Compare commits

...

121 Commits

Author SHA1 Message Date
b0b6b9b2dc Implement MIPLearn solution method 2024-01-09 14:27:46 -06:00
58cc33ac69 Remove unused 'reactance' field 2023-08-01 12:31:19 -05:00
b555f9885a Minor correction to ISF definition 2023-08-01 12:21:22 -05:00
b39b14afa4 docs: Minor changes; add examples to repository 2023-07-27 12:02:13 -05:00
d49712f41b initcond: Apply to instance instead of scenario 2023-07-27 11:49:47 -05:00
beaf0b785f Add zenodo.json 2023-07-27 11:10:41 -05:00
9853b15f1c Merge pull request #40 from hejun0524/storage_units
Storage units
2023-07-26 09:22:37 -05:00
81d4ff5b9d Merge pull request #31 from hejun0524/dev
Time Decomposition and Marketing
2023-07-26 09:17:49 -05:00
Jun He
ad50cdd935 update doc for storage units 2023-07-18 16:04:52 -04:00
Jun He
8f0661c93f reformat one line 2023-07-17 12:04:16 -04:00
Jun He
ca092a67ce storage units 2023-07-17 11:39:31 -04:00
Jun He
82cefe2652 disable HiGHS logging 2023-07-16 16:57:53 -04:00
Jun He
cd96b28076 market json gz 2023-06-16 17:11:41 -04:00
Jun He
3086e71611 updated doc with solve_market 2023-06-16 17:02:06 -04:00
Jun He
0bb175078b da to rt market with tests 2023-06-16 15:35:51 -04:00
Jun He
2fb89045cd disable optimizer logging 2023-06-16 15:35:10 -04:00
Jun He
f31921fc4f added Time horizon (min) 2023-06-13 15:05:37 -04:00
Jun He
6ea769a68c add in after_build and after_optimize 2023-06-07 13:24:27 -04:00
Jun He
2d510ca7ea updated doc for time decomp 2023-06-07 13:22:56 -04:00
Jun He
d602b686bc add default values 2023-06-07 13:22:38 -04:00
Jun He
53052ec895 standalone test integration 2023-05-27 15:43:39 -04:00
Jun He
f59914f265 Merge remote-tracking branch 'upstream/dev' into dev 2023-05-27 14:54:44 -04:00
Jun He
7201acde78 time decomp bug fix 2023-05-27 14:49:43 -04:00
7a96f8cc1e Merge pull request #32 from oyurdakul/progressive-hedging
progressive hedging
2023-05-26 11:58:18 -05:00
b8ada6432a Format source code 2023-05-26 11:50:41 -05:00
03bf1c4c04 PH: Rename vars, remove return value 2023-05-26 11:47:34 -05:00
3961aedaf5 Revise docs and struct name; add basic MPI test 2023-05-26 10:52:23 -05:00
oyurdakul
9dc3607c56 progressive hedging 2023-05-22 16:41:00 -05:00
Jun He
ec2d56602b updated the warning block syntax 2023-05-20 12:13:28 -04:00
40270b0030 Make test/ a standalone project 2023-05-19 15:35:49 -05:00
Jun He
7c41a9761c warning on nested time decomp 2023-05-19 13:57:56 -04:00
Jun He
6f9420874d added more comments 2023-05-19 13:57:33 -04:00
Jun He
eff5908b13 time decomposition doc 2023-05-19 13:31:44 -04:00
Jun He
adcaf6fc55 time decomposition tests 2023-05-19 13:31:32 -04:00
Jun He
46259f7c1c time decomposition src code 2023-05-19 13:31:20 -04:00
oyurdakul
e8d8272510 Fix pwlcosts bug 2023-05-19 11:34:02 -05:00
6db2ca76e8 Fix formatting 2023-05-19 10:40:25 -05:00
4adb3344ac Profiled units: minor changes 2023-05-19 10:38:35 -05:00
Jun He
316d0bdf5a added profiled units in slice 2023-05-05 14:48:42 -04:00
Jun He
33f8ec26d5 renamed capacity to max_power 2023-05-05 14:48:15 -04:00
Jun He
41790db448 new test case gz file 2023-04-22 14:09:40 -04:00
Jun He
baf529a15d added commitment status to thermal 2023-04-22 14:02:03 -04:00
Jun He
b71a1c3d5f Updated randomize, validate and initial conditions 2023-04-07 16:42:03 -04:00
Jun He
bea42d174c Reformatted code 2023-04-06 16:21:58 -04:00
Jun He
896ef0f3e3 Added min power, fixed typo 2023-04-06 16:16:30 -04:00
Jun He
cb7f9e3b27 Added minimum power to profiled generator 2023-04-06 16:16:04 -04:00
319a787904 Merge pull request #26 from hejun0524/dev
LMP Methods & Profiled Units
2023-04-06 13:11:04 -05:00
b1c963f217 Rename 'production' to 'thermal production' 2023-04-04 15:59:41 -05:00
19534a128f Rename Unit to ThermalUnit 2023-04-04 15:40:44 -05:00
Jun He
51f6aa9a80 Create case14-profiled.json.gz 2023-03-31 15:19:46 -04:00
Jun He
f2c0388cac Updated the docs 2023-03-31 15:11:59 -04:00
Jun He
3564358a63 Re-formatted the codes 2023-03-31 15:11:47 -04:00
Jun He
b2ed0f67c1 Added the profiled units 2023-03-31 15:11:37 -04:00
Jun He
2a6c206e08 updated LMP for UC scenario 2023-03-30 23:19:24 -04:00
Jun He
30a4284119 Merge remote-tracking branch 'upstream/dev' into dev 2023-03-30 14:35:09 -04:00
Jun He
71ed55cb40 Formatted codes on the LMP dev branch 2023-03-30 14:30:10 -04:00
Jun He
0b95df25ec typo fix in generator json example 2023-03-24 10:56:41 -04:00
Jun He
5f5c8b66eb more condition checking on AELMP 2023-03-19 14:28:39 -04:00
52f1ff9a27 Merge pull request #25 from oyurdakul/stochastic-extension
stochastic extension w/ scenarios
2023-03-16 12:10:13 -05:00
414128cc0b Correct optimize!, add stochastic test case 2023-03-16 12:03:40 -05:00
20939dc4b7 Minor edits to instance/structs.jl 2023-03-16 10:43:30 -05:00
d8741f04a0 Minor edits to instance/read.jl 2023-03-16 10:38:08 -05:00
3b6d810884 Remove duplicate format.jl file 2023-03-16 10:24:31 -05:00
204c5d900f Remove unused dependency 2023-03-16 10:23:40 -05:00
cb9334c0a3 Minor changes to tests 2023-03-16 10:21:31 -05:00
31e0613134 Remove unused dependency & debug statements 2023-03-16 10:09:01 -05:00
4827c29230 Add Jun to authors 2023-03-15 12:41:09 -05:00
19e84bac07 Reformat source code 2023-03-15 12:27:43 -05:00
d7d2a3fcf6 AELMP: Convert warnings into errors; update docstrings 2023-03-15 12:23:18 -05:00
784ebfa199 ConventionalLMP: turn warnings into errors, remove some inline comments 2023-03-15 12:15:57 -05:00
d2e11eee42 Flatten dir structure, update docstrings 2023-03-15 12:08:35 -05:00
34ca6952fb Revise docs 2023-03-15 11:34:50 -05:00
Jun He
bc3aee38f8 modified the tests for LMP and AELMP 2023-03-08 13:35:33 -05:00
Jun He
415732f0ec updated the doc with LMP and AELMP 2023-03-08 13:34:10 -05:00
Jun He
5c91dc2ac9 re-designed the LMP methods
The LMP and AELMP methods are re-designed to be dependent on the instance object instead of input files, and to have a unified API style for purposes of flexibility and consistency.
2023-03-08 13:33:47 -05:00
oyurdakul
ad4a754d63 read and repair scenario 2023-03-06 17:07:54 -06:00
oyurdakul
481f5a904c read and repair scenario 2023-03-06 17:03:34 -06:00
oyurdakul
7e8a2ee026 stochastic extension 2023-02-22 12:44:46 -06:00
oyurdakul
c95b01dadf stochastic extension w/ scenarios 2023-02-08 23:46:10 -06:00
Feng
8fc84412eb Update README.md
minor corrections on grammer.
2022-08-19 11:03:21 -05:00
6573bb7ea2 Update README.md 2022-07-18 09:54:15 -06:00
1769f2a932 Project.toml: Remove Revise.jl 2022-07-18 09:42:00 -06:00
4dc39363e8 Update references, copyright notices, links 2022-07-18 09:40:52 -06:00
5fef01cd99 Improve docs 2022-07-17 15:50:42 -06:00
18daaf5358 Switch to Documenter.jl 2022-07-17 14:44:58 -06:00
b68b4ff9e4 Update CHANGELOG and docs 2022-07-13 10:14:42 -05:00
6e30645084 Allow v0.3 to read v0.2 instance files 2022-07-12 11:57:55 -05:00
678e6aa2f5 Update docs 2022-07-11 12:16:06 -05:00
fd25580967 Reformat source code 2022-07-11 10:58:42 -05:00
dc693896a3 Merge branch 'dev' into feature/reserves 2022-06-20 17:17:27 -05:00
ddebcc6ddb Merge branch 'dev' into feature/reserves 2022-06-20 14:31:02 -05:00
3282e5bc3a Fix all tests 2022-06-20 14:21:02 -05:00
15de1901c8 Remove temporary files 2022-06-14 14:55:59 -05:00
bf2dc4ddc4 Remove instances from repository; download on the fly 2022-06-14 14:38:44 -05:00
5c3c8f0d63 GitHub Actions: Remove older non-LTS Julia versions 2022-04-16 11:53:12 -05:00
cce6a874b9 Bump JuMP version to 1.0 2022-04-16 11:52:21 -05:00
1ce1cddaf3 Remove Gurobi from test dependencies; remove large tests 2022-04-16 11:43:09 -05:00
46d754dbcf GitHub Actions: Add Julia 1.7 2022-04-16 11:34:25 -05:00
b7d9083335 Makefile: Update clean target 2022-04-16 11:34:14 -05:00
86ae1d0429 juliaw: Make it compatible with Julia 1.7 2022-04-16 11:33:57 -05:00
58a7567c16 Randomization: Explicitly use MersenneTwister; allow other RNGs 2022-04-16 11:14:06 -05:00
2367e5a348 Fix formatting 2022-04-16 10:27:46 -05:00
74b8a8ae2c Fix formatting 2022-04-16 10:23:58 -05:00
3260fa29ad Remove temporary files 2022-04-16 10:16:53 -05:00
3b1d2d1845 Add author: Ogün Yurdakul 2022-04-16 10:15:32 -05:00
db106f1a38 Make juliaw executable 2022-04-16 10:12:09 -05:00
16b0fec6cd Make tests completely silent; remove set_gap warnings on Cbc 2022-04-16 10:11:33 -05:00
cda1e368fe Remove some redundant comments 2022-04-16 09:55:28 -05:00
099fb4e3cb Add case14-flex test case 2022-04-16 09:52:08 -05:00
oyurdakul
b4bc50c865 new formatting 2022-04-01 15:22:42 +02:00
oyurdakul
febb4f1aad new formatting 2022-04-01 15:17:14 +02:00
oyurdakul
8988b00b07 modified validation, error scripts 2022-03-23 02:39:24 +01:00
oyurdakul
0046c4ca2a change the validation of reserves 2022-03-22 19:01:20 +01:00
72f659b9ff Merge branch 'dev' into add-flexiramp 2022-03-01 16:32:52 -06:00
360308ef4a Reformat source code 2022-03-01 16:26:51 -06:00
03268dd3df Merge branch 'dev' into add-flexiramp 2022-03-01 16:26:42 -06:00
oyurdakul
a3a71ff5a9 add flexiramp 2022-02-03 09:45:06 +01:00
5ca566f147 Remove old reserves 2022-01-20 16:23:22 -06:00
3220650e39 Implement new reserves 2022-01-20 10:18:19 -06:00
ca0d250dfa Parse new reserves 2022-01-19 10:03:22 -06:00
2bd68b49a5 Reserves: Update docs 2022-01-19 09:23:21 -06:00
141 changed files with 8921 additions and 2570 deletions

View File

@@ -1,4 +1,4 @@
name: Tests
name: Build & Test
on:
push:
pull_request:
@@ -6,19 +6,30 @@ on:
- cron: '45 10 * * *'
jobs:
test:
name: Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }}
runs-on: ${{ matrix.os }}
strategy:
matrix:
julia-version: ['1.4', '1.5', '1.6']
julia-arch: [x64]
os: [ubuntu-latest, windows-latest, macOS-latest]
exclude:
- os: macOS-latest
julia-arch: x86
version: ['1.6', '1.7', '1.8', '1.9']
os:
- ubuntu-latest
arch:
- x64
steps:
- uses: actions/checkout@v2
- uses: julia-actions/setup-julia@latest
- uses: julia-actions/setup-julia@v1
with:
version: ${{ matrix.julia-version }}
- uses: julia-actions/julia-buildpkg@latest
- uses: julia-actions/julia-runtest@latest
version: ${{ matrix.version }}
arch: ${{ matrix.arch }}
- name: Run tests
shell: julia --color=yes --project=test {0}
run: |
using Pkg
Pkg.develop(path=".")
Pkg.update()
using UnitCommitmentT
try
runtests()
catch
exit(1)
end

33
.gitignore vendored
View File

@@ -1,21 +1,38 @@
*.bak
*.gz
*.lastrun
*.so
*.mps
*.ipynb
*.lastrun
*.mps
*.so
*/Manifest.toml
.AppleDB
.AppleDesktop
.AppleDouble
.DS_Store
.DocumentRevisions-V100
.LSOverride
.Spotlight-V100
.TemporaryItems
.Trashes
.VolumeIcon.icns
._*
.apdisk
.com.apple.timemachine.donotpresent
.fseventsd
.ipy*
.vscode
Icon
Manifest.toml
Network Trash Folder
TODO.md
Temporary Items
benchmark/results
benchmark/runs
benchmark/tables
benchmark/tmp.json
build
docs/_build
instances/**/*.json
instances/_source
local
notebooks
TODO.md
docs/_build
.vscode
Manifest.toml
*/Manifest.toml

27
.zenodo.json Normal file
View File

@@ -0,0 +1,27 @@
{
"creators": [
{
"orcid": "0000-0002-5022-9802",
"affiliation": "Argonne National Laboratory",
"name": "Santos Xavier, Alinson"
},
{
"affiliation": "University of Florida",
"name": "Kazachkov, Aleksandr M."
},
{
"affiliation": "Technische Universität Berlin",
"name": "Yurdakul, Ogün"
},
{
"affiliation": "Purdue University",
"name": "He, Jun"
},
{
"affiliation": "Argonne National Laboratory",
"name": "Qiu, Feng"
}
],
"title": "UnitCommitment.jl: A Julia/JuMP Optimization Package for Security-Constrained Unit Commitment",
"description": "<b>UnitCommitment.jl</b> (UC.jl) is an optimization package for the Security-Constrained Unit Commitment Problem (SCUC), a fundamental optimization problem in power systems used, for example, to clear the day-ahead electricity markets. The package provides benchmark instances for the problem and Julia/JuMP implementations of state-of-the-art mixed-integer programming formulations."
}

