Compare commits

..

1 Commits

Author SHA1 Message Date
2978ad665e Fix bug in validation script; create large tests 2021-06-26 08:44:27 -05:00
29 changed files with 186 additions and 493 deletions

View File

@@ -9,8 +9,8 @@ jobs:
runs-on: ${{ matrix.os }}
strategy:
matrix:
julia-version: ['1.4', '1.5', '1.6']
julia-arch: [x64]
julia-version: ['1.3', '1.4', '1.5', '1.6']
julia-arch: [x64, x86]
os: [ubuntu-latest, windows-latest, macOS-latest]
exclude:
- os: macOS-latest

1
.gitignore vendored
View File

@@ -18,4 +18,3 @@ TODO.md
docs/_build
.vscode
Manifest.toml
*/Manifest.toml

View File

@@ -11,10 +11,9 @@ All notable changes to this project will be documented in this file.
[semver]: https://semver.org/spec/v2.0.0.html
[pkjjl]: https://pkgdocs.julialang.org/v1/compatibility/#compat-pre-1.0
## [0.2.2] - 2021-07-21
## [0.2.2] - Unreleased
### Fixed
- Fix small bug in validation scripts related to startup costs
- Fix duplicated startup constraints (@mtanneau, #12)
## [0.2.1] - 2021-06-02
### Added

View File

@@ -5,20 +5,23 @@
JULIA := julia --color=yes --project=@.
VERSION := 0.2
build/sysimage.so: src/utils/sysimage.jl Project.toml
julia --project=. -e "using Pkg; Pkg.instantiate()"
julia --project=test -e "using Pkg; Pkg.instantiate()"
$(JULIA) src/utils/sysimage.jl test/runtests.jl
build/sysimage.so: src/utils/sysimage.jl Project.toml Manifest.toml
mkdir -p build
mkdir -p benchmark/results/test
cd benchmark; $(JULIA) --trace-compile=../build/precompile.jl benchmark.jl test/case14
$(JULIA) src/utils/sysimage.jl
clean:
rm -rfv build
rm -rf build/*
docs:
cd docs; make clean; make dirhtml
rsync -avP --delete-after docs/_build/dirhtml/ ../docs/$(VERSION)/
test: build/sysimage.so
$(JULIA) --sysimage build/sysimage.so test/runtests.jl
@echo Running tests...
$(JULIA) --sysimage build/sysimage.so -e 'using Pkg; Pkg.test("UnitCommitment")' | tee build/test.log
format:
julia -e 'using JuliaFormatter; format(["src", "test", "benchmark"], verbose=true);'

View File

@@ -15,10 +15,10 @@ Logging = "56ddb016-857b-54e1-b83d-db4d58db5568"
MathOptInterface = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
PackageCompiler = "9b87118b-4619-50d2-8e1e-99f35a4d4d9d"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[compat]
Cbc = "0.7"
DataStructures = "0.18"
Distributions = "0.25"
GZip = "0.5"
@@ -27,3 +27,11 @@ JuMP = "0.21"
MathOptInterface = "0.9"
PackageCompiler = "1"
julia = "1"
[extras]
Cbc = "9961bab8-2fa3-5c5a-9d89-47fab24efd76"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
Gurobi = "2e9cd046-0924-5485-92f1-d5272153d98b"
[targets]
test = ["Cbc", "Test", "Gurobi"]

