.features import Constraint
|
from miplearn.features import Constraint, Variable
|
||||||
from miplearn.solvers.internal import InternalSolver
|
from miplearn.solvers.internal import InternalSolver
|
||||||
|
|
||||||
|
inf = float("inf")
|
||||||
|
|
||||||
# NOTE:
|
# NOTE:
|
||||||
# This file is in the main source folder, so that it can be called from Julia.
|
# This file is in the main source folder, so that it can be called from Julia.
|
||||||
@@ -20,10 +21,30 @@ def _round_constraints(constraints: Dict[str, Constraint]) -> Dict[str, Constrai
|
|||||||
return constraints
|
return constraints
|
||||||
|
|
||||||
|
|
||||||
|
def _round_variables(vars: Dict[str, Variable]) -> Dict[str, Variable]:
|
||||||
|
for (cname, c) in vars.items():
|
||||||
|
for attr in [
|
||||||
|
"upper_bound",
|
||||||
|
"lower_bound",
|
||||||
|
"obj_coeff",
|
||||||
|
"value",
|
||||||
|
"reduced_cost",
|
||||||
|
"sa_obj_up",
|
||||||
|
"sa_obj_down",
|
||||||
|
"sa_ub_up",
|
||||||
|
"sa_ub_down",
|
||||||
|
"sa_lb_up",
|
||||||
|
"sa_lb_down",
|
||||||
|
]:
|
||||||
|
if getattr(c, attr) is not None:
|
||||||
|
setattr(c, attr, round(getattr(c, attr), 6))
|
||||||
|
return vars
|
||||||
|
|
||||||
|
|
||||||
def _remove_unsupported_constr_attrs(
|
def _remove_unsupported_constr_attrs(
|
||||||
solver: InternalSolver,
|
solver: InternalSolver,
|
||||||
constraints: Dict[str, Constraint],
|
constraints: Dict[str, Constraint],
|
||||||
):
|
) -> Dict[str, Constraint]:
|
||||||
for (cname, c) in constraints.items():
|
for (cname, c) in constraints.items():
|
||||||
to_remove = []
|
to_remove = []
|
||||||
for k in c.__dict__.keys():
|
for k in c.__dict__.keys():
|
||||||
@@ -34,6 +55,20 @@ def _remove_unsupported_constr_attrs(
|
|||||||
return constraints
|
return constraints
|
||||||
|
|
||||||
|
|
||||||
|
def _remove_unsupported_var_attrs(
|
||||||
|
solver: InternalSolver,
|
||||||
|
variables: Dict[str, Variable],
|
||||||
|
) -> Dict[str, Variable]:
|
||||||
|
for (cname, c) in variables.items():
|
||||||
|
to_remove = []
|
||||||
|
for k in c.__dict__.keys():
|
||||||
|
if k not in solver.get_variable_attrs():
|
||||||
|
to_remove.append(k)
|
||||||
|
for k in to_remove:
|
||||||
|
setattr(c, k, None)
|
||||||
|
return variables
|
||||||
|
|
||||||
|
|
||||||
def run_internal_solver_tests(solver: InternalSolver) -> None:
|
def run_internal_solver_tests(solver: InternalSolver) -> None:
|
||||||
run_basic_usage_tests(solver.clone())
|
run_basic_usage_tests(solver.clone())
|
||||||
run_warm_start_tests(solver.clone())
|
run_warm_start_tests(solver.clone())
|
||||||
@@ -51,8 +86,36 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
|||||||
|
|
||||||
# Fetch variables (after-load)
|
# Fetch variables (after-load)
|
||||||
assert_equals(
|
assert_equals(
|
||||||
solver.get_variable_names(),
|
_round_variables(solver.get_variables()),
|
||||||
["x[0]", "x[1]", "x[2]", "x[3]"],
|
_remove_unsupported_var_attrs(
|
||||||
|
solver,
|
||||||
|
{
|
||||||
|
"x[0]": Variable(
|
||||||
|
lower_bound=0.0,
|
||||||
|
obj_coeff=505.0,
|
||||||
|
type="B",
|
||||||
|
upper_bound=1.0,
|
||||||
|
),
|
||||||
|
"x[1]": Variable(
|
||||||
|
lower_bound=0.0,
|
||||||
|
obj_coeff=352.0,
|
||||||
|
type="B",
|
||||||
|
upper_bound=1.0,
|
||||||
|
),
|
||||||
|
"x[2]": Variable(
|
||||||
|
lower_bound=0.0,
|
||||||
|
obj_coeff=458.0,
|
||||||
|
type="B",
|
||||||
|
upper_bound=1.0,
|
||||||
|
),
|
||||||
|
"x[3]": Variable(
|
||||||
|
lower_bound=0.0,
|
||||||
|
obj_coeff=220.0,
|
||||||
|
type="B",
|
||||||
|
upper_bound=1.0,
|
||||||
|
),
|