View File

@@ -11,6 +11,21 @@ All notable changes to this project will be documented in this file.
[semver]: https://semver.org/spec/v2.0.0.html
[pkjjl]: https://pkgdocs.julialang.org/v1/compatibility/#compat-pre-1.0
## [0.3.0] - 2022-07-18
### Added
- Add support for multiple reserve products and zonal reserves.
- Add flexiramp reserve products, following WanHob2016's formulation (@oyurdakul, #21).
- Add 365 variations for each MATPOWER instance, corresponding to each day of the year.
### Changed
- To support multiple/zonal reserves, the input data format has been modified as follows:
- In `Generators`, replace `Provides spinning reserves?` by `Reserve eligibility`
- In `Parameters`, remove `Reserve shortfall penalty`
- Revise `Reserves` section
- To allow new versions of UnitCommitment.jl to read old instance files, a new required field `Version` has been added to the `Parameters` section. To load v0.2 files in v0.3, please add `{"Parameters":{"Version":"0.2"}}` to the file.
- Benchmark test cases are now downloaded on-the-fly as needed, instead of being stored in our GitHub repository. Test cases can also be directly downloaded from: https://axavier.org/UnitCommitment.jl/
## [0.2.2] - 2021-07-21
### Fixed
- Fix small bug in validation scripts related to startup costs

View File

@@ -1,4 +1,4 @@
Copyright © 2020, UChicago Argonne, LLC
Copyright © 2020-2022, UChicago Argonne, LLC
All Rights Reserved

View File

@@ -2,22 +2,10 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
VERSION := 0.2
clean:
rm -rfv build
VERSION := 0.3
docs:
cd docs; make clean; make dirhtml
rsync -avP --delete-after docs/_build/dirhtml/ ../docs/$(VERSION)/
cd docs; julia --project=. make.jl; cd ..
rsync -avP --delete-after docs/build/ ../docs/$(VERSION)/
format:
cd deps/formatter; ../../juliaw format.jl
test: test/Manifest.toml
./juliaw test/runtests.jl
test/Manifest.toml: test/Project.toml
julia --project=test -e "using Pkg; Pkg.instantiate()"
.PHONY: docs test format install-deps
.PHONY: docs

View File

@@ -2,7 +2,7 @@ name = "UnitCommitment"
uuid = "64606440-39ea-11e9-0f29-3303a1d3d877"
authors = ["Santos Xavier, Alinson <axavier@anl.gov>"]
repo = "https://github.com/ANL-CEEESA/UnitCommitment.jl"
version = "0.2.2"
version = "0.3.0"
[deps]
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
@@ -13,18 +13,24 @@ JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Logging = "56ddb016-857b-54e1-b83d-db4d58db5568"
MPI = "da04e1cc-30fd-572f-bb4f-1f8673147195"
MathOptInterface = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
PackageCompiler = "9b87118b-4619-50d2-8e1e-99f35a4d4d9d"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Requires = "ae029012-a4dd-5104-9daa-d747884805df"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
Suppressor = "fd094767-a336-5f1f-9728-57cf17d0bbfb"
TimerOutputs = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f"
[compat]
DataStructures = "0.18"
Distributions = "0.25"
GZip = "0.5"
JSON = "0.21"
JuMP = "0.21"
MathOptInterface = "0.9"
JuMP = "1"
MPI = "0.20"
MathOptInterface = "1"
PackageCompiler = "1"
TimerOutputs = "0.5"
julia = "1"

