Compare commits

..

1 Commits

Author SHA1 Message Date
2978ad665e Fix bug in validation script; create large tests 2021-06-26 08:44:27 -05:00
4 changed files with 12 additions and 61 deletions

View File

@@ -11,10 +11,9 @@ All notable changes to this project will be documented in this file.
[semver]: https://semver.org/spec/v2.0.0.html
[pkjjl]: https://pkgdocs.julialang.org/v1/compatibility/#compat-pre-1.0
## [0.2.2] - 2021-07-21
## [0.2.2] - Unreleased
### Fixed
- Fix small bug in validation scripts related to startup costs
- Fix duplicated startup constraints (@mtanneau, #12)
## [0.2.1] - 2021-06-02
### Added

View File

@@ -148,7 +148,7 @@ for g in instance.units
end
```
### Fixing variables, modifying objective function and adding constraints
### Modifying the model
Since we now have a direct reference to the JuMP decision variables, it is possible to fix variables, change the coefficients in the objective function, or even add new constraints to the model before solving it. The script below shows how can this be accomplished. For more information on modifying an existing model, [see the JuMP documentation](https://jump.dev/JuMP.jl/stable/manual/variables/).
@@ -190,54 +190,6 @@ JuMP.set_objective_coefficient(
UnitCommitment.optimize!(model)
```
### Adding new component to a bus
The following snippet shows how to add a new grid component to a particular bus. For each time step, we create decision variables for the new grid component, add these variables to the objective function, then attach the component to a particular bus by modifying some existing model constraints.
```julia
using Cbc
using JuMP
using UnitCommitment
# Load instance and build base model
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
model = UnitCommitment.build_model(
instance=instance,
optimizer=Cbc.Optimizer,
)
# Get the number of time steps in the original instance
T = instance.time
# Create decision variables for the new grid component.
# In this example, we assume that the new component can
# inject up to 10 MW of power at each time step, so we
# create new continuous variables 0 ≤ x[t] ≤ 10.
@variable(model, x[1:T], lower_bound=0.0, upper_bound=10.0)
# For each time step
for t in 1:T
# Add production costs to the objective function.
# In this example, we assume a cost of $5/MW.
set_objective_coefficient(model, x[t], 5.0)
# Attach the new component to bus b1, by modifying the
# constraint `eq_net_injection`.
set_normalized_coefficient(
model[:eq_net_injection]["b1", t],
x[t],
1.0,
)
end
# Solve the model
UnitCommitment.optimize!(model)
# Show optimal values for the x variables
@show value.(x)
```
References
----------
* [KnOsWa20] **Bernard Knueven, James Ostrowski and Jean-Paul Watson.** "On Mixed-Integer Programming Formulations for the Unit Commitment Problem". INFORMS Journal on Computing (2020). [DOI: 10.1287/ijoc.2019.0944](https://doi.org/10.1287/ijoc.2019.0944)

View File

@@ -12,14 +12,14 @@ function _add_startup_cost_eqs!(
S = length(g.startup_categories)
startup = model[:startup]
for t in 1:model[:instance].time
# If unit is switching on, we must choose a startup category
eq_startup_choose[g.name, t] = @constraint(
model,
model[:switch_on][g.name, t] ==
sum(startup[g.name, t, s] for s in 1:S)
)
for s in 1:S
# If unit is switching on, we must choose a startup category
eq_startup_choose[g.name, t, s] = @constraint(
model,
model[:switch_on][g.name, t] ==
sum(startup[g.name, t, s] for s in 1:S)
)
# If unit has not switched off in the last `delay` time periods, startup category is forbidden.
# The last startup category is always allowed.
if s < S

View File

@@ -11,12 +11,12 @@ end
function _add_net_injection_eqs!(model::JuMP.Model)::Nothing
T = model[:instance].time
net_injection = _init(model, :net_injection)
eq_net_injection = _init(model, :eq_net_injection)
eq_net_injection_def = _init(model, :eq_net_injection_def)
eq_power_balance = _init(model, :eq_power_balance)
for t in 1:T, b in model[:instance].buses
n = net_injection[b.name, t] = @variable(model)
eq_net_injection[b.name, t] =
@constraint(model, -n + model[:expr_net_injection][b.name, t] == 0)
eq_net_injection_def[t, b.name] =
@constraint(model, n == model[:expr_net_injection][b.name, t])
end
for t in 1:T
eq_power_balance[t] = @constraint(