mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Use np.ndarray for constraint names
This commit is contained in:
@@ -200,11 +200,11 @@ class FeaturesExtractor:
|
||||
) -> None:
|
||||
has_static_lazy = instance.has_static_lazy_constraints()
|
||||
user_features: List[Optional[List[float]]] = []
|
||||
categories: List[Optional[str]] = []
|
||||
categories: List[Optional[bytes]] = []
|
||||
lazy: List[bool] = []
|
||||
constr_categories_dict = instance.get_constraint_categories()
|
||||
constr_features_dict = instance.get_constraint_features()
|
||||
constr_names = sample.get_vector("static_constr_names")
|
||||
constr_names = sample.get_array("static_constr_names")
|
||||
assert constr_names is not None
|
||||
|
||||
for (cidx, cname) in enumerate(constr_names):
|
||||
@@ -215,8 +215,8 @@ class FeaturesExtractor:
|
||||
user_features.append(None)
|
||||
categories.append(None)
|
||||
continue
|
||||
assert isinstance(category, str), (
|
||||
f"Constraint category must be a string. "
|
||||
assert isinstance(category, bytes), (
|
||||
f"Constraint category must be bytes. "
|
||||
f"Found {type(category).__name__} instead for cname={cname}.",
|
||||
)
|
||||
categories.append(category)
|
||||
@@ -242,7 +242,7 @@ class FeaturesExtractor:
|
||||
lazy.append(False)
|
||||
sample.put_vector_list("static_constr_features", user_features)
|
||||
sample.put_vector("static_constr_lazy", lazy)
|
||||
sample.put_vector("static_constr_categories", categories)
|
||||
sample.put_array("static_constr_categories", np.array(categories, dtype="S"))
|
||||
|
||||
def _extract_user_features_instance(
|
||||
self,
|
||||
|
||||
@@ -211,7 +211,7 @@ class GurobiSolver(InternalSolver):
|
||||
raise Exception(f"unknown cbasis: {v}")
|
||||
|
||||
gp_constrs = model.getConstrs()
|
||||
constr_names = model.getAttr("constrName", gp_constrs)
|
||||
constr_names = np.array(model.getAttr("constrName", gp_constrs), dtype="S")
|
||||
lhs: Optional[List] = None
|
||||
rhs, senses, slacks, basis_status = None, None, None, None
|
||||
dual_value, basis_status, sa_rhs_up, sa_rhs_down = None, None, None, None
|
||||
|
||||
@@ -72,7 +72,7 @@ class Constraints:
|
||||
dual_values: Optional[np.ndarray] = None
|
||||
lazy: Optional[List[bool]] = None
|
||||
lhs: Optional[List[List[Tuple[bytes, float]]]] = None
|
||||
names: Optional[List[str]] = None
|
||||
names: Optional[np.ndarray] = None
|
||||
rhs: Optional[np.ndarray] = None
|
||||
sa_rhs_down: Optional[np.ndarray] = None
|
||||
sa_rhs_up: Optional[np.ndarray] = None
|
||||
@@ -86,7 +86,7 @@ class Constraints:
|
||||
dual_values=sample.get_vector("lp_constr_dual_values"),
|
||||
lazy=sample.get_vector("static_constr_lazy"),
|
||||
# lhs=sample.get_vector("static_constr_lhs"),
|
||||
names=sample.get_vector("static_constr_names"),
|
||||
names=sample.get_array("static_constr_names"),
|
||||
rhs=sample.get_vector("static_constr_rhs"),
|
||||
sa_rhs_down=sample.get_vector("lp_constr_sa_rhs_down"),
|
||||
sa_rhs_up=sample.get_vector("lp_constr_sa_rhs_up"),
|
||||
@@ -100,7 +100,7 @@ class Constraints:
|
||||
dual_values=(
|
||||
None if self.dual_values is None else self.dual_values[selected]
|
||||
),
|
||||
names=self._filter(self.names, selected),
|
||||
names=(None if self.names is None else self.names[selected]),
|
||||
lazy=self._filter(self.lazy, selected),
|
||||
lhs=self._filter(self.lhs, selected),
|
||||
rhs=(None if self.rhs is None else self.rhs[selected]),
|
||||
@@ -254,7 +254,7 @@ class InternalSolver(ABC):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def remove_constraints(self, names: List[str]) -> None:
|
||||
def remove_constraints(self, names: np.ndarray) -> None:
|
||||
"""
|
||||
Removes the given constraints from the model.