||||||
|
},
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
# Fetch constraints (after-load)
|
# Fetch constraints (after-load)
|
||||||
@@ -75,17 +138,75 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
|||||||
assert_equals(round(lp_stats["LP value"], 3), 1287.923)
|
assert_equals(round(lp_stats["LP value"], 3), 1287.923)
|
||||||
assert len(lp_stats["LP log"]) > 100
|
assert len(lp_stats["LP log"]) > 100
|
||||||
|
|
||||||
# Fetch variables (after-lp)
|
# Fetch variables (after-load)
|
||||||
solution = solver.get_solution()
|
assert_equals(
|
||||||
assert solution is not None
|
_round_variables(solver.get_variables()),
|
||||||
assert solution["x[0]"] is not None
|
_remove_unsupported_var_attrs(
|
||||||
assert solution["x[1]"] is not None
|
solver,
|
||||||
assert solution["x[2]"] is not None
|
{
|
||||||
assert solution["x[3]"] is not None
|
"x[0]": Variable(
|
||||||
assert_equals(round(solution["x[0]"], 3), 1.000)
|
basis_status="U",
|
||||||
assert_equals(round(solution["x[1]"], 3), 0.923)
|
lower_bound=0.0,
|
||||||
assert_equals(round(solution["x[2]"], 3), 1.000)
|
obj_coeff=505.0,
|
||||||
assert_equals(round(solution["x[3]"], 3), 0.000)
|
reduced_cost=193.615385,
|
||||||
|
sa_lb_down=-inf,
|
||||||
|
sa_lb_up=1.0,
|
||||||
|
sa_obj_down=311.384615,
|
||||||
|
sa_obj_up=inf,
|
||||||
|
sa_ub_down=0.913043,
|
||||||
|
sa_ub_up=2.043478,
|
||||||
|
type="C",
|
||||||
|
upper_bound=1.0,
|
||||||
|
value=1.0,
|
||||||
|
),
|
||||||
|
"x[1]": Variable(
|
||||||
|
basis_status="B",
|
||||||
|
lower_bound=0.0,
|
||||||
|
obj_coeff=352.0,
|
||||||
|
reduced_cost=0.0,
|
||||||
|
sa_lb_down=-inf,
|
||||||
|
sa_lb_up=0.923077,
|
||||||
|
sa_obj_down=317.777778,
|
||||||
|
sa_obj_up=570.869565,
|
||||||
|
sa_ub_down=0.923077,
|
||||||
|
sa_ub_up=inf,
|
||||||
|
type="C",
|
||||||
|
upper_bound=1.0,
|
||||||
|
value=0.923077,
|
||||||
|
),
|
||||||
|
"x[2]": Variable(
|
||||||
|
basis_status="U",
|
||||||
|
lower_bound=0.0,
|
||||||
|
obj_coeff=458.0,
|
||||||
|
reduced_cost=187.230769,
|
||||||
|
sa_lb_down=-inf,
|
||||||
|
sa_lb_up=1.0,
|
||||||
|
sa_obj_down=270.769231,
|
||||||
|
sa_obj_up=inf,
|
||||||
|
sa_ub_down=0.9,
|
||||||
|
sa_ub_up=2.2,
|
||||||
|
type="C",
|
||||||
|
upper_bound=1.0,
|
||||||
|
value=1.0,
|
||||||
|
),
|
||||||
|
"x[3]": Variable(
|
||||||
|
basis_status="L",
|
||||||
|
lower_bound=0.0,
|
||||||
|
obj_coeff=220.0,
|
||||||
|
reduced_cost=-23.692308,
|
||||||
|
sa_lb_down=-0.111111,
|
||||||
|
sa_lb_up=1.0,
|
||||||
|
sa_obj_down=-inf,
|
||||||
|
sa_obj_up=243.692308,
|
||||||
|
sa_ub_down=0.0,
|
||||||
|
sa_ub_up=inf,
|
||||||
|
type="C",
|
||||||
|
upper_bound=1.0,
|
||||||
|
value=0.0,
|
||||||
|
),
|
||||||
|
},
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
# Fetch constraints (after-lp)
|
# Fetch constraints (after-lp)
|
||||||
assert_equals(
|
assert_equals(
|
||||||
@@ -100,9 +221,9 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
|||||||
sense="<",
|
sense="<",
|
||||||
slack=0.0,
|
slack=0.0,
|
||||||
dual_value=13.538462,
|
dual_value=13.538462,
|
||||||
sa_rhs_down=None,
|
sa_rhs_down=43.0,
|
||||||
sa_rhs_up=69.0,
|
sa_rhs_up=69.0,
|
||||||
basis_status="n",
|
basis_status="N",
|
||||||
)
|
)
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
@@ -122,17 +243,43 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
|||||||
assert_equals(mip_stats["Sense"], "max")
|
assert_equals(mip_stats["Sense"], "max")
|
||||||
assert isinstance(mip_stats["Wallclock time"], float)
|
assert isinstance(mip_stats["Wallclock time"], float)
|
||||||
|
|
||||||