View File

@@ -87,19 +87,22 @@ UnitCommitment.write("/tmp/output.json", solution)
## Documentation
1. [Usage](https://anl-ceeesa.github.io/UnitCommitment.jl/0.2/usage/)
2. [Data Format](https://anl-ceeesa.github.io/UnitCommitment.jl/0.2/format/)
3. [Instances](https://anl-ceeesa.github.io/UnitCommitment.jl/0.2/instances/)
4. [JuMP Model](https://anl-ceeesa.github.io/UnitCommitment.jl/0.2/model/)
1. [Usage](https://anl-ceeesa.github.io/UnitCommitment.jl/0.3/usage/)
2. [Data Format](https://anl-ceeesa.github.io/UnitCommitment.jl/0.3/format/)
3. [Instances](https://anl-ceeesa.github.io/UnitCommitment.jl/0.3/instances/)
4. [JuMP Model](https://anl-ceeesa.github.io/UnitCommitment.jl/0.3/model/)
5. [API Reference](https://anl-ceeesa.github.io/UnitCommitment.jl/0.3/api/)
## Authors
* **Alinson S. Xavier** (Argonne National Laboratory)
* **Aleksandr M. Kazachkov** (University of Florida)
* **Ogün Yurdakul** (Technische Universität Berlin)
* **Jun He** (Purdue University)
* **Feng Qiu** (Argonne National Laboratory)
## Acknowledgments
* We would like to **Yonghong Chen** (Midcontinent Independent System Operator), **Feng Pan** (Pacific Northwest National Laboratory) for valuable feedback on early versions of this package.
* We would like to thank **Yonghong Chen** (Midcontinent Independent System Operator), **Feng Pan** (Pacific Northwest National Laboratory) for valuable feedback on early versions of this package.
* Based upon work supported by **Laboratory Directed Research and Development** (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357
@@ -109,15 +112,15 @@ UnitCommitment.write("/tmp/output.json", solution)
If you use UnitCommitment.jl in your research (instances, models or algorithms), we kindly request that you cite the package as follows:
* **Alinson S. Xavier, Aleksandr M. Kazachkov, Feng Qiu**. "UnitCommitment.jl: A Julia/JuMP Optimization Package for Security-Constrained Unit Commitment". Zenodo (2020). [DOI: 10.5281/zenodo.4269874](https://doi.org/10.5281/zenodo.4269874).
* **Alinson S. Xavier, Aleksandr M. Kazachkov, Ogün Yurdakul, Feng Qiu**. "UnitCommitment.jl: A Julia/JuMP Optimization Package for Security-Constrained Unit Commitment (Version 0.3)". Zenodo (2022). [DOI: 10.5281/zenodo.4269874](https://doi.org/10.5281/zenodo.4269874).
If you use the instances, we additionally request that you cite the original sources, as described in the [instances page](docs/instances.md).
If you use the instances, we additionally request that you cite the original sources, as described in the documentation.
## License
```text
UnitCommitment.jl: A Julia/JuMP Optimization Package for Security-Constrained Unit Commitment
Copyright © 2020-2021, UChicago Argonne, LLC. All Rights Reserved.
Copyright © 2020-2022, UChicago Argonne, LLC. All Rights Reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

View File

@@ -1,5 +0,0 @@
[deps]
JuliaFormatter = "98e50ef6-434e-11e9-1051-2b60c6c9e899"
[compat]
JuliaFormatter = "0.14.4"

View File

@@ -1,9 +0,0 @@
using JuliaFormatter
format(
[
"../../src",
"../../test",
"../../benchmark/run.jl",
],
verbose=true,
)

View File

@@ -1,14 +0,0 @@
SPHINXOPTS ?=
SPHINXBUILD ?= sphinx-build
SOURCEDIR = .
BUILDDIR = _build
help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
.PHONY: help Makefile
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

9
docs/Project.toml Normal file
View File

@@ -0,0 +1,9 @@
[deps]
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
Glob = "c27321d9-0574-5035-807b-f59d2c89b15c"
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b"
JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
MPI = "da04e1cc-30fd-572f-bb4f-1f8673147195"
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"
UnitCommitment = "64606440-39ea-11e9-0f29-3303a1d3d877"

View File

@@ -1,49 +0,0 @@
h1.site-logo {
font-size: 30px !important;
}
h1.site-logo small {
font-size: 20px !important;
}
h1.site-logo {
font-size: 30px !important;
}
h1.site-logo small {
font-size: 20px !important;
}
tbody, thead, pre {
border: 1px solid rgba(0, 0, 0, 0.25);
}
table td, th {
padding: 8px;
}
table p {
margin-bottom: 0;
}
table td code {
white-space: nowrap;
}
table tr,
table th {
border-bottom: 1px solid rgba(0, 0, 0, 0.1);
}
table tr:last-child {
border-bottom: 0;
}
pre {
box-shadow: inherit !important;
background-color: #fff;
}
.text-align\:center {
text-align: center;
}

View File

@@ -1,16 +0,0 @@
project = "UnitCommitment.jl"
copyright = "2020-2021, UChicago Argonne, LLC"
author = ""
release = "0.2"
extensions = ["myst_parser"]
templates_path = ["_templates"]
exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]
html_theme = "sphinx_book_theme"
html_static_path = ["_static"]
html_css_files = ["custom.css"]
html_theme_options = {
"repository_url": "https://github.com/ANL-CEEESA/UnitCommitment.jl/",
"use_repository_button": True,
"extra_navbar": "",
}
html_title = f"UnitCommitment.jl<br/><small>{release}</small>"

1158
docs/example/out.json Normal file

File diff suppressed because it is too large Load Diff

495
docs/example/s1.json Normal file
View File

@@ -0,0 +1,495 @@
{
"Parameters": {
"Version": "0.3",
"Time horizon (h)": 4
},
"Generators": {
"g1": {
"Bus": "b1",
"Production cost curve (MW)": [
100,
110,
130,
135
],
"Production cost curve ($)": [
1400,
1600,
2200,
2400
],
"Startup delays (h)": [
1,
2,
3
],
"Startup costs ($)": [
1000.0,
1500.0,
2000.0
],
"Initial status (h)": -100,
"Initial power (MW)": 0
},
"g2": {
"Bus": "b2",
"Production cost curve (MW)": [
0,
47,
94,
140
],
"Production cost curve ($)": [
0,
2256.00,
4733.37,
7395.39
],
"Startup delays (h)": [
1,
4
],
"Startup costs ($)": [
3000.0,
4000.0
],
"Ramp up limit (MW)": 98.0,
"Ramp down limit (MW)": 98.0,
"Startup limit (MW)": 98.0,
"Shutdown limit (MW)": 98.0,
"Minimum uptime (h)": 4,
"Minimum downtime (h)": 4,
"Maximum daily energy (MWh)": null,
"Maximum daily starts": null,
"Initial status (h)": -8,
"Initial power (MW)": 0,
"Reserve eligibility": [
"r1"
]
},
"g3": {
"Bus": "b3",
"Production cost curve (MW)": [
0,
33,
66,
100
],
"Production cost curve ($)": [
0,
1113.75,
2369.07,
3891.54
],
"Startup delays (h)": [
1,
4,
8
],
"Startup costs ($)": [
1000.0,
2000.0,
3000.0
],
"Ramp up limit (MW)": 70.0,
"Ramp down limit (MW)": 70.0,
"Startup limit (MW)": 70.0,
"Shutdown limit (MW)": 70.0,
"Must run?": true,
"Minimum uptime (h)": 1,
"Minimum downtime (h)": 1,
"Maximum daily energy (MWh)": null,
"Maximum daily starts": null,
"Initial status (h)": -6,
"Initial power (MW)": 0,
"Reserve eligibility": [
"r1"
]
},
"g4": {
"Bus": "b6",
"Production cost curve (MW)": [
33,
66,
100
],
"Production cost curve ($)": [
1113.75,
2369.07,
3891.54
],
"Initial status (h)": -100,
"Initial power (MW)": 0,
"Reserve eligibility": [
"r1"
]
},
"g5": {
"Bus": "b8",
"Production cost curve (MW)": [
33,
66,
100
],
"Production cost curve ($)": [
1113.75,
2369.07,
3891.54
],
"Initial status (h)": -100,
"Initial power (MW)": 0,
"Reserve eligibility": [
"r1"
]
},
"g6": {
"Bus": "b8",
"Production cost curve (MW)": [
100
],
"Production cost curve ($)": [
10000.00
],
"Initial status (h)": -100,
"Initial power (MW)": 0,
"Reserve eligibility": [
"r1"
]
}
},
"Buses": {
"b1": {
"Load (MW)": 0.0
},
"b2": {
"Load (MW)": [
26.01527,
24.46212,
23.29725,
22.90897
]
},
"b3": {
"Load (MW)": [
112.93263,
106.19039,
101.1337,
99.44814
]
},
"b4": {
"Load (MW)": [
57.30552,
53.88429,
51.31838,
50.46307
]
},
"b5": {
"Load (MW)": [
9.11134,
8.56738,
8.15941,
8.02342
]
},
"b6": {
"Load (MW)": [
13.42723,
12.62561,
12.02439,
11.82398
]
},
"b7": {
"Load (MW)": 0.0
},
"b8": {
"Load (MW)": 0.0
},
"b9": {
"Load (MW)": [
35.36638,
33.25495,
31.67138,
31.14353
]
},
"b10": {
"Load (MW)": [
10.78974,
10.14558,
9.66246,
9.50141
]
},
"b11": {
"Load (MW)": [
4.19601,
3.9455,
3.75762,
3.69499
]
},
"b12": {
"Load (MW)": [
7.31305,
6.87645,
6.549,
6.43985
]
},
"b13": {
"Load (MW)": [
16.18461,
15.21837,
14.49368,
14.25212
]
},
"b14": {
"Load (MW)": [
17.86302,
16.79657,
15.99673,
15.73012
]
}
},
"Transmission lines": {
"l1": {
"Source bus": "b1",
"Target bus": "b2",
"Reactance (ohms)": 0.05917000000000001,
"Susceptance (S)": 29.496860773945063,
"Normal flow limit (MW)": 300.0,
"Emergency flow limit (MW)": 400.0,
"Flow limit penalty ($/MW)": 1000.0
},
"l2": {
"Source bus": "b1",
"Target bus": "b5",
"Reactance (ohms)": 0.22304000000000002,
"Susceptance (S)": 7.825184953346168
},
"l3": {
"Source bus": "b2",
"Target bus": "b3",
"Reactance (ohms)": 0.19797,
"Susceptance (S)": 8.816129979261149
},
"l4": {
"Source bus": "b2",
"Target bus": "b4",
"Reactance (ohms)": 0.17632,
"Susceptance (S)": 9.898645939169292
},
"l5": {
"Source bus": "b2",
"Target bus": "b5",
"Reactance (ohms)": 0.17388,
"Susceptance (S)": 10.037550333530765
},
"l6": {
"Source bus": "b3",
"Target bus": "b4",
"Reactance (ohms)": 0.17103,
"Susceptance (S)": 10.204813494675376
},
"l7": {
"Source bus": "b4",
"Target bus": "b5",
"Reactance (ohms)": 0.04211,
"Susceptance (S)": 41.44690695783257
},
"l8": {
"Source bus": "b4",
"Target bus": "b7",
"Reactance (ohms)": 0.20911999999999997,
"Susceptance (S)": 8.346065665619404
},
"l9": {
"Source bus": "b4",
"Target bus": "b9",
"Reactance (ohms)": 0.55618,
"Susceptance (S)": 3.1380654680037567
},
"l10": {
"Source bus": "b5",
"Target bus": "b6",
"Reactance (ohms)": 0.25201999999999997,
"Susceptance (S)": 6.92536009838239
},
"l11": {
"Source bus": "b6",
"Target bus": "b11",
"Reactance (ohms)": 0.1989,
"Susceptance (S)": 8.774908255376218
},
"l12": {
"Source bus": "b6",
"Target bus": "b12",
"Reactance (ohms)": 0.25581,
"Susceptance (S)": 6.8227561549365925
},
"l13": {
"Source bus": "b6",
"Target bus": "b13",
"Reactance (ohms)": 0.13027,
"Susceptance (S)": 13.397783465067395
},
"l14": {
"Source bus": "b7",
"Target bus": "b8",
"Reactance (ohms)": 0.17615,
"Susceptance (S)": 9.908198989465395
},
"l15": {
"Source bus": "b7",
"Target bus": "b9",
"Reactance (ohms)": 0.11001,
"Susceptance (S)": 15.865187273832648
},
"l16": {
"Source bus": "b9",
"Target bus": "b10",
"Reactance (ohms)": 0.0845,
"Susceptance (S)": 20.65478404727017
},
"l17": {
"Source bus": "b9",
"Target bus": "b14",
"Reactance (ohms)": 0.27038,
"Susceptance (S)": 6.4550974628091184
},
"l18": {
"Source bus": "b10",
"Target bus": "b11",
"Reactance (ohms)": 0.19207,
"Susceptance (S)": 9.08694357262628
},
"l19": {
"Source bus": "b12",
"Target bus": "b13",
"Reactance (ohms)": 0.19988,
"Susceptance (S)": 8.73188539120637
},
"l20": {
"Source bus": "b13",
"Target bus": "b14",
"Reactance (ohms)": 0.34802,
"Susceptance (S)": 5.0150257226433235
}
},
"Contingencies": {
"c1": {
"Affected lines": [
"l1"
]
},
"c2": {
"Affected lines": [
"l2"
]
},
"c3": {
"Affected lines": [
"l3"
]
},
"c4": {
"Affected lines": [
"l4"
]
},
"c5": {
"Affected lines": [
"l5"
]
},
"c6": {
"Affected lines": [
"l6"
]
},
"c7": {
"Affected lines": [
"l7"
]
},
"c8": {
"Affected lines": [
"l8"
]
},
"c9": {
"Affected lines": [
"l9"
]
},
"c10": {
"Affected lines": [
"l10"
]
},
"c11": {
"Affected lines": [
"l11"
]
},
"c12": {
"Affected lines": [
"l12"
]
},
"c13": {
"Affected lines": [
"l13"
]
},
"c15": {
"Affected lines": [
"l15"
]
},
"c16": {
"Affected lines": [
"l16"
]
},
"c17": {
"Affected lines": [
"l17"
]
},
"c18": {
"Affected lines": [
"l18"
]
},
"c19": {
"Affected lines": [
"l19"
]
},
"c20": {
"Affected lines": [
"l20"
]
}
},
"Price-sensitive loads": {
"ps1": {
"Bus": "b3",
"Revenue ($/MW)": 100.0,
"Demand (MW)": 50.0
}
},
"Reserves": {
"r1": {
"Type": "Spinning",
"Amount (MW)": 100.0,
"Shortfall penalty ($/MW)": 1000.0
}
}
}

495
docs/example/s2.json Normal file
View File

@@ -0,0 +1,495 @@
{
"Parameters": {
"Version": "0.3",
"Time horizon (h)": 4
},
"Generators": {
"g1": {
"Bus": "b1",
"Production cost curve (MW)": [
100,
110,
130,
135
],
"Production cost curve ($)": [
1400,
1600,
2200,
2400
],
"Startup delays (h)": [
1,
2,
3
],
"Startup costs ($)": [
1000.0,
1500.0,
2000.0
],
"Initial status (h)": -100,
"Initial power (MW)": 0
},
"g2": {
"Bus": "b2",
"Production cost curve (MW)": [
0,
47,
94,
140
],
"Production cost curve ($)": [
0,
2256.00,
4733.37,
7395.39
],
"Startup delays (h)": [
1,
4
],
"Startup costs ($)": [
3000.0,
4000.0
],
"Ramp up limit (MW)": 98.0,
"Ramp down limit (MW)": 98.0,
"Startup limit (MW)": 98.0,
"Shutdown limit (MW)": 98.0,
"Minimum uptime (h)": 4,
"Minimum downtime (h)": 4,
"Maximum daily energy (MWh)": null,
"Maximum daily starts": null,
"Initial status (h)": -8,
"Initial power (MW)": 0,
"Reserve eligibility": [
"r1"
]
},
"g3": {
"Bus": "b3",
"Production cost curve (MW)": [
0,
33,
66,
100
],
"Production cost curve ($)": [
0,
1113.75,
2369.07,
3891.54
],
"Startup delays (h)": [
1,
4,
8
],
"Startup costs ($)": [
1000.0,
2000.0,
3000.0
],
"Ramp up limit (MW)": 70.0,
"Ramp down limit (MW)": 70.0,
"Startup limit (MW)": 70.0,
"Shutdown limit (MW)": 70.0,
"Must run?": true,
"Minimum uptime (h)": 1,
"Minimum downtime (h)": 1,
"Maximum daily energy (MWh)": null,
"Maximum daily starts": null,
"Initial status (h)": -6,
"Initial power (MW)": 0,
"Reserve eligibility": [
"r1"
]
},
"g4": {
"Bus": "b6",
"Production cost curve (MW)": [
33,
66,
100
],
"Production cost curve ($)": [
1113.75,
2369.07,
3891.54
],
"Initial status (h)": -100,
"Initial power (MW)": 0,
"Reserve eligibility": [
"r1"
]
},
"g5": {
"Bus": "b8",
"Production cost curve (MW)": [
33,
66,
100
],
"Production cost curve ($)": [
1113.75,
2369.07,
3891.54
],
"Initial status (h)": -100,
"Initial power (MW)": 0,
"Reserve eligibility": [
"r1"
]
},
"g6": {
"Bus": "b8",
"Production cost curve (MW)": [
100
],
"Production cost curve ($)": [
10000.00
],
"Initial status (h)": -100,
"Initial power (MW)": 0,
"Reserve eligibility": [
"r1"
]
}
},
"Buses": {
"b1": {
"Load (MW)": 0.0
},
"b2": {
"Load (MW)": [
26.01527,
24.46212,
23.29725,
22.90897
]
},
"b3": {
"Load (MW)": [
112.93263,
106.19039,
101.1337,
99.44814
]
},
"b4": {
"Load (MW)": [
57.30552,
53.88429,
51.31838,
50.46307
]
},
"b5": {
"Load (MW)": [
9.11134,
8.56738,
8.15941,
8.02342
]
},
"b6": {
"Load (MW)": [
13.42723,
12.62561,
12.02439,
11.82398
]
},
"b7": {
"Load (MW)": 0.0
},
"b8": {
"Load (MW)": 0.0
},
"b9": {
"Load (MW)": [
35.36638,
33.25495,
31.67138,
31.14353
]
},
"b10": {
"Load (MW)": [
10.78974,
10.14558,
9.66246,
9.50141
]
},
"b11": {
"Load (MW)": [
4.19601,
3.9455,
3.75762,
3.69499
]
},
"b12": {
"Load (MW)": [
7.31305,
6.87645,
6.549,
6.43985
]
},
"b13": {
"Load (MW)": [
16.18461,
15.21837,
14.49368,
14.25212
]
},
"b14": {
"Load (MW)": [
17.86302,
16.79657,
15.99673,
15.73012
]
}
},
"Transmission lines": {
"l1": {
"Source bus": "b1",
"Target bus": "b2",
"Reactance (ohms)": 0.05917000000000001,
"Susceptance (S)": 29.496860773945063,
"Normal flow limit (MW)": 300.0,
"Emergency flow limit (MW)": 400.0,
"Flow limit penalty ($/MW)": 1000.0
},
"l2": {
"Source bus": "b1",
"Target bus": "b5",
"Reactance (ohms)": 0.22304000000000002,
"Susceptance (S)": 7.825184953346168
},
"l3": {
"Source bus": "b2",
"Target bus": "b3",
"Reactance (ohms)": 0.19797,
"Susceptance (S)": 8.816129979261149
},
"l4": {
"Source bus": "b2",
"Target bus": "b4",
"Reactance (ohms)": 0.17632,
"Susceptance (S)": 9.898645939169292
},
"l5": {
"Source bus": "b2",
"Target bus": "b5",
"Reactance (ohms)": 0.17388,
"Susceptance (S)": 10.037550333530765
},
"l6": {
"Source bus": "b3",
"Target bus": "b4",
"Reactance (ohms)": 0.17103,
"Susceptance (S)": 10.204813494675376
},
"l7": {
"Source bus": "b4",
"Target bus": "b5",
"Reactance (ohms)": 0.04211,
"Susceptance (S)": 41.44690695783257
},
"l8": {
"Source bus": "b4",
"Target bus": "b7",
"Reactance (ohms)": 0.20911999999999997,
"Susceptance (S)": 8.346065665619404
},
"l9": {
"Source bus": "b4",
"Target bus": "b9",
"Reactance (ohms)": 0.55618,
"Susceptance (S)": 3.1380654680037567
},
"l10": {
"Source bus": "b5",
"Target bus": "b6",
"Reactance (ohms)": 0.25201999999999997,
"Susceptance (S)": 6.92536009838239
},
"l11": {
"Source bus": "b6",
"Target bus": "b11",
"Reactance (ohms)": 0.1989,
"Susceptance (S)": 8.774908255376218
},
"l12": {
"Source bus": "b6",
"Target bus": "b12",
"Reactance (ohms)": 0.25581,
"Susceptance (S)": 6.8227561549365925
},
"l13": {
"Source bus": "b6",
"Target bus": "b13",
"Reactance (ohms)": 0.13027,
"Susceptance (S)": 13.397783465067395
},
"l14": {
"Source bus": "b7",
"Target bus": "b8",
"Reactance (ohms)": 0.17615,