View File

@@ -28,14 +28,13 @@ Each section is described in detail below. For a complete example, see [case14](
### Parameters
This section describes system-wide parameters, such as power balance and reserve shortfall penalties, and optimization parameters, such as the length of the planning horizon and the time.
This section describes system-wide parameters, such as power balance penalties, optimization parameters, such as the length of the planning horizon and the time.
| Key | Description | Default | Time series?
| :----------------------------- | :------------------------------------------------ | :------: | :------------:
| `Time horizon (h)` | Length of the planning horizon (in hours). | Required | N
| `Time horizon (h)` | Length of the planning horizon (in hours). | Required | N
| `Time step (min)` | Length of each time step (in minutes). Must be a divisor of 60 (e.g. 60, 30, 20, 15, etc). | `60` | N
| `Power balance penalty ($/MW)` | Penalty for system-wide shortage or surplus in production (in $/MW). This is charged per time step. For example, if there is a shortage of 1 MW for three time steps, three times this amount will be charged. | `1000.0` | Y
| `Reserve shortfall penalty ($/MW)` | Penalty for system-wide shortage in meeting reserve requirements (in $/MW). This is charged per time step. Negative value implies reserve constraints must always be satisfied. | `-1` | Y
#### Example
@@ -43,8 +42,7 @@ This section describes system-wide parameters, such as power balance and reserve
{
"Parameters": {
"Time horizon (h)": 4,
"Power balance penalty ($/MW)": 1000.0,
"Reserve shortfall penalty ($/MW)": -1.0
"Power balance penalty ($/MW)": 1000.0
}
}
```

View File

@@ -148,7 +148,7 @@ for g in instance.units
end
```
### Fixing variables, modifying objective function and adding constraints
### Modifying the model
Since we now have a direct reference to the JuMP decision variables, it is possible to fix variables, change the coefficients in the objective function, or even add new constraints to the model before solving it. The script below shows how can this be accomplished. For more information on modifying an existing model, [see the JuMP documentation](https://jump.dev/JuMP.jl/stable/manual/variables/).
@@ -190,54 +190,6 @@ JuMP.set_objective_coefficient(
UnitCommitment.optimize!(model)
```
### Adding new component to a bus
The following snippet shows how to add a new grid component to a particular bus. For each time step, we create decision variables for the new grid component, add these variables to the objective function, then attach the component to a particular bus by modifying some existing model constraints.
```julia
using Cbc
using JuMP
using UnitCommitment
# Load instance and build base model
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
model = UnitCommitment.build_model(
instance=instance,
optimizer=Cbc.Optimizer,
)
# Get the number of time steps in the original instance
T = instance.time
# Create decision variables for the new grid component.
# In this example, we assume that the new component can
# inject up to 10 MW of power at each time step, so we
# create new continuous variables 0 ≤ x[t] ≤ 10.
@variable(model, x[1:T], lower_bound=0.0, upper_bound=10.0)
# For each time step
for t in 1:T
# Add production costs to the objective function.
# In this example, we assume a cost of $5/MW.
set_objective_coefficient(model, x[t], 5.0)
# Attach the new component to bus b1, by modifying the
# constraint `eq_net_injection`.
set_normalized_coefficient(
model[:eq_net_injection]["b1", t],
x[t],
1.0,
)
end
# Solve the model
UnitCommitment.optimize!(model)
