Use np.ndarray for constraint names

master
Alinson S. Xavier 4 years ago
parent 45667ac2e4
commit 9ddda7e1e2
No known key found for this signature in database
GPG Key ID: DCA0DAD4D2F58624

@ -200,11 +200,11 @@ class FeaturesExtractor:
) -> None:
has_static_lazy = instance.has_static_lazy_constraints()
user_features: List[Optional[List[float]]] = []
categories: List[Optional[str]] = []
categories: List[Optional[bytes]] = []
lazy: List[bool] = []
constr_categories_dict = instance.get_constraint_categories()
constr_features_dict = instance.get_constraint_features()
constr_names = sample.get_vector("static_constr_names")
constr_names = sample.get_array("static_constr_names")
assert constr_names is not None
for (cidx, cname) in enumerate(constr_names):
@ -215,8 +215,8 @@ class FeaturesExtractor:
user_features.append(None)
categories.append(None)
continue
assert isinstance(category, str), (
f"Constraint category must be a string. "
assert isinstance(category, bytes), (
f"Constraint category must be bytes. "
f"Found {type(category).__name__} instead for cname={cname}.",
)
categories.append(category)
@ -242,7 +242,7 @@ class FeaturesExtractor:
lazy.append(False)
sample.put_vector_list("static_constr_features", user_features)
sample.put_vector("static_constr_lazy", lazy)
sample.put_vector("static_constr_categories", categories)
sample.put_array("static_constr_categories", np.array(categories, dtype="S"))
def _extract_user_features_instance(
self,

@ -211,7 +211,7 @@ class GurobiSolver(InternalSolver):
raise Exception(f"unknown cbasis: {v}")
gp_constrs = model.getConstrs()
constr_names = model.getAttr("constrName", gp_constrs)
constr_names = np.array(model.getAttr("constrName", gp_constrs), dtype="S")
lhs: Optional[List] = None
rhs, senses, slacks, basis_status = None, None, None, None
dual_value, basis_status, sa_rhs_up, sa_rhs_down = None, None, None, None

@ -72,7 +72,7 @@ class Constraints:
dual_values: Optional[np.ndarray] = None
lazy: Optional[List[bool]] = None
lhs: Optional[List[List[Tuple[bytes, float]]]] = None
names: Optional[List[str]] = None
names: Optional[np.ndarray] = None
rhs: Optional[np.ndarray] = None
sa_rhs_down: Optional[np.ndarray] = None
sa_rhs_up: Optional[np.ndarray] = None
@ -86,7 +86,7 @@ class Constraints:
dual_values=sample.get_vector("lp_constr_dual_values"),
lazy=sample.get_vector("static_constr_lazy"),
# lhs=sample.get_vector("static_constr_lhs"),
names=sample.get_vector("static_constr_names"),
names=sample.get_array("static_constr_names"),
rhs=sample.get_vector("static_constr_rhs"),
sa_rhs_down=sample.get_vector("lp_constr_sa_rhs_down"),
sa_rhs_up=sample.get_vector("lp_constr_sa_rhs_up"),
@ -100,7 +100,7 @@ class Constraints:
dual_values=(
None if self.dual_values is None else self.dual_values[selected]
),
names=self._filter(self.names, selected),
names=(None if self.names is None else self.names[selected]),
lazy=self._filter(self.lazy, selected),
lhs=self._filter(self.lhs, selected),
rhs=(None if self.rhs is None else self.rhs[selected]),
@ -254,7 +254,7 @@ class InternalSolver(ABC):
pass
@abstractmethod
def remove_constraints(self, names: List[str]) -> None:
def remove_constraints(self, names: np.ndarray) -> None:
"""
Removes the given constraints from the model.
"""

@ -96,7 +96,7 @@ class BasePyomoSolver(InternalSolver):
else:
expr = lhs >= cf.rhs[i]
cl = pe.Constraint(expr=expr, name=name)
self.model.add_component(name, cl)
self.model.add_component(name.decode(), cl)
self._pyomo_solver.add_constraint(cl)
self._cname_to_constr[name] = cl
self._termination_condition = ""
@ -233,7 +233,7 @@ class BasePyomoSolver(InternalSolver):
_parse_constraint(constr)
return Constraints(
names=_none_if_empty(names),
names=_none_if_empty(np.array(names, dtype="S")),
rhs=_none_if_empty(np.array(rhs, dtype=float)),
senses=_none_if_empty(senses),
lhs=_none_if_empty(lhs),