"Susceptance (S)": 9.908198989465395
},
"l15": {
"Source bus": "b7",
"Target bus": "b9",
"Reactance (ohms)": 0.11001,
"Susceptance (S)": 15.865187273832648
},
"l16": {
"Source bus": "b9",
"Target bus": "b10",
"Reactance (ohms)": 0.0845,
"Susceptance (S)": 20.65478404727017
},
"l17": {
"Source bus": "b9",
"Target bus": "b14",
"Reactance (ohms)": 0.27038,
"Susceptance (S)": 6.4550974628091184
},
"l18": {
"Source bus": "b10",
"Target bus": "b11",
"Reactance (ohms)": 0.19207,
"Susceptance (S)": 9.08694357262628
},
"l19": {
"Source bus": "b12",
"Target bus": "b13",
"Reactance (ohms)": 0.19988,
"Susceptance (S)": 8.73188539120637
},
"l20": {
"Source bus": "b13",
"Target bus": "b14",
"Reactance (ohms)": 0.34802,
"Susceptance (S)": 5.0150257226433235
}
},
"Contingencies": {
"c1": {
"Affected lines": [
"l1"
]
},
"c2": {
"Affected lines": [
"l2"
]
},
"c3": {
"Affected lines": [
"l3"
]
},
"c4": {
"Affected lines": [
"l4"
]
},
"c5": {
"Affected lines": [
"l5"
]
},
"c6": {
"Affected lines": [
"l6"
]
},
"c7": {
"Affected lines": [
"l7"
]
},
"c8": {
"Affected lines": [
"l8"
]
},
"c9": {
"Affected lines": [
"l9"
]
},
"c10": {
"Affected lines": [
"l10"
]
},
"c11": {
"Affected lines": [
"l11"
]
},
"c12": {
"Affected lines": [
"l12"
]
},
"c13": {
"Affected lines": [
"l13"
]
},
"c15": {
"Affected lines": [
"l15"
]
},
"c16": {
"Affected lines": [
"l16"
]
},
"c17": {
"Affected lines": [
"l17"
]
},
"c18": {
"Affected lines": [
"l18"
]
},
"c19": {
"Affected lines": [
"l19"
]
},
"c20": {
"Affected lines": [
"l20"
]
}
},
"Price-sensitive loads": {
"ps1": {
"Bus": "b3",
"Revenue ($/MW)": 100.0,
"Demand (MW)": 50.0
}
},
"Reserves": {
"r1": {
"Type": "Spinning",
"Amount (MW)": 100.0,
"Shortfall penalty ($/MW)": 1000.0
}
}
}

View File

@@ -1,294 +0,0 @@
```{sectnum}
---
start: 2
depth: 2
suffix: .
---
```
Data Format
===========
Input Data Format
-----------------
Instances are specified by JSON files containing the following main sections:
* Parameters
* Buses
* Generators
* Price-sensitive loads
* Transmission lines
* Reserves
* Contingencies
Each section is described in detail below. For a complete example, see [case14](https://github.com/ANL-CEEESA/UnitCommitment.jl/tree/dev/instances/matpower/case14).
### Parameters
This section describes system-wide parameters, such as power balance and reserve shortfall penalties, and optimization parameters, such as the length of the planning horizon and the time.
| Key | Description | Default | Time series?
| :----------------------------- | :------------------------------------------------ | :------: | :------------:
| `Time horizon (h)` | Length of the planning horizon (in hours). | Required | N
| `Time step (min)` | Length of each time step (in minutes). Must be a divisor of 60 (e.g. 60, 30, 20, 15, etc). | `60` | N
| `Power balance penalty ($/MW)` | Penalty for system-wide shortage or surplus in production (in $/MW). This is charged per time step. For example, if there is a shortage of 1 MW for three time steps, three times this amount will be charged. | `1000.0` | Y
| `Reserve shortfall penalty ($/MW)` | Penalty for system-wide shortage in meeting reserve requirements (in $/MW). This is charged per time step. Negative value implies reserve constraints must always be satisfied. | `-1` | Y
#### Example
```json
{
"Parameters": {
"Time horizon (h)": 4,
"Power balance penalty ($/MW)": 1000.0,
"Reserve shortfall penalty ($/MW)": -1.0
}
}
```
### Buses
This section describes the characteristics of each bus in the system.
| Key | Description | Default | Time series?
| :----------------- | :------------------------------------------------------------ | ------- | :-------------:
| `Load (MW)` | Fixed load connected to the bus (in MW). | Required | Y
#### Example
```json
{
"Buses": {
"b1": {
"Load (MW)": 0.0
},
"b2": {
"Load (MW)": [
26.01527,
24.46212,
23.29725,
22.90897
]
}
}
}
```
### Generators
This section describes all generators in the system, including thermal units, renewable units and virtual units.
| Key | Description | Default | Time series?
| :------------------------ | :------------------------------------------------| ------- | :-----------:
| `Bus` | Identifier of the bus where this generator is located (string). | Required | N
| `Production cost curve (MW)` and `Production cost curve ($)` | Parameters describing the piecewise-linear production costs. See below for more details. | Required | Y
| `Startup costs ($)` and `Startup delays (h)` | Parameters describing how much it costs to start the generator after it has been shut down for a certain amount of time. If `Startup costs ($)` and `Startup delays (h)` are set to `[300.0, 400.0]` and `[1, 4]`, for example, and the generator is shut down at time `00:00` (h:min), then it costs \$300 to start up the generator at any time between `01:00` and `03:59`, and \$400 to start the generator at time `04:00` or any time after that. The number of startup cost points is unlimited, and may be different for each generator. Startup delays must be strictly increasing and the first entry must equal `Minimum downtime (h)`. | `[0.0]` and `[1]` | N
| `Minimum uptime (h)` | Minimum amount of time the generator must stay operational after starting up (in hours). For example, if the generator starts up at time `00:00` (h:min) and `Minimum uptime (h)` is set to 4, then the generator can only shut down at time `04:00`. | `1` | N
| `Minimum downtime (h)` | Minimum amount of time the generator must stay offline after shutting down (in hours). For example, if the generator shuts down at time `00:00` (h:min) and `Minimum downtime (h)` is set to 4, then the generator can only start producing power again at time `04:00`. | `1` | N
| `Ramp up limit (MW)` | Maximum increase in production from one time step to the next (in MW). For example, if the generator is producing 100 MW at time step 1 and if this parameter is set to 40 MW, then the generator will produce at most 140 MW at time step 2. | `+inf` | N
| `Ramp down limit (MW)` | Maximum decrease in production from one time step to the next (in MW). For example, if the generator is producing 100 MW at time step 1 and this parameter is set to 40 MW, then the generator will produce at least 60 MW at time step 2. | `+inf` | N
| `Startup limit (MW)` | Maximum amount of power a generator can produce immediately after starting up (in MW). For example, if `Startup limit (MW)` is set to 100 MW and the unit is off at time step 1, then it may produce at most 100 MW at time step 2.| `+inf` | N
| `Shutdown limit (MW)` | Maximum amount of power a generator can produce immediately before shutting down (in MW). Specifically, the generator can only shut down at time step `t+1` if its production at time step `t` is below this limit. | `+inf` | N
| `Initial status (h)` | If set to a positive number, indicates the amount of time (in hours) the generator has been on at the beginning of the simulation, and if set to a negative number, the amount of time the generator has been off. For example, if `Initial status (h)` is `-2`, this means that the generator was off since `-02:00` (h:min). The simulation starts at time `00:00`. If `Initial status (h)` is `3`, this means that the generator was on since `-03:00`. A value of zero is not acceptable. | Required | N
| `Initial power (MW)` | Amount of power the generator at time step `-1`, immediately before the planning horizon starts. | Required | N
| `Must run?` | If `true`, the generator should be committed, even if that is not economical (Boolean). | `false` | Y
| `Provides spinning reserves?` | If `true`, this generator may provide spinning reserves (Boolean). | `true` | Y
#### Production costs and limits
Production costs are represented as piecewise-linear curves. Figure 1 shows an example cost curve with three segments, where it costs \$1400, \$1600, \$2200 and \$2400 to generate, respectively, 100, 110, 130 and 135 MW of power. To model this generator, `Production cost curve (MW)` should be set to `[100, 110, 130, 135]`, and `Production cost curve ($)` should be set to `[1400, 1600, 2200, 2400]`.
Note that this curve also specifies the production limits. Specifically, the first point identifies the minimum power output when the unit is operational, while the last point identifies the maximum power output.
<center>
<img src="../_static/cost_curve.png" style="max-width: 500px"/>
<div><b>Figure 1.</b> Piecewise-linear production cost curve.</div>
<br/>
</center>
#### Additional remarks:
* For time-dependent production limits or time-dependent production costs, the usage of nested arrays is allowed. For example, if `Production cost curve (MW)` is set to `[5.0, [10.0, 12.0, 15.0, 20.0]]`, then the unit may generate at most 10, 12, 15 and 20 MW of power during time steps 1, 2, 3 and 4, respectively. The minimum output for all time periods is fixed to at 5 MW.
* There is no limit to the number of piecewise-linear segments, and different generators may have a different number of segments.
* If `Production cost curve (MW)` and `Production cost curve ($)` both contain a single element, then the generator must produce exactly that amount of power when operational. To specify that the generator may produce any amount of power up to a certain limit `P`, the parameter `Production cost curve (MW)` should be set to `[0, P]`.
* Production cost curves must be convex.
#### Example
```json
{
"Generators": {
"gen1": {
"Bus": "b1",
"Production cost curve (MW)": [100.0, 110.0, 130.0, 135.0],
"Production cost curve ($)": [1400.0, 1600.0, 2200.0, 2400.0],
"Startup costs ($)": [300.0, 400.0],
"Startup delays (h)": [1, 4],
"Ramp up limit (MW)": 232.68,
"Ramp down limit (MW)": 232.68,
"Startup limit (MW)": 232.68,
"Shutdown limit (MW)": 232.68,
"Minimum downtime (h)": 4,
"Minimum uptime (h)": 4,
"Initial status (h)": 12,
"Must run?": false,
"Provides spinning reserves?": true,
},
"gen2": {
"Bus": "b5",
"Production cost curve (MW)": [0.0, [10.0, 8.0, 0.0, 3.0]],
"Production cost curve ($)": [0.0, 0.0],
"Provides spinning reserves?": true,
}
}
}
```
### Price-sensitive loads
This section describes components in the system which may increase or reduce their energy consumption according to the energy prices. Fixed loads (as described in the `buses` section) are always served, regardless of the price, unless there is significant congestion in the system or insufficient production capacity. Price-sensitive loads, on the other hand, are only served if it is economical to do so.
| Key | Description | Default | Time series?
| :---------------- | :------------------------------------------------ | :------: | :------------:
| `Bus` | Bus where the load is located. Multiple price-sensitive loads may be placed at the same bus. | Required | N
| `Revenue ($/MW)` | Revenue obtained for serving each MW of power to this load. | Required | Y
| `Demand (MW)` | Maximum amount of power required by this load. Any amount lower than this may be served. | Required | Y
#### Example
```json
{
"Price-sensitive loads": {
"p1": {
"Bus": "b3",
"Revenue ($/MW)": 23.0,
"Demand (MW)": 50.0
}
}
}
```
### Transmission Lines
This section describes the characteristics of transmission system, such as its topology and the susceptance of each transmission line.
| Key | Description | Default | Time series?
| :--------------------- | :----------------------------------------------- | ------- | :------------:
| `Source bus` | Identifier of the bus where the transmission line originates. | Required | N
| `Target bus` | Identifier of the bus where the transmission line reaches. | Required | N
| `Reactance (ohms)` | Reactance of the transmission line (in ohms). | Required | N
| `Susceptance (S)` | Susceptance of the transmission line (in siemens). | Required | N
| `Normal flow limit (MW)` | Maximum amount of power (in MW) allowed to flow through the line when the system is in its regular, fully-operational state. | `+inf` | Y
| `Emergency flow limit (MW)` | Maximum amount of power (in MW) allowed to flow through the line when the system is in degraded state (for example, after the failure of another transmission line). | `+inf` | Y
| `Flow limit penalty ($/MW)` | Penalty for violating the flow limits of the transmission line (in $/MW). This is charged per time step. For example, if there is a thermal violation of 1 MW for three time steps, then three times this amount will be charged. | `5000.0` | Y
#### Example
```json
{
"Transmission lines": {
"l1": {
"Source bus": "b1",
"Target bus": "b2",
"Reactance (ohms)": 0.05917,
"Susceptance (S)": 29.49686,
"Normal flow limit (MW)": 15000.0,
"Emergency flow limit (MW)": 20000.0,
"Flow limit penalty ($/MW)": 5000.0
}
}
}
```
### Reserves
This section describes the hourly amount of operating reserves required.
| Key | Description | Default | Time series?
| :-------------------- | :------------------------------------------------- | --------- | :----:
| `Spinning (MW)` | Minimum amount of system-wide spinning reserves (in MW). Only generators which are online may provide this reserve. | `0.0` | Y
#### Example
```json
{
"Reserves": {
"Spinning (MW)": [
57.30552,
53.88429,
51.31838,
50.46307
]
}
}
```
### Contingencies
This section describes credible contingency scenarios in the optimization, such as the loss of a transmission line or generator.
| Key | Description | Default
| :-------------------- | :----------------------------------------------- | ----------
| `Affected generators` | List of generators affected by this contingency. May be omitted if no generators are affected. | `[]`
| `Affected lines` | List of transmission lines affected by this contingency. May be omitted if no lines are affected. | `[]`
#### Example
```json
{
"Contingencies": {
"c1": {
"Affected lines": ["l1", "l2", "l3"],
"Affected generators": ["g1"]
},
"c2": {
"Affected lines": ["l4"]
},
}
}
```
### Additional remarks
#### Time series parameters
Many numerical properties in the JSON file can be specified either as a single floating point number if they are time-independent, or as an array containing exactly `T` elements, if they are time-dependent, where `T` is the number of time steps in the planning horizon. For example, both formats below are valid when `T=3`:
```json
{
"Load (MW)": 800.0,
"Load (MW)": [800.0, 850.0, 730.0]
}
```
The value `T` depends on both `Time horizon (h)` and `Time step (min)`, as the table below illustrates.
Time horizon (h) | Time step (min) | T
:---------------:|:---------------:|:----:
24 | 60 | 24
24 | 15 | 96
24 | 5 | 288
36 | 60 | 36
36 | 15 | 144
36 | 5 | 432
Output Data Format
------------------
The output data format is also JSON-based, but it is not currently documented since we expect it to change significantly in a future version of the package.
Current limitations
-------------------
* All reserves are system-wide. Zonal reserves are not currently supported.
* Network topology remains the same for all time periods
* Only N-1 transmission contingencies are supported. Generator contingencies are not currently supported.
* Time-varying minimum production amounts are not currently compatible with ramp/startup/shutdown limits.

18
docs/make.jl Normal file
View File

@@ -0,0 +1,18 @@
using Documenter, UnitCommitment, JuMP
function make()
makedocs(
sitename="UnitCommitment.jl",
pages=[
"Home" => "index.md",
"usage.md",
"format.md",
"instances.md",
"model.md",
"api.md",
],
format = Documenter.HTML(
assets=["assets/custom.css"],
)
)
end

View File

@@ -1,244 +0,0 @@
```{sectnum}
---
start: 4
depth: 2
suffix: .
---
```
JuMP Model
==========
In this page, we describe the JuMP optimization model produced by the function `UnitCommitment.build_model`. A detailed understanding of this model is not necessary if you are just interested in using the package to solve some standard unit commitment cases, but it may be useful, for example, if you need to solve a slightly different problem, with additional variables and constraints. The notation in this page generally follows [KnOsWa20].
Decision variables
------------------
### Generators
Name | Symbol | Description | Unit
-----|:--------:|-------------|:------:
`is_on[g,t]` | $u_{g}(t)$ | True if generator `g` is on at time `t`. | Binary
