Implement a small subset of Alvarez2017 features

This commit is contained in:
2021-04-10 19:48:58 -05:00
parent 9ca4cc3c24
commit c39231cb18
3 changed files with 162 additions and 17 deletions

View File

@@ -5,6 +5,7 @@
import collections
import numbers
from dataclasses import dataclass
from math import log, isfinite
from typing import TYPE_CHECKING, Dict, Optional, Set, List, Hashable
from miplearn.types import Solution, VariableName, Category
@@ -53,6 +54,10 @@ class Variable:
user_features: Optional[List[float]] = None
value: Optional[float] = None
# Alvarez, A. M., Louveaux, Q., & Wehenkel, L. (2017). A machine learning-based
# approximation of strong branching. INFORMS Journal on Computing, 29(1), 185-195.
alvarez_2017: Optional[List[float]] = None
@dataclass
class Constraint:
@@ -89,6 +94,7 @@ class FeaturesExtractor:
self._extract_user_features_vars(instance)
self._extract_user_features_constrs(instance)
self._extract_user_features_instance(instance)
self._extract_alvarez_2017(instance)
def _extract_user_features_vars(self, instance: "Instance"):
for (var_name, var) in instance.features.variables.items():
@@ -164,3 +170,68 @@ class FeaturesExtractor:
user_features=user_features,
lazy_constraint_count=lazy_count,
)
def _extract_alvarez_2017(self, instance: "Instance"):
assert instance.features is not None
assert instance.features.variables is not None
pos_obj_coeff_sum = 0.0
neg_obj_coeff_sum = 0.0
for (varname, var) in instance.features.variables.items():
if var.obj_coeff is not None:
if var.obj_coeff > 0:
pos_obj_coeff_sum += var.obj_coeff
if var.obj_coeff < 0:
neg_obj_coeff_sum += -var.obj_coeff
for (varname, var) in instance.features.variables.items():
assert isinstance(var, Variable)
features = []
if var.obj_coeff is not None:
# Feature 1
features.append(np.sign(var.obj_coeff))
# Feature 2
if pos_obj_coeff_sum > 0:
features.append(abs(var.obj_coeff) / pos_obj_coeff_sum)
else:
features.append(0.0)
# Feature 3
if neg_obj_coeff_sum > 0:
features.append(abs(var.obj_coeff) / neg_obj_coeff_sum)
else:
features.append(0.0)
if var.value is not None:
# Feature 37
features.append(
min(
var.value - np.floor(var.value),
np.ceil(var.value) - var.value,
)
)
if var.sa_obj_up is not None:
assert var.sa_obj_down is not None
csign = np.sign(var.obj_coeff)
# Features 44 and 46
features.append(np.sign(var.sa_obj_up))
features.append(np.sign(var.sa_obj_down))
# Feature 47
f47 = log((var.obj_coeff - var.sa_obj_down) / csign)
if isfinite(f47):
features.append(f47)
else:
features.append(0.0)
# Feature 48
f48 = log((var.sa_obj_up - var.obj_coeff) / csign)
if isfinite(f48):
features.append(f48)
else:
features.append(0.0)
var.alvarez_2017 = features

View File

@@ -3,6 +3,7 @@
# Released under the modified BSD license. See COPYING.md for more details.
from typing import Any, Dict
import numpy as np
from miplearn.features import Constraint, Variable
from miplearn.solvers.internal import InternalSolver
@@ -38,6 +39,8 @@ def _round_variables(vars: Dict[str, Variable]) -> Dict[str, Variable]:
]:
if getattr(c, attr) is not None:
setattr(c, attr, round(getattr(c, attr), 6))
if c.alvarez_2017 is not None:
c.alvarez_2017 = list(np.round(c.alvarez_2017, 6))
return vars
@@ -395,4 +398,4 @@ def run_lazy_cb_tests(solver: InternalSolver) -> None:
def assert_equals(left: Any, right: Any) -> None:
assert left == right, f"{left} != {right}"
assert left == right, f"left:\n{left}\nright:\n{right}"