# Show optimal values for the x variables
@show value.(x)
```
References
----------
* [KnOsWa20] **Bernard Knueven, James Ostrowski and Jean-Paul Watson.** "On Mixed-Integer Programming Formulations for the Unit Commitment Problem". INFORMS Journal on Computing (2020). [DOI: 10.1287/ijoc.2019.0944](https://doi.org/10.1287/ijoc.2019.0944)

Binary file not shown.

View File

@@ -48,7 +48,7 @@ include("solution/warmstart.jl")
include("solution/write.jl")
include("transform/initcond.jl")
include("transform/slice.jl")
include("transform/randomize/XavQiuAhm2021.jl")
include("transform/randomize.jl")
include("utils/log.jl")
include("validation/repair.jl")
include("validation/validate.jl")

View File

@@ -98,10 +98,6 @@ function _from_json(json; repair = true)
json["Parameters"]["Power balance penalty (\$/MW)"],
default = [1000.0 for t in 1:T],
)
shortfall_penalty = timeseries(
json["Parameters"]["Reserve shortfall penalty (\$/MW)"],
default = [-1.0 for t in 1:T],
)
# Read buses
for (bus_name, dict) in json["Buses"]
@@ -266,20 +262,14 @@ function _from_json(json; repair = true)
end
instance = UnitCommitmentInstance(
buses_by_name = Dict(b.name => b for b in buses),
buses = buses,
contingencies_by_name = Dict(c.name => c for c in contingencies),
contingencies = contingencies,
lines_by_name = Dict(l.name => l for l in lines),
lines = lines,
power_balance_penalty = power_balance_penalty,
price_sensitive_loads_by_name = Dict(ps.name => ps for ps in loads),
price_sensitive_loads = loads,
reserves = reserves,
shortfall_penalty = shortfall_penalty,
time = T,
units_by_name = Dict(g.name => g for g in units),
units = units,
T,
power_balance_penalty,
units,
buses,
lines,
reserves,
contingencies,
loads,
)
if repair
UnitCommitment.repair!(instance)

View File

@@ -69,21 +69,15 @@ mutable struct PriceSensitiveLoad
revenue::Vector{Float64}
end
Base.@kwdef mutable struct UnitCommitmentInstance
buses_by_name::Dict{AbstractString,Bus}
buses::Vector{Bus}
contingencies_by_name::Dict{AbstractString,Contingency}
contingencies::Vector{Contingency}
lines_by_name::Dict{AbstractString,TransmissionLine}
lines::Vector{TransmissionLine}
power_balance_penalty::Vector{Float64}
price_sensitive_loads_by_name::Dict{AbstractString,PriceSensitiveLoad}
price_sensitive_loads::Vector{PriceSensitiveLoad}
reserves::Reserves
shortfall_penalty::Vector{Float64}
mutable struct UnitCommitmentInstance
time::Int
units_by_name::Dict{AbstractString,Unit}
power_balance_penalty::Vector{Float64}
units::Vector{Unit}
buses::Vector{Bus}
lines::Vector{TransmissionLine}
reserves::Reserves
contingencies::Vector{Contingency}
price_sensitive_loads::Vector{PriceSensitiveLoad}
end
function Base.show(io::IO, instance::UnitCommitmentInstance)

View File

@@ -12,14 +12,14 @@ function _add_startup_cost_eqs!(
S = length(g.startup_categories)
startup = model[:startup]
for t in 1:model[:instance].time
# If unit is switching on, we must choose a startup category
eq_startup_choose[g.name, t] = @constraint(
model,
model[:switch_on][g.name, t] ==
sum(startup[g.name, t, s] for s in 1:S)
)
for s in 1:S
# If unit is switching on, we must choose a startup category
eq_startup_choose[g.name, t, s] = @constraint(
model,
model[:switch_on][g.name, t] ==
sum(startup[g.name, t, s] for s in 1:S)
)
# If unit has not switched off in the last `delay` time periods, startup category is forbidden.
# The last startup category is always allowed.
if s < S

View File

@@ -4,11 +4,15 @@
function _add_bus!(model::JuMP.Model, b::Bus)::Nothing
net_injection = _init(model, :expr_net_injection)
reserve = _init(model, :expr_reserve)
curtail = _init(model, :curtail)
for t in 1:model[:instance].time
# Fixed load
net_injection[b.name, t] = AffExpr(-b.load[t])