`switch_on[g,t]` | $v_{g}(t)$ | True is generator `g` switches on at time `t`. | Binary
`switch_off[g,t]` | $w_{g}(t)$ | True if generator `g` switches off at time `t`. | Binary
`prod_above[g,t]` |$p'_{g}(t)$ | Amount of power produced by generator `g` above its minimum power output at time `t`. For example, if the minimum power of generator `g` is 100 MW and `g` is producing 115 MW of power at time `t`, then `prod_above[g,t]` equals `15.0`. | MW
`segprod[g,t,k]` | $p^k_g(t)$ | Amount of power from piecewise linear segment `k` produced by generator `g` at time `t`. For example, if cost curve for generator `g` is defined by the points `(100, 1400)`, `(110, 1600)`, `(130, 2200)` and `(135, 2400)`, and if the generator is producing 115 MW of power at time `t`, then `segprod[g,t,:]` equals `[10.0, 5.0, 0.0]`.| MW
`reserve[g,t]` | $r_g(t)$ | Amount of reserves provided by generator `g` at time `t`. | MW
`startup[g,t,s]` | $\delta^s_g(t)$ | True if generator `g` switches on at time `t` incurring start-up costs from start-up category `s`. | Binary
### Buses
Name | Symbol | Description | Unit
-----|:------:|-------------|:------:
`net_injection[b,t]` | $n_b(t)$ | Net injection at bus `b` at time `t`. | MW
`curtail[b,t]` | $s^+_b(t)$ | Amount of load curtailed at bus `b` at time `t` | MW
### Price-sensitive loads
Name | Symbol | Description | Unit
-----|:------:|-------------|:------:
`loads[s,t]` | $d_{s}(t)$ | Amount of power served to price-sensitive load `s` at time `t`. | MW
### Transmission lines
Name | Symbol | Description | Unit
-----|:------:|-------------|:------:
`flow[l,t]` | $f_l(t)$ | Power flow on line `l` at time `t`. | MW
`overflow[l,t]` | $f^+_l(t)$ | Amount of flow above the limit for line `l` at time `t`. | MW
```{warning}
Since transmission and N-1 security constraints are enforced in a lazy way, most of the `flow[l,t]` variables are never added to the model. Accessing `model[:flow][l,t]` without first checking that the variable exists will likely generate an error.
```
Objective function
------------------
$$
\begin{align}
\text{minimize} \;\; &
\sum_{t \in \mathcal{T}}
\sum_{g \in \mathcal{G}}
C^\text{min}_g(t) u_g(t) \\
&
+ \sum_{t \in \mathcal{T}}
\sum_{g \in \mathcal{G}}
\sum_{g \in \mathcal{K}_g}
C^k_g(t) p^k_g(t) \\
&
+ \sum_{t \in \mathcal{T}}
\sum_{g \in \mathcal{G}}
\sum_{s \in \mathcal{S}_g}
C^s_{g}(t) \delta^s_g(t) \\
&
+ \sum_{t \in \mathcal{T}}
\sum_{l \in \mathcal{L}}
C^\text{overflow}_{l}(t) f^+_l(t) \\
&
+ \sum_{t \in \mathcal{T}}
\sum_{b \in \mathcal{B}}
C^\text{curtail}(t) s^+_b(t) \\
&
- \sum_{t \in \mathcal{T}}
\sum_{s \in \mathcal{PS}}
R_{s}(t) d_{s}(t) \\
\end{align}
$$
where
- $\mathcal{B}$ is the set of buses
- $\mathcal{G}$ is the set of generators
- $\mathcal{L}$ is the set of transmission lines
- $\mathcal{PS}$ is the set of price-sensitive loads
- $\mathcal{S}_g$ is the set of start-up categories for generator $g$
- $\mathcal{T}$ is the set of time steps
- $C^\text{curtail}(t)$ is the curtailment penalty (in \$/MW)
- $C^\text{min}_g(t)$ is the cost of keeping generator $g$ on and producing at minimum power during time $t$ (in \$)
- $C^\text{overflow}_{l}(t)$ is the flow limit penalty for line $l$ at time $t$ (in \$/MW)
- $C^k_g(t)$ is the cost for generator $g$ to produce 1 MW of power at time $t$ under piecewise linear segment $k$
- $C^s_{g}(t)$ is the cost of starting up generator $g$ at time $t$ under start-up category $s$ (in \$)
- $R_{s}(t)$ is the revenue obtained from serving price-sensitive load $s$ at time $t$ (in \$/MW)
Constraints
-----------
TODO
Inspecting and modifying the model
----------------------------------
### Accessing decision variables
After building a model using `UnitCommitment.build_model`, it is possible to obtain a reference to the decision variables by calling `model[:varname][index]`. For example, `model[:is_on]["g1",1]` returns a direct reference to the JuMP variable indicating whether generator named "g1" is on at time 1. The script below illustrates how to build a model, solve it and display the solution without using the function `UnitCommitment.solution`.
```julia
using Cbc
using Printf
using JuMP
using UnitCommitment
# Load benchmark instance
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
# Build JuMP model
model = UnitCommitment.build_model(
instance=instance,
optimizer=Cbc.Optimizer,
)
# Solve the model
UnitCommitment.optimize!(model)
# Display commitment status
for g in instance.units
for t in 1:instance.time
@printf(
"%-10s %5d %5.1f %5.1f %5.1f\n",
g.name,
t,
value(model[:is_on][g.name, t]),
value(model[:switch_on][g.name, t]),
value(model[:switch_off][g.name, t]),
)
end
end
```
### Fixing variables, modifying objective function and adding constraints
Since we now have a direct reference to the JuMP decision variables, it is possible to fix variables, change the coefficients in the objective function, or even add new constraints to the model before solving it. The script below shows how can this be accomplished. For more information on modifying an existing model, [see the JuMP documentation](https://jump.dev/JuMP.jl/stable/manual/variables/).
```julia
using Cbc
using JuMP
using UnitCommitment
# Load benchmark instance
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
# Construct JuMP model
model = UnitCommitment.build_model(
instance=instance,
optimizer=Cbc.Optimizer,
)
# Fix a decision variable to 1.0
JuMP.fix(
model[:is_on]["g1",1],
1.0,
force=true,
)
# Change the objective function
JuMP.set_objective_coefficient(
model,
model[:switch_on]["g2",1],
1000.0,
)
# Create a new constraint
@constraint(
model,
model[:is_on]["g3",1] + model[:is_on]["g4",1] <= 1,
)
# Solve the model
UnitCommitment.optimize!(model)
```
### Adding new component to a bus
The following snippet shows how to add a new grid component to a particular bus. For each time step, we create decision variables for the new grid component, add these variables to the objective function, then attach the component to a particular bus by modifying some existing model constraints.
```julia
using Cbc
using JuMP
using UnitCommitment
# Load instance and build base model
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
model = UnitCommitment.build_model(
instance=instance,
optimizer=Cbc.Optimizer,
)
# Get the number of time steps in the original instance
T = instance.time
# Create decision variables for the new grid component.
# In this example, we assume that the new component can
# inject up to 10 MW of power at each time step, so we
# create new continuous variables 0 ≤ x[t] ≤ 10.
@variable(model, x[1:T], lower_bound=0.0, upper_bound=10.0)
# For each time step
for t in 1:T
# Add production costs to the objective function.
# In this example, we assume a cost of $5/MW.
set_objective_coefficient(model, x[t], 5.0)
# Attach the new component to bus b1, by modifying the
# constraint `eq_net_injection`.
set_normalized_coefficient(
model[:eq_net_injection]["b1", t],
x[t],
1.0,
)
end
# Solve the model
UnitCommitment.optimize!(model)
# Show optimal values for the x variables
@show value.(x)
```
References
----------
* [KnOsWa20] **Bernard Knueven, James Ostrowski and Jean-Paul Watson.** "On Mixed-Integer Programming Formulations for the Unit Commitment Problem". INFORMS Journal on Computing (2020). [DOI: 10.1287/ijoc.2019.0944](https://doi.org/10.1287/ijoc.2019.0944)

62
docs/src/api.md Normal file
View File

@@ -0,0 +1,62 @@
# API Reference
## Read data, build model & optimize
```@docs
UnitCommitment.read
UnitCommitment.read_benchmark
UnitCommitment.build_model
UnitCommitment.optimize!
UnitCommitment.solution
UnitCommitment.validate
UnitCommitment.write
```
## Locational Marginal Prices
### Conventional LMPs
```@docs
UnitCommitment.compute_lmp(::JuMP.Model,::UnitCommitment.ConventionalLMP)
```
### Approximated Extended LMPs
```@docs
UnitCommitment.AELMP
UnitCommitment.compute_lmp(::JuMP.Model,::UnitCommitment.AELMP)
```
## Modify instance
```@docs
UnitCommitment.slice
UnitCommitment.randomize!(::UnitCommitment.UnitCommitmentInstance)
UnitCommitment.generate_initial_conditions!
```
## Formulations
```@docs
UnitCommitment.Formulation
UnitCommitment.ShiftFactorsFormulation
UnitCommitment.ArrCon2000
UnitCommitment.CarArr2006
UnitCommitment.DamKucRajAta2016
UnitCommitment.Gar1962
UnitCommitment.KnuOstWat2018
UnitCommitment.MorLatRam2013
UnitCommitment.PanGua2016
UnitCommitment.WanHob2016
```
## Solution Methods
```@docs
UnitCommitment.XavQiuWanThi2019.Method
```
## Randomization Methods
```@docs
UnitCommitment.XavQiuAhm2021.Randomization
```

View File

Before

Width:  |  Height:  |  Size: 35 KiB

After

Width:  |  Height:  |  Size: 35 KiB

View File

@@ -0,0 +1,36 @@
@media screen and (min-width: 1056px) {
#documenter .docs-main {
max-width: 65rem !important;
}
}
tbody, thead, pre {
border: 1px solid rgba(0, 0, 0, 0.25);
}
table td, th {
padding: 8px;
}
table p {
margin-bottom: 0;
}
table td code {
white-space: nowrap;
}
table tr,
table th {
border-bottom: 1px solid rgba(0, 0, 0, 0.1);
}
table tr:last-child {
border-bottom: 0;
}
code {
background-color: transparent;
color: rgb(232, 62, 140);
}

408
docs/src/format.md Normal file
View File

@@ -0,0 +1,408 @@
Data Format
===========
Input Data Format
-----------------
An instance of the stochastic security-constrained unit commitment (SCUC) problem is composed multiple scenarios. Each scenario should be described in an individual JSON file containing the main section belows. For deterministic instances, a single scenario file, following the same format below, may also be provided. Fields that are allowed to differ among scenarios are marked as "uncertain". Fields that are allowed to be time-dependent are marked as "time series".
* [Parameters](#Parameters)
* [Buses](#Buses)
* [Generators](#Generators)
* [Storage units](#Storage-units)
* [Price-sensitive loads](#Price-sensitive-loads)
* [Transmission lines](#Transmission-lines)
* [Reserves](#Reserves)
* [Contingencies](#Contingencies)
Each section is described in detail below. See [case118/2017-01-01.json.gz](https://axavier.org/UnitCommitment.jl/0.3/instances/matpower/case118/2017-01-01.json.gz) for a complete example.
### Parameters
This section describes system-wide parameters, such as power balance penalty, and optimization parameters, such as the length of the planning horizon and the time.
| Key | Description | Default | Time series? | Uncertain?
| :----------------------------- | :------------------------------------------------ | :------: | :------------:| :----------:
| `Version` | Version of UnitCommitment.jl this file was written for. Required to ensure that the file remains readable in future versions of the package. If you are following this page to construct the file, this field should equal `0.4`. | Required | No | No
| `Time horizon (min)` or `Time horizon (h)` | Length of the planning horizon (in minutes or hours). Either `Time horizon (min)` or `Time horizon (h)` is required, but not both. | Required | No | No
| `Time step (min)` | Length of each time step (in minutes). Must be a divisor of 60 (e.g. 60, 30, 20, 15, etc). | `60` | No | No
| `Power balance penalty ($/MW)` | Penalty for system-wide shortage or surplus in production (in $/MW). This is charged per time step. For example, if there is a shortage of 1 MW for three time steps, three times this amount will be charged. | `1000.0` | No | Yes
| `Scenario name` | Name of the scenario. | `"s1"` | No | ---
| `Scenario weight` | Weight of the scenario. The scenario weight can be any positive real number, that is, it does not have to be between zero and one. The package normalizes the weights to ensure that the probability of all scenarios sum up to one. | 1.0 | No | ---
#### Example
```json
{
"Parameters": {
"Version": "0.3",
"Time horizon (h)": 4,
"Power balance penalty ($/MW)": 1000.0,
"Scenario name": "s1",
"Scenario weight": 0.5
}
}
```
### Buses
This section describes the characteristics of each bus in the system.
| Key | Description | Default | Time series? | Uncertain?
| :----------------- | :------------------------------------------------------------ | ------- | :-----------: | :---:
| `Load (MW)` | Fixed load connected to the bus (in MW). | Required | Yes | Yes
#### Example
```json
{
"Buses": {
"b1": {
"Load (MW)": 0.0
},
"b2": {
"Load (MW)": [
26.01527,
24.46212,
23.29725,
22.90897
]
}
}
}
```
### Generators
This section describes all generators in the system. Two types of units can be specified:
- **Thermal units:** Units that produce power by converting heat into electrical energy, such as coal and oil power plants. These units use a more complex model, with binary decision variables, and various constraints to enforce ramp rates and minimum up/down time.
- **Profiled units:** Simplified model for units that do not require the constraints mentioned above, only a maximum and minimum power output for each time period. Typically used for renewables and hydro.
#### Thermal Units
| Key | Description | Default | Time series? | Uncertain?
| :------------------------ | :------------------------------------------------| ------- | :-----------: | :---:
| `Bus` | Identifier of the bus where this generator is located (string). | Required | No | Yes
| `Type` | Type of the generator (string). For thermal generators, this must be `Thermal`. | Required | No | No
| `Production cost curve (MW)` and `Production cost curve ($)` | Parameters describing the piecewise-linear production costs. See below for more details. | Required | Yes | Yes
| `Startup costs ($)` and `Startup delays (h)` | Parameters describing how much it costs to start the generator after it has been shut down for a certain amount of time. If `Startup costs ($)` and `Startup delays (h)` are set to `[300.0, 400.0]` and `[1, 4]`, for example, and the generator is shut down at time `00:00` (h:min), then it costs \$300 to start up the generator at any time between `01:00` and `03:59`, and \$400 to start the generator at time `04:00` or any time after that. The number of startup cost points is unlimited, and may be different for each generator. Startup delays must be strictly increasing and the first entry must equal `Minimum downtime (h)`. | `[0.0]` and `[1]` | No | Yes
| `Minimum uptime (h)` | Minimum amount of time the generator must stay operational after starting up (in hours). For example, if the generator starts up at time `00:00` (h:min) and `Minimum uptime (h)` is set to 4, then the generator can only shut down at time `04:00`. | `1` | No | Yes
| `Minimum downtime (h)` | Minimum amount of time the generator must stay offline after shutting down (in hours). For example, if the generator shuts down at time `00:00` (h:min) and `Minimum downtime (h)` is set to 4, then the generator can only start producing power again at time `04:00`. | `1` | No | Yes
| `Ramp up limit (MW)` | Maximum increase in production from one time step to the next (in MW). For example, if the generator is producing 100 MW at time step 1 and if this parameter is set to 40 MW, then the generator will produce at most 140 MW at time step 2. | `+inf` | No | Yes
| `Ramp down limit (MW)` | Maximum decrease in production from one time step to the next (in MW). For example, if the generator is producing 100 MW at time step 1 and this parameter is set to 40 MW, then the generator will produce at least 60 MW at time step 2. | `+inf` | No | Yes
| `Startup limit (MW)` | Maximum amount of power a generator can produce immediately after starting up (in MW). For example, if `Startup limit (MW)` is set to 100 MW and the unit is off at time step 1, then it may produce at most 100 MW at time step 2.| `+inf` | No | Yes
| `Shutdown limit (MW)` | Maximum amount of power a generator can produce immediately before shutting down (in MW). Specifically, the generator can only shut down at time step `t+1` if its production at time step `t` is below this limit. | `+inf` | No | Yes
| `Initial status (h)` | If set to a positive number, indicates the amount of time (in hours) the generator has been on at the beginning of the simulation, and if set to a negative number, the amount of time the generator has been off. For example, if `Initial status (h)` is `-2`, this means that the generator was off since `-02:00` (h:min). The simulation starts at time `00:00`. If `Initial status (h)` is `3`, this means that the generator was on since `-03:00`. A value of zero is not acceptable. | Required | No | No