@ -53,7 +53,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
assert_equals(
solver.get_constraints(),
Constraints(
names=["eq_capacity"],
names=np.array(["eq_capacity"], dtype="S"),
rhs=np.array([0.0]),
lhs=[
[
@ -110,7 +110,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
Constraints(
basis_status=["N"],
dual_values=np.array([13.538462]),
names=["eq_capacity"],
names=np.array(["eq_capacity"], dtype="S"),
sa_rhs_down=np.array([-24.0]),
sa_rhs_up=np.array([2.0]),
slacks=np.array([0.0]),
@ -153,7 +153,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
_filter_attrs(
solver.get_constraint_attrs(),
Constraints(
names=["eq_capacity"],
names=np.array(["eq_capacity"], dtype="S"),
slacks=np.array([0.0]),
),
),
@ -161,7 +161,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
# Build new constraint and verify that it is violated
cf = Constraints(
names=["cut"],
names=np.array(["cut"], dtype="S"),
lhs=[[(b"x[0]", 1.0)]],
rhs=np.array([0.0]),
senses=["<"],
@ -175,7 +175,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
_filter_attrs(
solver.get_constraint_attrs(),
Constraints(
names=["eq_capacity", "cut"],
names=np.array(["eq_capacity", "cut"], dtype="S"),
rhs=np.array([0.0, 0.0]),
lhs=[
[
@ -198,7 +198,7 @@ def run_basic_usage_tests(solver: InternalSolver) -> None:
assert_equals(solver.are_constraints_satisfied(cf), [True])
# Remove the new constraint
solver.remove_constraints(["cut"])
solver.remove_constraints(np.array(["cut"], dtype="S"))
# New constraint should no longer affect solution
stats = solver.solve()

@ -32,9 +32,9 @@ def sample() -> Sample:
"type-b",
],
"static_constr_lazy": [True, True, True, True, False],
"static_constr_names": ["c1", "c2", "c3", "c4", "c5"],
"static_constr_names": np.array(["c1", "c2", "c3", "c4", "c5"], dtype="S"),
"static_instance_features": [5.0],
"mip_constr_lazy_enforced": {"c1", "c2", "c4"},
"mip_constr_lazy_enforced": {b"c1", b"c2", b"c4"},
"lp_constr_features": [
[1.0, 1.0],
[1.0, 2.0],
@ -110,7 +110,7 @@ def test_usage_with_solver(instance: Instance) -> None:
# Should ask internal solver to remove some constraints
assert internal.remove_constraints.call_count == 1
internal.remove_constraints.assert_has_calls([call(["c3"])])
internal.remove_constraints.assert_has_calls([call([b"c3"])])
# LearningSolver calls after_iteration (first time)
should_repeat = component.iteration_cb(solver, instance, None)
@ -142,7 +142,7 @@ def test_usage_with_solver(instance: Instance) -> None:
)
# Should update training sample
assert sample.get_set("mip_constr_lazy_enforced") == {"c1", "c2", "c3", "c4"}
assert sample.get_set("mip_constr_lazy_enforced") == {b"c1", b"c2", b"c3", b"c4"}
#
# Should update stats
assert stats["LazyStatic: Removed"] == 1
@ -170,7 +170,7 @@ def test_sample_predict(sample: Sample) -> None:
]
)
pred = comp.sample_predict(sample)
assert pred == ["c1", "c2", "c4"]
assert pred == [b"c1", b"c2", b"c4"]
def test_fit_xy() -> None:

@ -53,7 +53,10 @@ def test_knapsack() -> None:
["default", "default", "default", "default", None],
)
assert sample.get_vector_list("static_var_features") is not None
assert_equals(sample.get_vector("static_constr_names"), ["eq_capacity"])
assert_equals(
sample.get_vector("static_constr_names"),
np.array(["eq_capacity"], dtype="S"),
)
# assert_equals(
# sample.get_vector("static_constr_lhs"),
# [
@ -69,7 +72,10 @@ def test_knapsack() -> None:
assert_equals(sample.get_vector("static_constr_rhs"), [0.0])
assert_equals(sample.get_vector("static_constr_senses"), ["="])
assert_equals(sample.get_vector("static_constr_features"), [None])
assert_equals(sample.get_vector("static_constr_categories"), ["eq_capacity"])
assert_equals(
sample.get_vector("static_constr_categories"),
np.array(["eq_capacity"], dtype="S"),
)
assert_equals(sample.get_vector("static_constr_lazy"), [False])
assert_equals(sample.get_vector("static_instance_features"), [67.0, 21.75])
assert_equals(sample.get_scalar("static_constr_lazy_count"), 0)
@ -124,7 +130,7 @@ def test_knapsack() -> None:
def test_constraint_getindex() -> None:
cf = Constraints(
names=["c1", "c2", "c3"],
names=np.array(["c1", "c2", "c3"], dtype="S"),
rhs=np.array([1.0, 2.0, 3.0]),
senses=["=", "<", ">"],
lhs=[
@ -145,7 +151,7 @@ def test_constraint_getindex() -> None:
assert_equals(
cf[[True, False, True]],
Constraints(
names=["c1", "c3"],
names=np.array(["c1", "c3"], dtype="S"),
rhs=np.array([1.0, 3.0]),
senses=["=", ">"],
lhs=[

Loading…
Cancel
Save