# Fetch variables (after-mip)
|
# Fetch variables (after-load)
|
||||||
solution = solver.get_solution()
|
assert_equals(
|
||||||
assert solution is not None
|
_round_variables(solver.get_variables()),
|
||||||
assert solution["x[0]"] is not None
|
_remove_unsupported_var_attrs(
|
||||||
assert solution["x[1]"] is not None
|
solver,
|
||||||
assert solution["x[2]"] is not None
|
{
|
||||||
assert solution["x[3]"] is not None
|
"x[0]": Variable(
|
||||||
assert_equals(solution["x[0]"], 1.0)
|
lower_bound=0.0,
|
||||||
assert_equals(solution["x[1]"], 0.0)
|
obj_coeff=505.0,
|
||||||
assert_equals(solution["x[2]"], 1.0)
|
type="B",
|
||||||
assert_equals(solution["x[3]"], 1.0)
|
upper_bound=1.0,
|
||||||
|
value=1.0,
|
||||||
|
),
|
||||||
|
"x[1]": Variable(
|
||||||
|
lower_bound=0.0,
|
||||||
|
obj_coeff=352.0,
|
||||||
|
type="B",
|
||||||
|
upper_bound=1.0,
|
||||||
|
value=0.0,
|
||||||
|
),
|
||||||
|
"x[2]": Variable(
|
||||||
|
lower_bound=0.0,
|
||||||
|
obj_coeff=458.0,
|
||||||
|
type="B",
|
||||||
|
upper_bound=1.0,
|
||||||
|
value=1.0,
|
||||||
|
),
|
||||||
|
"x[3]": Variable(
|
||||||
|
lower_bound=0.0,
|
||||||
|
obj_coeff=220.0,
|
||||||
|
type="B",
|
||||||
|
upper_bound=1.0,
|
||||||
|
value=1.0,
|
||||||
|
),
|
||||||
|
},
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
# Fetch constraints (after-mip)
|
# Fetch constraints (after-mip)
|
||||||
assert_equals(
|
assert_equals(
|
||||||
|
|||||||
@@ -12,7 +12,7 @@ from miplearn.classifiers import Classifier
|
|||||||
from miplearn.classifiers.threshold import Threshold
|
from miplearn.classifiers.threshold import Threshold
|
||||||
from miplearn.components import classifier_evaluation_dict
|
from miplearn.components import classifier_evaluation_dict
|
||||||
from miplearn.components.primal import PrimalSolutionComponent
|
from miplearn.components.primal import PrimalSolutionComponent
|
||||||
from miplearn.features import TrainingSample, VariableFeatures, Features
|
from miplearn.features import TrainingSample, Variable, Features
|
||||||
from miplearn.instance.base import Instance
|
from miplearn.instance.base import Instance
|
||||||
from miplearn.problems.tsp import TravelingSalesmanGenerator
|
from miplearn.problems.tsp import TravelingSalesmanGenerator
|
||||||
from miplearn.solvers.learning import LearningSolver
|
from miplearn.solvers.learning import LearningSolver
|
||||||
@@ -21,18 +21,18 @@ from miplearn.solvers.learning import LearningSolver
|
|||||||
def test_xy() -> None:
|
def test_xy() -> None:
|
||||||
features = Features(
|
features = Features(
|
||||||
variables={
|
variables={
|
||||||
"x[0]": VariableFeatures(
|
"x[0]": Variable(
|
||||||
category="default",
|
category="default",
|
||||||
user_features=[0.0, 0.0],
|
user_features=[0.0, 0.0],
|
||||||
),
|
),
|
||||||
"x[1]": VariableFeatures(
|
"x[1]": Variable(
|
||||||
category=None,
|
category=None,
|
||||||
),
|
),
|
||||||
"x[2]": VariableFeatures(
|
"x[2]": Variable(
|
||||||
category="default",
|
category="default",
|
||||||
user_features=[1.0, 0.0],
|
user_features=[1.0, 0.0],
|
||||||
),
|
),
|
||||||
"x[3]": VariableFeatures(
|
"x[3]": Variable(
|
||||||
category="default",
|
category="default",
|
||||||
user_features=[1.0, 1.0],
|
user_features=[1.0, 1.0],
|
||||||
),
|
),
|
||||||
@@ -78,18 +78,18 @@ def test_xy() -> None:
|
|||||||
def test_xy_without_lp_solution() -> None:
|
def test_xy_without_lp_solution() -> None:
|
||||||
features = Features(
|
features = Features(
|
||||||
variables={
|
variables={
|
||||||
"x[0]": VariableFeatures(
|
"x[0]": Variable(
|