| `Initial power (MW)` | Amount of power the generator at time step `-1`, immediately before the planning horizon starts. | Required | No | No
| `Must run?` | If `true`, the generator should be committed, even if that is not economical (Boolean). | `false` | Yes | Yes
| `Reserve eligibility` | List of reserve products this generator is eligibe to provide. By default, the generator is not eligible to provide any reserves. | `[]` | No | Yes
| `Commitment status` | List of commitment status over the time horizon. At time `t`, if `true`, the generator must be commited at that time period; if `false`, the generator must not be commited at that time period. If `null` at time `t`, the generator's commitment status is then decided by the model. By default, the status is a list of `null` values. | `null` | Yes | Yes
#### Profiled Units
| Key | Description | Default | Time series? | Uncertain?
| :---------------- | :------------------------------------------------ | :------: | :------------: | :---:
| `Bus` | Identifier of the bus where this generator is located (string). | Required | No | Yes
| `Type` | Type of the generator (string). For profiled generators, this must be `Profiled`. | Required | No | No
| `Cost ($/MW)` | Cost incurred for serving each MW of power by this generator. | Required | Yes | Yes
| `Minimum power (MW)` | Minimum amount of power this generator may supply. | `0.0` | Yes | Yes
| `Maximum power (MW)` | Maximum amount of power this generator may supply. | Required | Yes | Yes
#### Production costs and limits
Production costs are represented as piecewise-linear curves. Figure 1 shows an example cost curve with three segments, where it costs \$1400, \$1600, \$2200 and \$2400 to generate, respectively, 100, 110, 130 and 135 MW of power. To model this generator, `Production cost curve (MW)` should be set to `[100, 110, 130, 135]`, and `Production cost curve ($)` should be set to `[1400, 1600, 2200, 2400]`.
Note that this curve also specifies the production limits. Specifically, the first point identifies the minimum power output when the unit is operational, while the last point identifies the maximum power output.
```@raw html
<center>
<img src="../assets/cost_curve.png" style="max-width: 500px"/>
<div><b>Figure 1.</b> Piecewise-linear production cost curve.</div>
<br/>
</center>
```
#### Additional remarks:
* For time-dependent production limits or time-dependent production costs, the usage of nested arrays is allowed. For example, if `Production cost curve (MW)` is set to `[5.0, [10.0, 12.0, 15.0, 20.0]]`, then the unit may generate at most 10, 12, 15 and 20 MW of power during time steps 1, 2, 3 and 4, respectively. The minimum output for all time periods is fixed to at 5 MW.
* There is no limit to the number of piecewise-linear segments, and different generators may have a different number of segments.
* If `Production cost curve (MW)` and `Production cost curve ($)` both contain a single element, then the generator must produce exactly that amount of power when operational. To specify that the generator may produce any amount of power up to a certain limit `P`, the parameter `Production cost curve (MW)` should be set to `[0, P]`.
* Production cost curves must be convex.
#### Example
```json
{
"Generators": {
"gen1": {
"Bus": "b1",
"Type": "Thermal",
"Production cost curve (MW)": [100.0, 110.0, 130.0, 135.0],
"Production cost curve ($)": [1400.0, 1600.0, 2200.0, 2400.0],
"Startup costs ($)": [300.0, 400.0],
"Startup delays (h)": [1, 4],
"Ramp up limit (MW)": 232.68,
"Ramp down limit (MW)": 232.68,
"Startup limit (MW)": 232.68,
"Shutdown limit (MW)": 232.68,
"Minimum downtime (h)": 4,
"Minimum uptime (h)": 4,
"Initial status (h)": 12,
"Initial power (MW)": 115,
"Must run?": false,
"Reserve eligibility": ["r1"]
},
"gen2": {
"Bus": "b5",
"Type": "Thermal",
"Production cost curve (MW)": [0.0, [10.0, 8.0, 0.0, 3.0]],
"Production cost curve ($)": [0.0, 0.0],
"Initial status (h)": -100,
"Initial power (MW)": 0,
"Reserve eligibility": ["r1", "r2"],
"Commitment status": [true, false, null, true]
},
"gen3": {
"Bus": "b6",
"Type": "Profiled",
"Minimum power (MW)": 10.0,
"Maximum power (MW)": 120.0,
"Cost ($/MW)": 100.0
}
}
}
```
### Storage units
This section describes energy storage units in the system which charge and discharge power. The storage units consume power while charging, and generate power while discharging.
| Key | Description | Default | Time series? | Uncertain?
| :---------------- | :------------------------------------------------ | :------: | :------------: | :----:
| `Bus` | Bus where the storage unit is located. Multiple storage units may be placed at the same bus. | Required | No | Yes
| `Minimum level (MWh)` | Minimum of energy level this storage unit may contain. | `0.0` | Yes | Yes
| `Maximum level (MWh)` | Maximum of energy level this storage unit may contain. | Required | Yes | Yes
| `Allow simultaneous charging and discharging` | If `false`, the storage unit is not allowed to charge and discharge at the same time (Boolean). | `true` | Yes | Yes
| `Charge cost ($/MW)` | Cost incurred for charging each MW of power into this storage unit. | Required | Yes | Yes
| `Discharge cost ($/MW)` | Cost incurred for discharging each MW of power from this storage unit. | Required | Yes | Yes
| `Charge efficiency` | Efficiency rate to charge power into this storage unit. This value must be greater than or equal to `0.0`, and less than or equal to `1.0`. | `1.0` | Yes | Yes
| `Discharge efficiency` | Efficiency rate to discharge power from this storage unit. This value must be greater than or equal to `0.0`, and less than or equal to `1.0`. | `1.0` | Yes | Yes
| `Loss factor` | The energy dissipation rate of this storage unit. This value must be greater than or equal to `0.0`, and less than or equal to `1.0`. | `0.0` | Yes | Yes
| `Minimum charge rate (MW)` | Minimum amount of power rate this storage unit may charge. | `0.0` | Yes | Yes
| `Maximum charge rate (MW)` | Maximum amount of power rate this storage unit may charge. | Required | Yes | Yes
| `Minimum discharge rate (MW)` | Minimum amount of power rate this storage unit may discharge. | `0.0` | Yes | Yes
| `Maximum discharge rate (MW)` | Maximum amount of power rate this storage unit may discharge. | Required | Yes | Yes
| `Initial level (MWh)` | Amount of energy this storage unit at time step `-1`, immediately before the planning horizon starts. | `0.0` | No | Yes
| `Last period minimum level (MWh)` | Minimum of energy level this storage unit may contain in the last time step. By default, this value is the same as the last value of `Minimum level (MWh)`. | `Minimum level (MWh)` | No | Yes
| `Last period maximum level (MWh)` | Maximum of energy level this storage unit may contain in the last time step. By default, this value is the same as the last value of `Maximum level (MWh)`. | `Maximum level (MWh)` | No | Yes
#### Example
```json
{
"Storage units": {
"su1": {
"Bus": "b2",
"Maximum level (MWh)": 100.0,
"Charge cost ($/MW)": 2.0,
"Discharge cost ($/MW)": 2.5,
"Maximum charge rate (MW)": 10.0,
"Maximum discharge rate (MW)": 8.0
},
"su2": {
"Bus": "b2",
"Minimum level (MWh)": 10.0,
"Maximum level (MWh)": 100.0,
"Allow simultaneous charging and discharging": false,
"Charge cost ($/MW)": 3.0,
"Discharge cost ($/MW)": 3.5,
"Charge efficiency": 0.8,
"Discharge efficiency": 0.85,
"Loss factor": 0.01,
"Minimum charge rate (MW)": 5.0,
"Maximum charge rate (MW)": 10.0,
"Minimum discharge rate (MW)": 2.0,
"Maximum discharge rate (MW)": 10.0,
"Initial level (MWh)": 70.0,
"Last period minimum level (MWh)": 80.0,
"Last period maximum level (MWh)": 85.0
},
"su3": {
"Bus": "b9",
"Minimum level (MWh)": [10.0, 11.0, 12.0, 13.0],
"Maximum level (MWh)": [100.0, 110.0, 120.0, 130.0],
"Allow simultaneous charging and discharging": [false, false, true, true],
"Charge cost ($/MW)": [2.0, 2.1, 2.2, 2.3],
"Discharge cost ($/MW)": [1.0, 1.1, 1.2, 1.3],
"Charge efficiency": [0.8, 0.81, 0.82, 0.82],
"Discharge efficiency": [0.85, 0.86, 0.87, 0.88],
"Loss factor": [0.01, 0.01, 0.02, 0.02],
"Minimum charge rate (MW)": [5.0, 5.1, 5.2, 5.3],
"Maximum charge rate (MW)": [10.0, 10.1, 10.2, 10.3],
"Minimum discharge rate (MW)": [4.0, 4.1, 4.2, 4.3],
"Maximum discharge rate (MW)": [8.0, 8.1, 8.2, 8.3],
"Initial level (MWh)": 20.0,
"Last period minimum level (MWh)": 21.0,
"Last period maximum level (MWh)": 22.0
}
}
}
```
### Price-sensitive loads
This section describes components in the system which may increase or reduce their energy consumption according to the energy prices. Fixed loads (as described in the `buses` section) are always served, regardless of the price, unless there is significant congestion in the system or insufficient production capacity. Price-sensitive loads, on the other hand, are only served if it is economical to do so.
| Key | Description | Default | Time series? | Uncertain?
| :---------------- | :------------------------------------------------ | :------: | :------------: | :----:
| `Bus` | Bus where the load is located. Multiple price-sensitive loads may be placed at the same bus. | Required | No | Yes
| `Revenue ($/MW)` | Revenue obtained for serving each MW of power to this load. | Required | Yes | Yes
| `Demand (MW)` | Maximum amount of power required by this load. Any amount lower than this may be served. | Required | Yes | Yes
#### Example
```json
{
"Price-sensitive loads": {
"p1": {
"Bus": "b3",
"Revenue ($/MW)": 23.0,
"Demand (MW)": 50.0
}
}
}
```
### Transmission lines
This section describes the characteristics of transmission system, such as its topology and the susceptance of each transmission line.
| Key | Description | Default | Time series? | Uncertain?
| :--------------------- | :----------------------------------------------- | ------- | :------------: | :---:
| `Source bus` | Identifier of the bus where the transmission line originates. | Required | No | Yes
| `Target bus` | Identifier of the bus where the transmission line reaches. | Required | No | Yes
| `Susceptance (S)` | Susceptance of the transmission line (in siemens). | Required | No | Yes
| `Normal flow limit (MW)` | Maximum amount of power (in MW) allowed to flow through the line when the system is in its regular, fully-operational state. | `+inf` | Yes | Yes
| `Emergency flow limit (MW)` | Maximum amount of power (in MW) allowed to flow through the line when the system is in degraded state (for example, after the failure of another transmission line). | `+inf` | Y | Yes
| `Flow limit penalty ($/MW)` | Penalty for violating the flow limits of the transmission line (in $/MW). This is charged per time step. For example, if there is a thermal violation of 1 MW for three time steps, then three times this amount will be charged. | `5000.0` | Yes | Yes
#### Example
```json
{
"Transmission lines": {
"l1": {
"Source bus": "b1",
"Target bus": "b2",
"Susceptance (S)": 29.49686,
"Normal flow limit (MW)": 15000.0,
"Emergency flow limit (MW)": 20000.0,
"Flow limit penalty ($/MW)": 5000.0
}
}
}
```
### Reserves
This section describes the hourly amount of reserves required.
| Key | Description | Default | Time series? | Uncertain?
| :-------------------- | :------------------------------------------------- | --------- | :----: | :---:
| `Type` | Type of reserve product. Must be either "spinning" or "flexiramp". | Required | No | No
| `Amount (MW)` | Amount of reserves required. | Required | Yes | Yes
| `Shortfall penalty ($/MW)` | Penalty for shortage in meeting the reserve requirements (in $/MW). This is charged per time step. Negative value implies reserve constraints must always be satisfied. | `-1` | Yes | Yes
#### Example 1
```json
{
"Reserves": {
"r1": {
"Type": "spinning",
"Amount (MW)": [
57.30552,
53.88429,
51.31838,
50.46307
],
"Shortfall penalty ($/MW)": 5.0
},
"r2": {
"Type": "flexiramp",
"Amount (MW)": [
20.31042,
23.65273,
27.41784,
25.34057
],
}
}
}
```
### Contingencies
This section describes credible contingency scenarios in the optimization, such as the loss of a transmission line or generator.
| Key | Description | Default | Uncertain?
| :-------------------- | :----------------------------------------------- | :--------: | :---:
| `Affected generators` | List of generators affected by this contingency. May be omitted if no generators are affected. | `[]` | Yes
| `Affected lines` | List of transmission lines affected by this contingency. May be omitted if no lines are affected. | `[]` | Yes
#### Example
```json
{
"Contingencies": {
"c1": {
"Affected lines": ["l1", "l2", "l3"],
"Affected generators": ["g1"]
},
"c2": {
"Affected lines": ["l4"]
},
}
}
```
### Additional remarks
#### Time series parameters
Many numerical properties in the JSON file can be specified either as a single floating point number if they are time-independent, or as an array containing exactly `T` elements, if they are time-dependent, where `T` is the number of time steps in the planning horizon. For example, both formats below are valid when `T=3`:
```json
{
"Load (MW)": 800.0,
"Load (MW)": [800.0, 850.0, 730.0]
}
```
The value `T` depends on both `Time horizon (h)` and `Time step (min)`, as the table below illustrates.
Time horizon (h) | Time step (min) | T
:---------------:|:---------------:|:----:
24 | 60 | 24
24 | 15 | 96
24 | 5 | 288
36 | 60 | 36
36 | 15 | 144
36 | 5 | 432
Output Data Format
------------------
The output data format is also JSON-based, but it is not currently documented since we expect it to change significantly in a future version of the package.
Current limitations
-------------------
* Network topology must remain the same for all time periods.
* Only N-1 transmission contingencies are supported. Generator contingencies are not currently supported.
* Time-varying minimum production amounts are not currently compatible with ramp/startup/shutdown limits.
* Flexible ramping products can only be acquired under the `WanHob2016` formulation, which does not support spinning reserves.
* The set of generators must be the same in all scenarios.

View File

@@ -1,29 +1,29 @@
# UnitCommitment.jl
**UnitCommitment.jl** (UC.jl) is a Julia/JuMP optimization package for the Security-Constrained Unit Commitment Problem (SCUC), a fundamental optimization problem in power systems used, for example, to clear the day-ahead electricity markets. The package provides benchmark instances for the problem and Julia/JuMP implementations of state-of-the-art mixed-integer programming formulations.
**UnitCommitment.jl** (UC.jl) is an optimization package for the Security-Constrained Unit Commitment Problem (SCUC), a fundamental optimization problem in power systems used, for example, to clear the day-ahead electricity markets. Both deterministic and two-stage stochastic versions of the problem are supported. The package provides benchmark instances for the problem, a flexible and well-documented data format for the problem, as well as Julia/JuMP implementations of state-of-the-art mixed-integer programming formulations and solution methods.
## Package Components
* **Data Format:** The package proposes an extensible and fully-documented JSON-based data specification format for SCUC, developed in collaboration with Independent System Operators (ISOs), which describes the most important aspects of the problem. The format supports all the most common generator characteristics (including ramping, piecewise-linear production cost curves and time-dependent startup costs), as well as operating reserves, price-sensitive loads, transmission networks and contingencies.
* **Data Format:** The package proposes an extensible and fully-documented JSON-based data specification format for SCUC, developed in collaboration with Independent System Operators (ISOs), which describes the most important aspects of the problem. The format supports all the most common thermal generator characteristics (including ramping, piecewise-linear production cost curves and time-dependent startup costs), as well as profiled generators, reserves, price-sensitive loads, battery storage, transmission, and contingencies.