# Reserves
reserve[b.name, t] = AffExpr()
# Load curtailment
curtail[b.name, t] =
@variable(model, lower_bound = 0, upper_bound = b.load[t])

View File

@@ -11,12 +11,12 @@ end
function _add_net_injection_eqs!(model::JuMP.Model)::Nothing
T = model[:instance].time
net_injection = _init(model, :net_injection)
eq_net_injection = _init(model, :eq_net_injection)
eq_net_injection_def = _init(model, :eq_net_injection_def)
eq_power_balance = _init(model, :eq_power_balance)
for t in 1:T, b in model[:instance].buses
n = net_injection[b.name, t] = @variable(model)
eq_net_injection[b.name, t] =
@constraint(model, -n + model[:expr_net_injection][b.name, t] == 0)
eq_net_injection_def[t, b.name] =
@constraint(model, n == model[:expr_net_injection][b.name, t])
end
for t in 1:T
eq_power_balance[t] = @constraint(
@@ -29,28 +29,13 @@ end
function _add_reserve_eqs!(model::JuMP.Model)::Nothing
eq_min_reserve = _init(model, :eq_min_reserve)
instance = model[:instance]
for t in 1:instance.time
# Equation (68) in Kneuven et al. (2020)
# As in Morales-España et al. (2013a)
# Akin to the alternative formulation with max_power_avail
# from Carrión and Arroyo (2006) and Ostrowski et al. (2012)
shortfall_penalty = instance.shortfall_penalty[t]
for t in 1:model[:instance].time
eq_min_reserve[t] = @constraint(
model,
sum(model[:reserve][g.name, t] for g in instance.units) +
(shortfall_penalty >= 0 ? model[:reserve_shortfall][t] : 0.0) >=
instance.reserves.spinning[t]
sum(
model[:expr_reserve][b.name, t] for b in model[:instance].buses
) >= model[:instance].reserves.spinning[t]
)
# Account for shortfall contribution to objective
if shortfall_penalty >= 0
add_to_expression!(
model[:obj],
shortfall_penalty,
model[:reserve_shortfall][t],
)
end
end
return
end

View File

@@ -44,16 +44,12 @@ _is_initially_on(g::Unit)::Float64 = (g.initial_status > 0 ? 1.0 : 0.0)
function _add_reserve_vars!(model::JuMP.Model, g::Unit)::Nothing
reserve = _init(model, :reserve)
reserve_shortfall = _init(model, :reserve_shortfall)
for t in 1:model[:instance].time
if g.provides_spinning_reserves[t]
reserve[g.name, t] = @variable(model, lower_bound = 0)
else
reserve[g.name, t] = 0.0
end
reserve_shortfall[t] =
(model[:instance].shortfall_penalty[t] >= 0) ?
@variable(model, lower_bound = 0) : 0.0
end
return
end
@@ -214,5 +210,11 @@ function _add_net_injection_eqs!(model::JuMP.Model, g::Unit)::Nothing
model[:is_on][g.name, t],
g.min_power[t],
)
# Add to reserves expression
add_to_expression!(
model[:expr_reserve][g.bus.name, t],
model[:reserve][g.name, t],
1.0,
)
end
end

View File

@@ -51,12 +51,6 @@ function solution(model::JuMP.Model)::OrderedDict
sol["Switch on"] = timeseries(model[:switch_on], instance.units)
sol["Switch off"] = timeseries(model[:switch_off], instance.units)
sol["Reserve (MW)"] = timeseries(model[:reserve], instance.units)
sol["Reserve shortfall (MW)"] = OrderedDict(
t =>
(instance.shortfall_penalty[t] >= 0) ?
round(value(model[:reserve_shortfall][t]), digits = 5) : 0.0 for
t in 1:instance.time
)
sol["Net injection (MW)"] =
timeseries(model[:net_injection], instance.buses)
sol["Load curtail (MW)"] = timeseries(model[:curtail], instance.buses)

View File

@@ -0,0 +1,53 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Distributions
function randomize_unit_costs!(
instance::UnitCommitmentInstance;
distribution = Uniform(0.95, 1.05),
)::Nothing
for unit in instance.units
α = rand(distribution)
unit.min_power_cost *= α
for k in unit.cost_segments
k.cost *= α
end
for s in unit.startup_categories
s.cost *= α
end
end
return
end
function randomize_load_distribution!(
instance::UnitCommitmentInstance;