|
||||
"""
|
||||
|
||||
@@ -96,7 +96,7 @@ class BasePyomoSolver(InternalSolver):
|
||||
else:
|
||||
expr = lhs >= cf.rhs[i]
|
||||
cl = pe.Constraint(expr=expr, name=name)
|
||||
self.model.add_component(name, cl)
|
||||
self.model.add_component(name.decode(), cl)
|
||||
self._pyomo_solver.add_constraint(cl)
|
||||
self._cname_to_constr[name] = cl
|
||||
self._termination_condition = ""
|
||||
@@ -233,7 +233,7 @@ class BasePyomoSolver(InternalSolver):
|
||||
_parse_constraint(constr)
|
||||
|
||||
return Constraints(
|
||||
names=_none_if_empty(names),
|
||||
names=_none_if_empty(np.array(names, dtype="S")),
|
||||
rhs=_none_if_empty(np.array(rhs, dtype=float)),
|
||||
senses=_none_if_empty(senses),
|
||||
lhs=_none_if_empty(lhs),
|
||||
|
||||
@@ -53,7 +53,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
assert_equals(
|
||||
solver.get_constraints(),
|
||||
Constraints(
|
||||
names=["eq_capacity"],
|
||||
names=np.array(["eq_capacity"], dtype="S"),
|
||||
rhs=np.array([0.0]),
|
||||
lhs=[
|
||||
[
|
||||
@@ -110,7 +110,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
Constraints(
|
||||
basis_status=["N"],
|
||||
dual_values=np.array([13.538462]),
|
||||
names=["eq_capacity"],
|
||||
names=np.array(["eq_capacity"], dtype="S"),
|
||||
sa_rhs_down=np.array([-24.0]),
|
||||
sa_rhs_up=np.array([2.0]),
|
||||
slacks=np.array([0.0]),
|
||||
@@ -153,7 +153,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
_filter_attrs(
|
||||
solver.get_constraint_attrs(),
|
||||
Constraints(
|
||||
names=["eq_capacity"],
|
||||
names=np.array(["eq_capacity"], dtype="S"),
|
||||
slacks=np.array([0.0]),
|
||||
),
|
||||
),
|
||||
@@ -161,7 +161,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
|
||||
# Build new constraint and verify that it is violated
|
||||
cf = Constraints(
|
||||
names=["cut"],
|
||||
names=np.array(["cut"], dtype="S"),
|
||||
lhs=[[(b"x[0]", 1.0)]],
|
||||
rhs=np.array([0.0]),
|
||||
senses=["<"],
|
||||
@@ -175,7 +175,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
_filter_attrs(
|
||||
solver.get_constraint_attrs(),
|
||||
Constraints(
|
||||
names=["eq_capacity", "cut"],
|
||||
names=np.array(["eq_capacity", "cut"], dtype="S"),
|
||||
rhs=np.array([0.0, 0.0]),
|
||||
lhs=[
|
||||
[
|
||||
@@ -198,7 +198,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
|
||||
assert_equals(solver.are_constraints_satisfied(cf), [True])
|
||||
|
||||
# Remove the new constraint
|
||||
solver.remove_constraints(["cut"])
|
||||
solver.remove_constraints(np.array(["cut"], dtype="S"))
|
||||
|
||||
# New constraint should no longer affect solution
|
||||
stats = solver.solve()
|
||||
|
||||
@@ -32,9 +32,9 @@ def sample() -> Sample:
|
||||
"type-b",
|
||||
],
|
||||
"static_constr_lazy": [True, True, True, True, False],
|
||||
"static_constr_names": ["c1", "c2", "c3", "c4", "c5"],
|
||||
"static_constr_names": np.array(["c1", "c2", "c3", "c4", "c5"], dtype="S"),
|
||||
"static_instance_features": [5.0],
|
||||
"mip_constr_lazy_enforced": {"c1", "c2", "c4"},
|
||||
"mip_constr_lazy_enforced": {b"c1", b"c2", b"c4"},