* **Benchmark Instances:** The package provides a diverse collection of large-scale benchmark instances collected from the literature, converted into a common data format, and extended using data-driven methods to make them more challenging and realistic.
* **Model Implementation**: The package provides a Julia/JuMP implementations of state-of-the-art formulations and solution methods for SCUC, including multiple ramping formulations ([ArrCon2000][ArrCon2000], [MorLatRam2013][MorLatRam2013], [DamKucRajAta2016][DamKucRajAta2016], [PanGua2016][PanGua2016]), multiple piecewise-linear costs formulations ([Gar1962][Gar1962], [CarArr2006][CarArr2006], [KnuOstWat2018][KnuOstWat2018]) and contingency screening methods ([XavQiuWanThi2019][XavQiuWanThi2019]). Our goal is to keep these implementations up-to-date as new methods are proposed in the literature.
* **Model Implementation**: The package provides a Julia/JuMP implementations of state-of-the-art formulations and solution methods for the deterministic and stochastic SCUC, including multiple ramping formulations ([ArrCon2000](https://doi.org/10.1109/59.871739), [MorLatRam2013](https://doi.org/10.1109/TPWRS.2013.2251373), [DamKucRajAta2016](https://doi.org/10.1007/s10107-015-0919-9), [PanGua2016](https://doi.org/10.1287/opre.2016.1520)), piecewise-linear costs formulations ([Gar1962](https://doi.org/10.1109/AIEEPAS.1962.4501405), [CarArr2006](https://doi.org/10.1109/TPWRS.2006.876672), [KnuOstWat2018](https://doi.org/10.1109/TPWRS.2017.2783850)), contingency screening methods ([XavQiuWanThi2019](https://doi.org/10.1109/TPWRS.2019.2892620)) and decomposition methods. Our goal is to keep these implementations up-to-date as new methods are proposed in the literature.
* **Benchmark Tools:** The package provides automated benchmark scripts to accurately evaluate the performance impact of proposed code changes.
[ArrCon2000]: https://doi.org/10.1109/59.871739
[CarArr2006]: https://doi.org/10.1109/TPWRS.2006.876672
[DamKucRajAta2016]: https://doi.org/10.1007/s10107-015-0919-9
[Gar1962]: https://doi.org/10.1109/AIEEPAS.1962.4501405
[KnuOstWat2018]: https://doi.org/10.1109/TPWRS.2017.2783850
[MorLatRam2013]: https://doi.org/10.1109/TPWRS.2013.2251373
[PanGua2016]: https://doi.org/10.1287/opre.2016.1520
[XavQiuWanThi2019]: https://doi.org/10.1109/TPWRS.2019.2892620
## Table of Contents
### Authors
```@contents
Pages = ["usage.md", "format.md", "instances.md", "model.md", "api.md"]
Depth = 3
```
## Authors
* **Alinson S. Xavier** (Argonne National Laboratory)
* **Aleksandr M. Kazachkov** (University of Florida)
* **Ogün Yurdakul** (Technische Universität Berlin)
* **Jun He** (Purdue University)
* **Feng Qiu** (Argonne National Laboratory)
### Acknowledgments
## Acknowledgments
* We would like to thank **Yonghong Chen** (Midcontinent Independent System Operator), **Feng Pan** (Pacific Northwest National Laboratory) for valuable feedback on early versions of this package.
@@ -31,19 +31,19 @@
* Based upon work supported by the **U.S. Department of Energy Advanced Grid Modeling Program** under Grant DE-OE0000875.
### Citing
## Citing
If you use UnitCommitment.jl in your research (instances, models or algorithms), we kindly request that you cite the package as follows:
* **Alinson S. Xavier, Aleksandr M. Kazachkov, Feng Qiu**, "UnitCommitment.jl: A Julia/JuMP Optimization Package for Security-Constrained Unit Commitment". Zenodo (2020). [DOI: 10.5281/zenodo.4269874](https://doi.org/10.5281/zenodo.4269874).
* **Alinson S. Xavier, Aleksandr M. Kazachkov, Ogün Yurdakul, Jun He, Feng Qiu**, "UnitCommitment.jl: A Julia/JuMP Optimization Package for Security-Constrained Unit Commitment (Version 0.4)". Zenodo (2023). [DOI: 10.5281/zenodo.4269874](https://doi.org/10.5281/zenodo.4269874).
If you use the instances, we additionally request that you cite the original sources, as described in the [instances page](instances.md).
### License
## License
```text
UnitCommitment.jl: A Julia/JuMP Optimization Package for Security-Constrained Unit Commitment
Copyright © 2020, UChicago Argonne, LLC. All Rights Reserved.
Copyright © 2020-2023, UChicago Argonne, LLC. All Rights Reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
@@ -67,16 +67,3 @@ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING N
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
```
## Site contents
```{toctree}
---
maxdepth: 2
---
usage.md
format.md
instances.md
model.md
```

View File

@@ -1,19 +1,11 @@
```{sectnum}
---
start: 3
depth: 2
suffix: .
---
```
Instances
=========
UnitCommitment.jl provides a large collection of benchmark instances collected from the literature and converted to a [common data format](format.md). In some cases, as indicated below, the original instances have been extended, with realistic parameters, using data-driven methods. If you use these instances in your research, we request that you cite UnitCommitment.jl, as well as the original sources, as listed below. Benchmark instances can be loaded with `UnitCommitment.read_benchmark(name)`, as explained in the [usage section](usage.md).
UnitCommitment.jl provides a large collection of benchmark instances collected from the literature and converted to a [common data format](format.md). In some cases, as indicated below, the original instances have been extended, with realistic parameters, using data-driven methods. If you use these instances in your research, we request that you cite UnitCommitment.jl, as well as the original sources, as listed below. Benchmark instances can be loaded with `UnitCommitment.read_benchmark(name)`, as explained in the [usage section](usage.md). Instance files can also be [directly downloaded from our website](https://axavier.org/UnitCommitment.jl/0.3/instances/).
!!! warning
```{warning}
The instances included in UC.jl are still under development and may change in the future. If you use these instances in your research, for reproducibility, you should specify what version of UC.jl they came from.
```
MATPOWER
@@ -33,7 +25,7 @@ Because most MATPOWER test cases were originally designed for power flow studies
* **Contingencies** were set to include all N-1 transmission line contingencies that do not generate islands or isolated buses. More specifically, there is one contingency for each transmission line, as long as that transmission line is not a bridge in the network graph.
For each MATPOWER test case, UC.jl provides two variations (`2017-02-01` and `2017-08-01`) corresponding respectively to a winter and to a summer test case.
For each MATPOWER test case, UC.jl provides 365 variations (`2017-01-01` to `2017-12-31`) corresponding different days of the year.
### MATPOWER/UW-PSTCA
@@ -41,11 +33,11 @@ A variety of smaller IEEE test cases, [compiled by University of Washington](htt
| Name | Buses | Generators | Lines | Contingencies | References |
|------|-------|------------|-------|---------------|--------|
| `matpower/case14/2017-02-01` | 14 | 5 | 20 | 19 | [MTPWR, PSTCA]
| `matpower/case30/2017-02-01` | 30 | 6 | 41 | 38 | [MTPWR, PSTCA]
| `matpower/case57/2017-02-01` | 57 | 7 | 80 | 79 | [MTPWR, PSTCA]
| `matpower/case118/2017-02-01` | 118 | 54 | 186 | 177 | [MTPWR, PSTCA]
| `matpower/case300/2017-02-01` | 300 | 69 | 411 | 320 | [MTPWR, PSTCA]
| `matpower/case14/2017-01-01` | 14 | 5 | 20 | 19 | [MTPWR, PSTCA]
| `matpower/case30/2017-01-01` | 30 | 6 | 41 | 38 | [MTPWR, PSTCA]
| `matpower/case57/2017-01-01` | 57 | 7 | 80 | 79 | [MTPWR, PSTCA]
| `matpower/case118/2017-01-01` | 118 | 54 | 186 | 177 | [MTPWR, PSTCA]
| `matpower/case300/2017-01-01` | 300 | 69 | 411 | 320 | [MTPWR, PSTCA]
### MATPOWER/Polish
@@ -54,14 +46,14 @@ Test cases based on the Polish 400, 220 and 110 kV networks, originally provided
| Name | Buses | Generators | Lines | Contingencies | References |
|------|-------|------------|-------|---------------|--------|
| `matpower/case2383wp/2017-02-01` | 2383 | 323 | 2896 | 2240 | [MTPWR]
| `matpower/case2736sp/2017-02-01` | 2736 | 289 | 3504 | 3159 | [MTPWR]
| `matpower/case2737sop/2017-02-01` | 2737 | 267 | 3506 | 3161 | [MTPWR]
| `matpower/case2746wop/2017-02-01` | 2746 | 443 | 3514 | 3155 | [MTPWR]
| `matpower/case2746wp/2017-02-01` | 2746 | 457 | 3514 | 3156 | [MTPWR]
| `matpower/case3012wp/2017-02-01` | 3012 | 496 | 3572 | 2854 | [MTPWR]
| `matpower/case3120sp/2017-02-01` | 3120 | 483 | 3693 | 2950 | [MTPWR]
| `matpower/case3375wp/2017-02-01` | 3374 | 590 | 4161 | 3245 | [MTPWR]
| `matpower/case2383wp/2017-01-01` | 2383 | 323 | 2896 | 2240 | [MTPWR]
| `matpower/case2736sp/2017-01-01` | 2736 | 289 | 3504 | 3159 | [MTPWR]
| `matpower/case2737sop/2017-01-01` | 2737 | 267 | 3506 | 3161 | [MTPWR]
| `matpower/case2746wop/2017-01-01` | 2746 | 443 | 3514 | 3155 | [MTPWR]
| `matpower/case2746wp/2017-01-01` | 2746 | 457 | 3514 | 3156 | [MTPWR]
| `matpower/case3012wp/2017-01-01` | 3012 | 496 | 3572 | 2854 | [MTPWR]
| `matpower/case3120sp/2017-01-01` | 3120 | 483 | 3693 | 2950 | [MTPWR]
| `matpower/case3375wp/2017-01-01` | 3374 | 590 | 4161 | 3245 | [MTPWR]
### MATPOWER/PEGASE
@@ -69,11 +61,11 @@ Test cases from the [Pan European Grid Advanced Simulation and State Estimation
| Name | Buses | Generators | Lines | Contingencies | References |
|------|-------|------------|-------|---------------|--------|
| `matpower/case89pegase/2017-02-01` | 89 | 12 | 210 | 192 | [JoFlMa16, FlPaCa13, MTPWR]
| `matpower/case1354pegase/2017-02-01` | 1354 | 260 | 1991 | 1288 | [JoFlMa16, FlPaCa13, MTPWR]
| `matpower/case2869pegase/2017-02-01` | 2869 | 510 | 4582 | 3579 | [JoFlMa16, FlPaCa13, MTPWR]
| `matpower/case9241pegase/2017-02-01` | 9241 | 1445 | 16049 | 13932 | [JoFlMa16, FlPaCa13, MTPWR]
| `matpower/case13659pegase/2017-02-01` | 13659 | 4092 | 20467 | 13932 | [JoFlMa16, FlPaCa13, MTPWR]
| `matpower/case89pegase/2017-01-01` | 89 | 12 | 210 | 192 | [JoFlMa16, FlPaCa13, MTPWR]
| `matpower/case1354pegase/2017-01-01` | 1354 | 260 | 1991 | 1288 | [JoFlMa16, FlPaCa13, MTPWR]
| `matpower/case2869pegase/2017-01-01` | 2869 | 510 | 4582 | 3579 | [JoFlMa16, FlPaCa13, MTPWR]
| `matpower/case9241pegase/2017-01-01` | 9241 | 1445 | 16049 | 13932 | [JoFlMa16, FlPaCa13, MTPWR]
| `matpower/case13659pegase/2017-01-01` | 13659 | 4092 | 20467 | 13932 | [JoFlMa16, FlPaCa13, MTPWR]
### MATPOWER/RTE
@@ -81,14 +73,14 @@ Test cases from the R&D Division at [Reseau de Transport d'Electricite](https://
| Name | Buses | Generators | Lines | Contingencies | References |
|------|-------|------------|-------|---------------|--------|
| `matpower/case1888rte/2017-02-01` | 1888 | 296 | 2531 | 1484 | [MTPWR, JoFlMa16]
| `matpower/case1951rte/2017-02-01` | 1951 | 390 | 2596 | 1497 | [MTPWR, JoFlMa16]
| `matpower/case2848rte/2017-02-01` | 2848 | 544 | 3776 | 2242 | [MTPWR, JoFlMa16]
| `matpower/case2868rte/2017-02-01` | 2868 | 596 | 3808 | 2260 | [MTPWR, JoFlMa16]
| `matpower/case6468rte/2017-02-01` | 6468 | 1262 | 9000 | 6094 | [MTPWR, JoFlMa16]
| `matpower/case6470rte/2017-02-01` | 6470 | 1306 | 9005 | 6085 | [MTPWR, JoFlMa16]
| `matpower/case6495rte/2017-02-01` | 6495 | 1352 | 9019 | 6060 | [MTPWR, JoFlMa16]
| `matpower/case6515rte/2017-02-01` | 6515 | 1368 | 9037 | 6063 | [MTPWR, JoFlMa16]
| `matpower/case1888rte/2017-01-01` | 1888 | 296 | 2531 | 1484 | [MTPWR, JoFlMa16]
| `matpower/case1951rte/2017-01-01` | 1951 | 390 | 2596 | 1497 | [MTPWR, JoFlMa16]
| `matpower/case2848rte/2017-01-01` | 2848 | 544 | 3776 | 2242 | [MTPWR, JoFlMa16]
| `matpower/case2868rte/2017-01-01` | 2868 | 596 | 3808 | 2260 | [MTPWR, JoFlMa16]
| `matpower/case6468rte/2017-01-01` | 6468 | 1262 | 9000 | 6094 | [MTPWR, JoFlMa16]
| `matpower/case6470rte/2017-01-01` | 6470 | 1306 | 9005 | 6085 | [MTPWR, JoFlMa16]
| `matpower/case6495rte/2017-01-01` | 6495 | 1352 | 9019 | 6060 | [MTPWR, JoFlMa16]
| `matpower/case6515rte/2017-01-01` | 6515 | 1368 | 9037 | 6063 | [MTPWR, JoFlMa16]
PGLIB-UC Instances
@@ -288,7 +280,7 @@ Tejada19
References
----------
* [UCJL] **Alinson S. Xavier, Aleksandr M. Kazachkov, Feng Qiu.** "UnitCommitment.jl: A Julia/JuMP Optimization Package for Security-Constrained Unit Commitment". Zenodo (2020). [DOI: 10.5281/zenodo.4269874](https://doi.org/10.5281/zenodo.4269874)
* [UCJL] **Alinson S. Xavier, Aleksandr M. Kazachkov, Ogün Yurdakul, Feng Qiu.** "UnitCommitment.jl: A Julia/JuMP Optimization Package for Security-Constrained Unit Commitment (Version 0.3)". Zenodo (2022). [DOI: 10.5281/zenodo.4269874](https://doi.org/10.5281/zenodo.4269874)
* [KnOsWa20] **Bernard Knueven, James Ostrowski and Jean-Paul Watson.** "On Mixed-Integer Programming Formulations for the Unit Commitment Problem". INFORMS Journal on Computing (2020). [DOI: 10.1287/ijoc.2019.0944](https://doi.org/10.1287/ijoc.2019.0944)
@@ -296,14 +288,9 @@ References
* [BaBlEh19] **Clayton Barrows, Aaron Bloom, Ali Ehlen, Jussi Ikaheimo, Jennie Jorgenson, Dheepak Krishnamurthy, Jessica Lau et al.** "The IEEE Reliability Test System: A Proposed 2019 Update." IEEE Transactions on Power Systems (2019). [DOI: 10.1109/TPWRS.2019.2925557](https://doi.org/10.1109/TPWRS.2019.2925557)
* [JoFlMa16] **C. Josz, S. Fliscounakis, J. Maeght, and P. Panciatici.** "AC Power Flow
Data in MATPOWER and QCQP Format: iTesla, RTE Snapshots, and PEGASE". [ArXiv (2016)](https://arxiv.org/abs/1603.01533).
* [JoFlMa16] **C. Josz, S. Fliscounakis, J. Maeght, and P. Panciatici.** "AC Power Flow Data in MATPOWER and QCQP Format: iTesla, RTE Snapshots, and PEGASE". [ArXiv (2016)](https://arxiv.org/abs/1603.01533).
* [FlPaCa13] **S. Fliscounakis, P. Panciatici, F. Capitanescu, and L. Wehenkel.**
"Contingency ranking with respect to overloads in very large power
systems taking into account uncertainty, preventive and corrective
actions", Power Systems, IEEE Trans. on, (28)4:4909-4917, 2013.
[DOI: 10.1109/TPWRS.2013.2251015](https://doi.org/10.1109/TPWRS.2013.2251015)
* [FlPaCa13] **S. Fliscounakis, P. Panciatici, F. Capitanescu, and L. Wehenkel.** "Contingency ranking with respect to overloads in very large power systems taking into account uncertainty, preventive and corrective actions", Power Systems, IEEE Trans. on, (28)4:4909-4917, 2013. [DOI: 10.1109/TPWRS.2013.2251015](https://doi.org/10.1109/TPWRS.2013.2251015)
* [MTPWR] **D. Zimmerman, C. E. Murillo-Sandnchez and R. J. Thomas.** "Matpower: Steady-state operations, planning, and analysis tools forpower systems research and education", IEEE Transactions on PowerSystems, vol. 26, no. 1, pp. 12 19, Feb. 2011. [DOI: 10.1109/TPWRS.2010.2051168](https://doi.org/10.1109/TPWRS.2010.2051168)

233
docs/src/model.md Normal file
View File

@@ -0,0 +1,233 @@
JuMP Model
==========
In this page, we describe the JuMP optimization model produced by the function `build_model`. A detailed understanding of this model is not necessary if you are just interested in using the package to solve some standard unit commitment cases, but it may be useful, for example, if you need to solve a slightly different problem, with additional variables and constraints. The notation in this page generally follows [KnOsWa20].
Decision variables
------------------
UC.jl models the security-constrained unit commitment problem as a two-stage stochastic program. In this approach, some of the decision variables are *first-stage decisions*, which are taken before the uncertainty is realized and must therefore be the same across all scenarios, while the remaining variables are *second-stage decisions*, which can attain a different values in each scenario. In the current version of the package, all binary variables (which model commitment decisions of thermal units) are first-stage decisions and all continuous variables are second-stage decisions.
!!! note
UC.jl treats deterministic SCUC instances as a special case of the stochastic problem in which there is only one scenario, named `"s1"` by default. To access second-stage decisions, therefore, you must provide this scenario name as the value for `sn`. For example, `model[:prod_above]["s1", g, t]`.
### Generators
In this section, we describe the decision variables associated with the generators, which include both thermal units (e.g., natural gas-fired power plant) and profiled units (e.g., wind turbine).
#### Thermal Units
Name | Description | Unit | Stage