distribution = Uniform(0.90, 1.10),
)::Nothing
α = rand(distribution, length(instance.buses))
for t in 1:instance.time
total = sum(bus.load[t] for bus in instance.buses)
den = sum(
bus.load[t] / total * α[i] for
(i, bus) in enumerate(instance.buses)
)
for (i, bus) in enumerate(instance.buses)
bus.load[t] *= α[i] / den
end
end
return
end
function randomize_peak_load!(
instance::UnitCommitmentInstance;
distribution = Uniform(0.925, 1.075),
)::Nothing
α = rand(distribution)
for bus in instance.buses
bus.load *= α
end
return
end
export randomize_unit_costs!, randomize_load_distribution!, randomize_peak_load!

View File

@@ -1,209 +0,0 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
"""
Methods described in:
Xavier, Álinson S., Feng Qiu, and Shabbir Ahmed. "Learning to solve
large-scale security-constrained unit commitment problems." INFORMS
Journal on Computing 33.2 (2021): 739-756. DOI: 10.1287/ijoc.2020.0976
"""
module XavQiuAhm2021
using Distributions
import ..UnitCommitmentInstance
"""
struct Randomization
cost = Uniform(0.95, 1.05)
load_profile_mu = [...]
load_profile_sigma = [...]
load_share = Uniform(0.90, 1.10)
peak_load = Uniform(0.6 * 0.925, 0.6 * 1.075)
randomize_costs = true
randomize_load_profile = true
randomize_load_share = true
end
Randomization method that changes: (1) production and startup costs, (2)
share of load coming from each bus, (3) peak system load, and (4) temporal
load profile, as follows:
1. **Production and startup costs:**
For each unit `u`, the vectors `u.min_power_cost` and `u.cost_segments`
are multiplied by a constant `α[u]` sampled from the provided `cost`
distribution. If `randomize_costs` is false, skips this step.
2. **Load share:**
For each bus `b` and time `t`, the value `b.load[t]` is multiplied by
`(β[b] * b.load[t]) / sum(β[b2] * b2.load[t] for b2 in buses)`, where
`β[b]` is sampled from the provided `load_share` distribution. If
`randomize_load_share` is false, skips this step.
3. **Peak system load and temporal load profile:**
Sets the peak load to `ρ * C`, where `ρ` is sampled from `peak_load` and `C`
is the maximum system capacity, at any time. Also scales the loads of all
buses, so that `system_load[t+1]` becomes equal to `system_load[t] * γ[t]`,
where `γ[t]` is sampled from `Normal(load_profile_mu[t], load_profile_sigma[t])`.
The system load for the first time period is set so that the peak load
matches `ρ * C`. If `load_profile_sigma` and `load_profile_mu` have fewer
elements than `instance.time`, wraps around. If `randomize_load_profile`
is false, skips this step.
The default parameters were obtained based on an analysis of publicly available
bid and hourly data from PJM, corresponding to the month of January, 2017. For
more details, see Section 4.2 of the paper.
"""
Base.@kwdef struct Randomization
cost = Uniform(0.95, 1.05)
load_profile_mu::Vector{Float64} = [
1.0,
0.978,
0.98,
1.004,
1.02,
1.078,
1.132,
1.018,
0.999,
1.006,
0.999,
0.987,
0.975,
0.984,
0.995,
1.005,
1.045,
1.106,
0.981,
0.981,
0.978,
0.948,
0.928,
0.953,
]
load_profile_sigma::Vector{Float64} = [
0.0,
0.011,
0.015,
0.01,
0.012,
0.029,
0.055,
0.027,
0.026,
0.023,
0.013,
0.012,
0.014,
0.011,
0.008,
0.008,
0.02,
0.02,
0.016,
0.012,
0.014,
0.015,
0.017,
0.024,
]
load_share = Uniform(0.90, 1.10)
peak_load = Uniform(0.6 * 0.925, 0.6 * 1.075)
randomize_load_profile::Bool = true
randomize_costs::Bool = true
randomize_load_share::Bool = true
end
function _randomize_costs(
instance::UnitCommitmentInstance,
distribution,
)::Nothing
for unit in instance.units
α = rand(distribution)
unit.min_power_cost *= α
for k in unit.cost_segments
k.cost *= α
end
for s in unit.startup_categories
s.cost *= α
end