|
||||
"lp_constr_features": [
|
||||
[1.0, 1.0],
|
||||
[1.0, 2.0],
|
||||
@@ -110,7 +110,7 @@ def test_usage_with_solver(instance: Instance) -> None:
|
||||
|
||||
# Should ask internal solver to remove some constraints
|
||||
assert internal.remove_constraints.call_count == 1
|
||||
internal.remove_constraints.assert_has_calls([call(["c3"])])
|
||||
internal.remove_constraints.assert_has_calls([call([b"c3"])])
|
||||
|
||||
# LearningSolver calls after_iteration (first time)
|
||||
should_repeat = component.iteration_cb(solver, instance, None)
|
||||
@@ -142,7 +142,7 @@ def test_usage_with_solver(instance: Instance) -> None:
|
||||
)
|
||||
|
||||
# Should update training sample
|
||||
assert sample.get_set("mip_constr_lazy_enforced") == {"c1", "c2", "c3", "c4"}
|
||||
assert sample.get_set("mip_constr_lazy_enforced") == {b"c1", b"c2", b"c3", b"c4"}
|
||||
#
|
||||
# Should update stats
|
||||
assert stats["LazyStatic: Removed"] == 1
|
||||
@@ -170,7 +170,7 @@ def test_sample_predict(sample: Sample) -> None:
|
||||
]
|
||||
)
|
||||
pred = comp.sample_predict(sample)
|
||||
assert pred == ["c1", "c2", "c4"]
|
||||
assert pred == [b"c1", b"c2", b"c4"]
|
||||
|
||||
|
||||
def test_fit_xy() -> None:
|
||||
|
||||
@@ -53,7 +53,10 @@ def test_knapsack() -> None:
|
||||
["default", "default", "default", "default", None],
|
||||
)
|
||||
assert sample.get_vector_list("static_var_features") is not None
|
||||
assert_equals(sample.get_vector("static_constr_names"), ["eq_capacity"])
|
||||
assert_equals(
|
||||
sample.get_vector("static_constr_names"),
|
||||
np.array(["eq_capacity"], dtype="S"),
|
||||
)
|
||||
# assert_equals(
|
||||
# sample.get_vector("static_constr_lhs"),
|
||||
# [
|
||||
@@ -69,7 +72,10 @@ def test_knapsack() -> None:
|
||||
assert_equals(sample.get_vector("static_constr_rhs"), [0.0])
|
||||
assert_equals(sample.get_vector("static_constr_senses"), ["="])
|
||||
assert_equals(sample.get_vector("static_constr_features"), [None])
|
||||
assert_equals(sample.get_vector("static_constr_categories"), ["eq_capacity"])
|
||||
assert_equals(
|
||||
sample.get_vector("static_constr_categories"),
|
||||
np.array(["eq_capacity"], dtype="S"),
|
||||
)
|
||||
assert_equals(sample.get_vector("static_constr_lazy"), [False])
|
||||
assert_equals(sample.get_vector("static_instance_features"), [67.0, 21.75])
|
||||
assert_equals(sample.get_scalar("static_constr_lazy_count"), 0)
|
||||
@@ -124,7 +130,7 @@ def test_knapsack() -> None:
|
||||
|
||||
def test_constraint_getindex() -> None:
|
||||
cf = Constraints(
|
||||
names=["c1", "c2", "c3"],
|
||||
names=np.array(["c1", "c2", "c3"], dtype="S"),
|
||||
rhs=np.array([1.0, 2.0, 3.0]),
|
||||
senses=["=", "<", ">"],
|
||||
lhs=[
|
||||
@@ -145,7 +151,7 @@ def test_constraint_getindex() -> None:
|
||||
assert_equals(
|
||||
cf[[True, False, True]],
|
||||
Constraints(
|
||||
names=["c1", "c3"],
|
||||
names=np.array(["c1", "c3"], dtype="S"),
|
||||
rhs=np.array([1.0, 3.0]),
|
||||
senses=["=", ">"],
|
||||
lhs=[
|
||||
|
||||
Reference in New Issue
Block a user