||||||
category="default",
|
category="default",
|
||||||
user_features=[0.0, 0.0],
|
user_features=[0.0, 0.0],
|
||||||
),
|
),
|
||||||
"x[1]": VariableFeatures(
|
"x[1]": Variable(
|
||||||
category=None,
|
category=None,
|
||||||
),
|
),
|
||||||
"x[2]": VariableFeatures(
|
"x[2]": Variable(
|
||||||
category="default",
|
category="default",
|
||||||
user_features=[1.0, 0.0],
|
user_features=[1.0, 0.0],
|
||||||
),
|
),
|
||||||
"x[3]": VariableFeatures(
|
"x[3]": Variable(
|
||||||
category="default",
|
category="default",
|
||||||
user_features=[1.0, 1.0],
|
user_features=[1.0, 1.0],
|
||||||
),
|
),
|
||||||
@@ -141,15 +141,15 @@ def test_predict() -> None:
|
|||||||
thr.predict = Mock(return_value=[0.75, 0.75])
|
thr.predict = Mock(return_value=[0.75, 0.75])
|
||||||
features = Features(
|
features = Features(
|
||||||
variables={
|
variables={
|
||||||
"x[0]": VariableFeatures(
|
"x[0]": Variable(
|
||||||
category="default",
|
category="default",
|
||||||
user_features=[0.0, 0.0],
|
user_features=[0.0, 0.0],
|
||||||
),
|
),
|
||||||
"x[1]": VariableFeatures(
|
"x[1]": Variable(
|
||||||
category="default",
|
category="default",
|
||||||
user_features=[0.0, 2.0],
|
user_features=[0.0, 2.0],
|
||||||
),
|
),
|
||||||
"x[2]": VariableFeatures(
|
"x[2]": Variable(
|
||||||
category="default",
|
category="default",
|
||||||
user_features=[2.0, 0.0],
|
user_features=[2.0, 0.0],
|
||||||
),
|
),
|
||||||
@@ -235,11 +235,11 @@ def test_evaluate() -> None:
|
|||||||
}
|
}
|
||||||
features: Features = Features(
|
features: Features = Features(
|
||||||
variables={
|
variables={
|
||||||
"x[0]": VariableFeatures(),
|
"x[0]": Variable(),
|
||||||
"x[1]": VariableFeatures(),
|
"x[1]": Variable(),
|
||||||
"x[2]": VariableFeatures(),
|
"x[2]": Variable(),
|
||||||
"x[3]": VariableFeatures(),
|
"x[3]": Variable(),
|
||||||
"x[4]": VariableFeatures(),
|
"x[4]": Variable(),
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
instance = Mock(spec=Instance)
|
instance = Mock(spec=Instance)
|
||||||
|
|||||||
@@ -5,7 +5,7 @@
|
|||||||
from miplearn.features import (
|
from miplearn.features import (
|
||||||
FeaturesExtractor,
|
FeaturesExtractor,
|
||||||
InstanceFeatures,
|
InstanceFeatures,
|
||||||
VariableFeatures,
|
Variable,
|
||||||
Constraint,
|
Constraint,
|
||||||
)
|
)
|
||||||
from miplearn.solvers.gurobi import GurobiSolver
|
from miplearn.solvers.gurobi import GurobiSolver
|
||||||
@@ -19,19 +19,19 @@ def test_knapsack() -> None:
|
|||||||
solver.set_instance(instance, model)
|
solver.set_instance(instance, model)
|
||||||
FeaturesExtractor(solver).extract(instance)
|
FeaturesExtractor(solver).extract(instance)
|
||||||
assert instance.features.variables == {
|
assert instance.features.variables == {
|
||||||
"x[0]": VariableFeatures(
|
"x[0]": Variable(
|
||||||
category="default",
|
category="default",
|
||||||
user_features=[23.0, 505.0],
|
user_features=[23.0, 505.0],
|
||||||
),
|
),
|
||||||
"x[1]": VariableFeatures(
|
"x[1]": Variable(
|
||||||
category="default",
|
category="default",
|
||||||
user_features=[26.0, 352.0],
|
user_features=[26.0, 352.0],
|
||||||
),
|
),
|
||||||
"x[2]": VariableFeatures(
|
"x[2]": Variable(
|
||||||
category="default",
|
category="default",
|
||||||
user_features=[20.0, 458.0],
|
user_features=[20.0, 458.0],
|
||||||
),
|
),
|
||||||
"x[3]": VariableFeatures(
|
"x[3]": Variable(
|
||||||
category="default",
|
category="default",
|
||||||
user_features=[18.0, 220.0],
|
user_features=[18.0, 220.0],
|
||||||
),
|
),
|
||||||
|
|||||||
Reference in New Issue
Block a user