end
return
end
function _randomize_load_share(
instance::UnitCommitmentInstance,
distribution,
)::Nothing
α = rand(distribution, length(instance.buses))
for t in 1:instance.time
total = sum(bus.load[t] for bus in instance.buses)
den = sum(
bus.load[t] / total * α[i] for
(i, bus) in enumerate(instance.buses)
)
for (i, bus) in enumerate(instance.buses)
bus.load[t] *= α[i] / den
end
end
return
end
function _randomize_load_profile(
instance::UnitCommitmentInstance,
params::Randomization,
)::Nothing
# Generate new system load
system_load = [1.0]
for t in 2:instance.time
idx = (t - 1) % length(params.load_profile_mu) + 1
gamma = rand(
Normal(params.load_profile_mu[idx], params.load_profile_sigma[idx]),
)
push!(system_load, system_load[t-1] * gamma)
end
capacity = sum(maximum(u.max_power) for u in instance.units)
peak_load = rand(params.peak_load) * capacity
system_load = system_load ./ maximum(system_load) .* peak_load
# Scale bus loads to match the new system load
prev_system_load = sum(b.load for b in instance.buses)
for b in instance.buses
for t in 1:instance.time
b.load[t] *= system_load[t] / prev_system_load[t]
end
end
return
end
end
"""
function randomize!(
instance::UnitCommitment.UnitCommitmentInstance,
method::XavQiuAhm2021.Randomization,
)::Nothing
Randomize costs and loads based on the method described in XavQiuAhm2021.
"""
function randomize!(
instance::UnitCommitment.UnitCommitmentInstance,
method::XavQiuAhm2021.Randomization,
)::Nothing
if method.randomize_costs
XavQiuAhm2021._randomize_costs(instance, method.cost)
end
if method.randomize_load_share
XavQiuAhm2021._randomize_load_share(instance, method.load_share)
end
if method.randomize_load_profile
XavQiuAhm2021._randomize_load_profile(instance, method)
end
return
end
export randomize!

View File

@@ -3,31 +3,26 @@
# Released under the modified BSD license. See COPYING.md for more details.
using PackageCompiler
using TOML
using Logging
Logging.disable_logging(Logging.Info)
mkpath("build")
using DataStructures
using Distributions
using JSON
using JuMP
using MathOptInterface
using SparseArrays
println("Generating precompilation statements...")
run(`julia --project=. --trace-compile=build/precompile.jl $(ARGS)`)
pkg = [
:DataStructures,
:Distributions,
:JSON,
:JuMP,
:MathOptInterface,
:SparseArrays,
]
println("Finding dependencies...")
project = TOML.parsefile("Project.toml")
manifest = TOML.parsefile("Manifest.toml")
deps = Symbol[]
for dep in keys(project["deps"])
if "path" in keys(manifest[dep][1])
println(" - $(dep) [skip]")
else
println(" - $(dep)")
push!(deps, Symbol(dep))
end
end
println("Building system image...")
@info "Building system image..."
create_sysimage(
deps,
pkg,
precompile_statements_file = "build/precompile.jl",
sysimage_path = "build/sysimage.so",
)

View File

@@ -324,16 +324,11 @@ function _validate_reserve_and_demand(instance, solution, tol = 0.01)
# Verify spinning reserves
reserve =
sum(solution["Reserve (MW)"][g.name][t] for g in instance.units)
reserve_shortfall =
(instance.shortfall_penalty[t] >= 0) ?
solution["Reserve shortfall (MW)"][t] : 0
if reserve + reserve_shortfall < instance.reserves.spinning[t] - tol
if reserve < instance.reserves.spinning[t] - tol
@error @sprintf(
"Insufficient spinning reserves at time %d (%.2f + %.2f should be %.2f)",
"Insufficient spinning reserves at time %d (%.2f should be %.2f)",
t,
reserve,
reserve_shortfall,
instance.reserves.spinning[t],
)
err_count += 1

View File

@@ -1,26 +0,0 @@
[deps]
Cbc = "9961bab8-2fa3-5c5a-9d89-47fab24efd76"
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
GZip = "92fee26a-97fe-5a0c-ad85-20a5f3185b63"
Gurobi = "2e9cd046-0924-5485-92f1-d5272153d98b"
JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Logging = "56ddb016-857b-54e1-b83d-db4d58db5568"
MathOptInterface = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
PackageCompiler = "9b87118b-4619-50d2-8e1e-99f35a4d4d9d"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[compat]
DataStructures = "0.18"
Distributions = "0.25"
GZip = "0.5"
JSON = "0.21"
JuMP = "0.21"
MathOptInterface = "0.9"
PackageCompiler = "1"
julia = "1"

View File

@@ -4,12 +4,9 @@
using UnitCommitment
basedir = @__DIR__
@testset "read_egret_solution" begin
solution = UnitCommitment.read_egret_solution(
"$basedir/../fixtures/egret_output.json.gz",
)
solution =
UnitCommitment.read_egret_solution("fixtures/egret_output.json.gz")
for attr in ["Is on", "Production (MW)", "Production cost (\$)"]
@test attr in keys(solution)
@test "115_STEAM_1" in keys(solution[attr])

View File

@@ -22,7 +22,6 @@ using UnitCommitment, LinearAlgebra, Cbc, JuMP, JSON, GZip
@test instance.lines[5].normal_flow_limit == [1e8 for t in 1:4]
@test instance.lines[5].emergency_flow_limit == [1e8 for t in 1:4]
@test instance.lines[5].flow_limit_penalty == [5e3 for t in 1:4]
@test instance.lines_by_name["l5"].name == "l5"
@test instance.lines[1].name == "l1"
@test instance.lines[1].source.name == "b1"
@@ -35,7 +34,6 @@ using UnitCommitment, LinearAlgebra, Cbc, JuMP, JSON, GZip
@test instance.buses[9].name == "b9"
@test instance.buses[9].load == [35.36638, 33.25495, 31.67138, 31.14353]
@test instance.buses_by_name["b9"].name == "b9"
unit = instance.units[1]
@test unit.name == "g1"
@@ -64,7 +62,6 @@ using UnitCommitment, LinearAlgebra, Cbc, JuMP, JSON, GZip
@test unit.startup_categories[1].cost == 1000.0
@test unit.startup_categories[2].cost == 1500.0
@test unit.startup_categories[3].cost == 2000.0
@test instance.units_by_name["g1"].name == "g1"
unit = instance.units[2]
@test unit.name == "g2"
@@ -95,15 +92,12 @@ using UnitCommitment, LinearAlgebra, Cbc, JuMP, JSON, GZip
@test instance.contingencies[1].lines == [instance.lines[1]]
@test instance.contingencies[1].units == []
@test instance.contingencies[1].name == "c1"
@test instance.contingencies_by_name["c1"].name == "c1"
load = instance.price_sensitive_loads[1]
@test load.name == "ps1"
@test load.bus.name == "b3"
@test load.revenue == [100.0 for t in 1:4]
@test load.demand == [50.0 for t in 1:4]
@test instance.price_sensitive_loads_by_name["ps1"].name == "ps1"
end
@testset "read_benchmark sub-hourly" begin

View File

@@ -20,14 +20,8 @@ if ENABLE_LARGE_TESTS
end
function _small_test(formulation::Formulation)::Nothing
instances = ["matpower/case118/2017-02-01", "test/case14"]
for instance in instances
# Should not crash
UnitCommitment.build_model(
instance = UnitCommitment.read_benchmark(instance),
formulation = formulation,
)
end
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
UnitCommitment.build_model(instance = instance, formulation = formulation) # should not crash
return
end

View File

@@ -5,7 +5,6 @@
using Test
using UnitCommitment
push!(Base.LOAD_PATH, @__DIR__)
UnitCommitment._setup_logger()
const ENABLE_LARGE_TESTS = ("UCJL_LARGE_TESTS" in keys(ENV))
@@ -29,9 +28,7 @@ const ENABLE_LARGE_TESTS = ("UCJL_LARGE_TESTS" in keys(ENV))
@testset "transform" begin
include("transform/initcond_test.jl")
include("transform/slice_test.jl")
@testset "randomize" begin
include("transform/randomize/XavQiuAhm2021_test.jl")
end
include("transform/randomize_test.jl")
end
@testset "validation" begin
include("validation/repair_test.jl")

View File

@@ -4,12 +4,9 @@
using UnitCommitment, Cbc, JuMP
basedir = @__DIR__
@testset "generate_initial_conditions!" begin
# Load instance
instance =
UnitCommitment.read("$basedir/../fixtures/case118-initcond.json.gz")
instance = UnitCommitment.read("$(pwd())/fixtures/case118-initcond.json.gz")
optimizer = optimizer_with_attributes(Cbc.Optimizer, "logLevel" => 0)
# All units should have unknown initial conditions

View File

@@ -1,63 +0,0 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import Random
import UnitCommitment: XavQiuAhm2021
using Distributions
using UnitCommitment, Cbc, JuMP
get_instance() = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
system_load(instance) = sum(b.load for b in instance.buses)
test_approx(x, y) = @test isapprox(x, y, atol = 1e-3)
@testset "XavQiuAhm2021" begin
@testset "cost and load share" begin
instance = get_instance()
# Check original costs
unit = instance.units[10]
test_approx(unit.min_power_cost[1], 825.023)
test_approx(unit.cost_segments[1].cost[1], 36.659)
test_approx(unit.startup_categories[1].cost[1], 7570.42)
# Check original load share
bus = instance.buses[1]
prev_system_load = system_load(instance)
test_approx(bus.load[1] / prev_system_load[1], 0.012)
Random.seed!(42)
randomize!(
instance,
XavQiuAhm2021.Randomization(randomize_load_profile = false),
)
# Check randomized costs
test_approx(unit.min_power_cost[1], 831.977)
test_approx(unit.cost_segments[1].cost[1], 36.968)
test_approx(unit.startup_categories[1].cost[1], 7634.226)
# Check randomized load share
curr_system_load = system_load(instance)
test_approx(bus.load[1] / curr_system_load[1], 0.013)
# System load should not change
@test prev_system_load curr_system_load
end
@testset "load profile" begin
instance = get_instance()
# Check original load profile
@test round.(system_load(instance), digits = 1)[1:8]
[3059.5, 2983.2, 2937.5, 2953.9, 3073.1, 3356.4, 4068.5, 4018.8]
Random.seed!(42)
randomize!(instance, XavQiuAhm2021.Randomization())
# Check randomized load profile
@test round.(system_load(instance), digits = 1)[1:8]
[4854.7, 4849.2, 4732.7, 4848.2, 4948.4, 5231.1, 5874.8, 5934.8]
end
end

View File

@@ -0,0 +1,43 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, Cbc, JuMP
_get_instance() = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
_total_load(instance) = sum(b.load[1] for b in instance.buses)
@testset "randomize_unit_costs!" begin
instance = _get_instance()
unit = instance.units[10]
prev_min_power_cost = unit.min_power_cost
prev_prod_cost = unit.cost_segments[1].cost
prev_startup_cost = unit.startup_categories[1].cost
randomize_unit_costs!(instance)
@test prev_min_power_cost != unit.min_power_cost
@test prev_prod_cost != unit.cost_segments[1].cost
@test prev_startup_cost != unit.startup_categories[1].cost
end
@testset "randomize_load_distribution!" begin
instance = _get_instance()
bus = instance.buses[1]
prev_load = instance.buses[1].load[1]
prev_total_load = _total_load(instance)
randomize_load_distribution!(instance)
curr_total_load = _total_load(instance)
@test prev_load != instance.buses[1].load[1]
@test abs(prev_total_load - curr_total_load) < 1e-3
end
@testset "randomize_peak_load!" begin
instance = _get_instance()
bus = instance.buses[1]
prev_total_load = _total_load(instance)
prev_share = bus.load[1] / prev_total_load
randomize_peak_load!(instance)
curr_total_load = _total_load(instance)
curr_share = bus.load[1] / prev_total_load
@test curr_total_load != prev_total_load
@test abs(curr_share - prev_share) < 1e-3
end

View File

@@ -4,11 +4,9 @@
using UnitCommitment, JSON, GZip, DataStructures
basedir = @__DIR__
function parse_case14()
return JSON.parse(
GZip.gzopen("$basedir/../../instances/test/case14.json.gz"),
GZip.gzopen("../instances/test/case14.json.gz"),
dicttype = () -> DefaultOrderedDict(nothing),
)
end