:-----|:-------------|:------: | :------:
`is_on[g,t]` | True if generator `g` is on at time `t`. | Binary | 1
`switch_on[g,t]` | True is generator `g` switches on at time `t`. | Binary| 1
`switch_off[g,t]` | True if generator `g` switches off at time `t`. | Binary| 1
`startup[g,t,s]` | True if generator `g` switches on at time `t` incurring start-up costs from start-up category `s`. | Binary| 1
`prod_above[sn,g,t]` | Amount of power produced by generator `g` above its minimum power output at time `t` in scenario `sn`. For example, if the minimum power of generator `g` is 100 MW and `g` is producing 115 MW of power at time `t` in scenario `sn`, then `prod_above[sn,g,t]` equals `15.0`. | MW | 2
`segprod[sn,g,t,k]` | Amount of power from piecewise linear segment `k` produced by generator `g` at time `t` in scenario `sn`. For example, if cost curve for generator `g` is defined by the points `(100, 1400)`, `(110, 1600)`, `(130, 2200)` and `(135, 2400)`, and if the generator is producing 115 MW of power at time `t` in scenario `sn`, then `segprod[sn,g,t,:]` equals `[10.0, 5.0, 0.0]`.| MW | 2
`reserve[sn,r,g,t]` | Amount of reserve `r` provided by unit `g` at time `t` in scenario `sn`. | MW | 2
!!! warning
The first-stage decision variables of the JuMP model are `is_on[g,t]`, `switch_on[g,t]`, `switch_off[g,t]`, and `startup[g,t,s]`. As such, the dictionaries corresponding to these variables do not include the scenario index in their keys. In contrast, all other variables of the created JuMP model are allowed to obtain a different value in each scenario and are thus modeled as second-stage decision variables. Accordingly, the dictionaries of all second-stage decision variables have the scenario index in their keys. This is true even if the model is created to solve the deterministic SCUC, in which case the default scenario index `s1` is included in the dictionary key.
#### Profiled Units
Name | Description | Unit | Stage
:-----|:-------------|:------: | :------:
`prod_profiled[s,t]` | Amount of power produced by profiled unit `g` at time `t`. | MW | 2
### Buses
Name | Description | Unit | Stage
:-----|:-------------|:------:| :------:
`net_injection[sn,b,t]` | Net injection at bus `b` at time `t` in scenario `sn`. | MW | 2
`curtail[sn,b,t]` | Amount of load curtailed at bus `b` at time `t` in scenario `sn`. | MW | 2
### Price-sensitive loads
Name | Description | Unit | Stage
:-----|:-------------|:------:| :------:
`loads[sn,s,t]` | Amount of power served to price-sensitive load `s` at time `t` in scenario `sn`. | MW | 2
### Transmission lines
Name | Description | Unit | Stage
:-----|:-------------|:------:| :------:
`flow[sn,l,t]` | Power flow on line `l` at time `t` in scenario `sn`. | MW | 2
`overflow[sn,l,t]` | Amount of flow above the limit for line `l` at time `t` in scenario `sn`. | MW | 2
!!! warning
Since transmission and N-1 security constraints are enforced in a lazy way, most of the `flow[l,t]` variables are never added to the model. Accessing `model[:flow][sn,l,t]` without first checking that the variable exists will likely generate an error.
Objective function
------------------
TODO
Constraints
-----------
TODO
Inspecting and modifying the model
----------------------------------
### Accessing decision variables
After building a model using `UnitCommitment.build_model`, it is possible to obtain a reference to the decision variables by calling `model[:varname][index]`. For example, `model[:is_on]["g1",1]` returns a direct reference to the JuMP variable indicating whether generator named "g1" is on at time 1. The script below illustrates how to build a model, solve it and display the solution without using the function `UnitCommitment.solution`.
```julia
using Cbc
using Printf
using JuMP
using UnitCommitment
# Load benchmark instance
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
# Build JuMP model
model = UnitCommitment.build_model(
instance=instance,
optimizer=Cbc.Optimizer,
)
# Solve the model
UnitCommitment.optimize!(model)
# Display commitment status
for g in instance.units
for t in 1:instance.time
@printf(
"%-10s %5d %5.1f %5.1f %5.1f\n",
g.name,
t,
value(model[:is_on][g.name, t]),
value(model[:switch_on][g.name, t]),
value(model[:switch_off][g.name, t]),
)
end
end
```
### Fixing variables, modifying objective function and adding constraints
Since we now have a direct reference to the JuMP decision variables, it is possible to fix variables, change the coefficients in the objective function, or even add new constraints to the model before solving it.
!!! warning
It is important to take into account the stage of the decision variables in modifying the optimization model. In changing a deterministic SCUC model, modifying the second-stage decision variables requires adding the term `s1`, which is the default scenario name assigned to the second-stage decision variables in the SCUC model. For an SUC model, the package permits the modification of the second-stage decision variables individually for each scenario.
The script below shows how the JuMP model can be modified after it is created. For more information on modifying an existing model, [see the JuMP documentation](https://jump.dev/JuMP.jl/stable/manual/variables/).
```julia
using Cbc
using JuMP
using UnitCommitment
# Load benchmark instance
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
# Construct JuMP model
model = UnitCommitment.build_model(
instance=instance,
optimizer=Cbc.Optimizer,
)
# Fix the commitment status of the generator "g1" in time period 1 to 1.0
JuMP.fix(
model[:is_on]["g1",1],
1.0,
force=true,
)
# Fix the production level of the generator "g1" above its minimum level in time period 1 and
# in scenario "s1" to 20.0 MW. Observe that the three-tuple dictionary key involves the scenario
# index "s1", as production above minimum is a second-stage decision variable.
JuMP.fix(
model[:prod_above]["s1", "g1", 1],
20.0,
force=true,
)
# Enforce the curtailment of 20.0 MW of load at bus "b2" in time period 4 in scenario "s1".
JuMP.fix(
curtail["s1", "b2", 4] =
20.0,
force=true,
)
# Change the objective function
JuMP.set_objective_coefficient(
model,
model[:switch_on]["g2",1],
1000.0,
)
# Create a new constraint
@constraint(
model,
model[:is_on]["g3",1] + model[:is_on]["g4",1] <= 1,
)
# Solve the model
UnitCommitment.optimize!(model)
```
### Adding new component to a bus
The following snippet shows how to add a new grid component to a particular bus. For each time step, we create decision variables for the new grid component, add these variables to the objective function, then attach the component to a particular bus by modifying some existing model constraints.
```julia
using Cbc
using JuMP
using UnitCommitment
# Load instance and build base model
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
model = UnitCommitment.build_model(
instance=instance,
optimizer=Cbc.Optimizer,
)
# Get the number of time steps in the original instance
T = instance.time
# Create decision variables for the new grid component.
# In this example, we assume that the new component can
# inject up to 10 MW of power at each time step, so we
# create new continuous variables 0 ≤ x[t] ≤ 10.
@variable(model, x[1:T], lower_bound=0.0, upper_bound=10.0)
# For each time step
for t in 1:T
# Add production costs to the objective function.
# In this example, we assume a cost of $5/MW.
set_objective_coefficient(model, x[t], 5.0)
# Attach the new component to bus b1 in scenario s1, by modifying the
# constraint `eq_net_injection`.
set_normalized_coefficient(
model[:eq_net_injection]["s1", "b1", t],
x[t],
1.0,
)
end
# Solve the model
UnitCommitment.optimize!(model)
# Show optimal values for the x variables
@show value.(x)
```
References
----------
* [KnOsWa20] **Bernard Knueven, James Ostrowski and Jean-Paul Watson.** "On Mixed-Integer Programming Formulations for the Unit Commitment Problem". INFORMS Journal on Computing (2020). [DOI: 10.1287/ijoc.2019.0944](https://doi.org/10.1287/ijoc.2019.0944)

381
docs/src/usage.md Normal file
View File

@@ -0,0 +1,381 @@
Usage
=====
Installation
------------
UnitCommitment.jl was tested and developed with [Julia 1.9](https://julialang.org/). To install Julia, please follow the [installation guide on the official Julia website](https://julialang.org/downloads/). To install UnitCommitment.jl, run the Julia interpreter, type `]` to open the package manager, then type:
```text
pkg> add UnitCommitment@0.4
```
To solve the optimization models, a mixed-integer linear programming (MILP) solver is also required. Please see the [JuMP installation guide](https://jump.dev/JuMP.jl/stable/installation/) for more instructions on installing a solver. Typical open-source choices are [HiGHS](https://github.com/jump-dev/HiGHS.jl), [Cbc](https://github.com/JuliaOpt/Cbc.jl) and [GLPK](https://github.com/JuliaOpt/GLPK.jl). In the instructions below, HiGHS will be used, but any other MILP solver listed in JuMP installation guide should also be compatible.
Typical Usage
-------------
### Solving user-provided instances
The first step to use UC.jl is to construct JSON files that describe each scenario of your deterministic or stochastic unit commitment instance. See [Data Format](format.md) for a complete description of the data format UC.jl expects. The next steps, as shown below, are to: (1) read the scenario files; (2) build the optimization model; (3) run the optimization; and (4) extract the optimal solution.
```julia
using HiGHS
using JuMP
using UnitCommitment
# 1. Read instance
instance = UnitCommitment.read(["example/s1.json", "example/s2.json"])
# 2. Construct optimization model
model = UnitCommitment.build_model(
instance=instance,
optimizer=HiGHS.Optimizer,
)
# 3. Solve model
UnitCommitment.optimize!(model)
# 4. Write solution to a file
solution = UnitCommitment.solution(model)
UnitCommitment.write("example/out.json", solution)
```
To read multiple files from a given folder, the [Glob](https://github.com/vtjnash/Glob.jl) package can be used:
```jldoctest usage1; output = false
using Glob
using UnitCommitment
instance = UnitCommitment.read(glob("s*.json", "example/"))
# output
UnitCommitmentInstance(2 scenarios, 6 thermal units, 0 profiled units, 14 buses, 20 lines, 19 contingencies, 1 price sensitive loads, 4 time steps)
```
To solve deterministic instances, a single scenario file may be provided.
```jldoctest usage1; output = false
instance = UnitCommitment.read("example/s1.json")
# output
UnitCommitmentInstance(1 scenarios, 6 thermal units, 0 profiled units, 14 buses, 20 lines, 19 contingencies, 1 price sensitive loads, 4 time steps)
```
### Solving benchmark instances
UnitCommitment.jl contains a large number of deterministic benchmark instances collected from the literature and converted into a common data format. To solve one of these instances individually, instead of constructing your own, the function `read_benchmark` can be used, as shown below. See [Instances](instances.md) for the complete list of available instances.
```jldoctest usage1; output = false
instance = UnitCommitment.read_benchmark("matpower/case3375wp/2017-02-01")
# output
UnitCommitmentInstance(1 scenarios, 590 thermal units, 0 profiled units, 3374 buses, 4161 lines, 3245 contingencies, 0 price sensitive loads, 36 time steps)
```
## Customizing the formulation
By default, `build_model` uses a formulation that combines modeling components from different publications, and that has been carefully tested, using our own benchmark scripts, to provide good performance across a wide variety of instances. This default formulation is expected to change over time, as new methods are proposed in the literature. You can, however, construct your own formulation, based on the modeling components that you choose, as shown in the next example.
```julia
using HiGHS
using UnitCommitment
import UnitCommitment:
Formulation,
KnuOstWat2018,
MorLatRam2013,
ShiftFactorsFormulation
instance = UnitCommitment.read_benchmark(
"matpower/case118/2017-02-01",
)
model = UnitCommitment.build_model(
instance = instance,
optimizer = HiGHS.Optimizer,
formulation = Formulation(
pwl_costs = KnuOstWat2018.PwlCosts(),
ramping = MorLatRam2013.Ramping(),
startup_costs = MorLatRam2013.StartupCosts(),
transmission = ShiftFactorsFormulation(
isf_cutoff = 0.005,
lodf_cutoff = 0.001,
),
),
)
```
## Generating initial conditions
When creating random unit commitment instances for benchmark purposes, it is often hard to compute, in advance, sensible initial conditions for all thermal generators. Setting initial conditions naively (for example, making all generators initially off and producing no power) can easily cause the instance to become infeasible due to excessive ramping. Initial conditions can also make it hard to modify existing instances. For example, increasing the system load without carefully modifying the initial conditions may make the problem infeasible or unrealistically challenging to solve.
To help with this issue, UC.jl provides a utility function which can generate feasible initial conditions by solving a single-period optimization problem, as shown below:
```julia
using HiGHS
using UnitCommitment
# Read original instance
instance = UnitCommitment.read("example/s1.json")
# Generate initial conditions (in-place)
UnitCommitment.generate_initial_conditions!(instance, HiGHS.Optimizer)
# Construct and solve optimization model
model = UnitCommitment.build_model(
instance=instance,
optimizer=HiGHS.Optimizer,
)
UnitCommitment.optimize!(model)
```
!!! warning
The function `generate_initial_conditions!` may return different initial conditions after each call, even if the same instance and the same optimizer is provided. The particular algorithm may also change in a future version of UC.jl. For these reasons, it is recommended that you generate initial conditions exactly once for each instance and store them for later use.
## Verifying solutions
When developing new formulations, it is very easy to introduce subtle errors in the model that result in incorrect solutions. To help avoiding this, UC.jl includes a utility function that verifies if a given solution is feasible, and, if not, prints all the validation errors it found. The implementation of this function is completely independent from the implementation of the optimization model, and therefore can be used to validate it.
```jldoctest; output = false
using JSON
using UnitCommitment
# Read instance
instance = UnitCommitment.read("example/s1.json")
# Read solution (potentially produced by other packages)
solution = JSON.parsefile("example/out.json")
# Validate solution and print validation errors
UnitCommitment.validate(instance, solution)
# output
true
```
## Progressive Hedging
By default, UC.jl uses the Extensive Form (EF) when solving stochastic instances. This approach involves constructing a single JuMP model that contains data and decision variables for all scenarios. Although EF has optimality guarantees and performs well with small test cases, it can become computationally intractable for large instances or substantial number of scenarios.
Progressive Hedging (PH) is an alternative (heuristic) solution method provided by UC.jl in which the problem is decomposed into smaller scenario-based subproblems, which are then solved in parallel in separate Julia processes, potentially across multiple machines. Quadratic penalty terms are used to enforce convergence of first-stage decision variables. The method is closely related to the Alternative Direction Method of Multipliers (ADMM) and can handle larger instances, although it is not guaranteed to converge to the optimal solution. Our implementation of PH relies on Message Passing Interface (MPI) for communication. We refer to [MPI.jl Documentation](https://github.com/JuliaParallel/MPI.jl) for more details on installing MPI.
The following example shows how to solve SCUC instances using progressive hedging. The script should be saved in a file, say `ph.jl`, and executed using `mpiexec -n <num-scenarios> julia ph.jl`.
```julia
using HiGHS
using MPI
using UnitCommitment
using Glob
# 1. Initialize MPI
MPI.Init()
# 2. Configure progressive hedging method
ph = UnitCommitment.ProgressiveHedging()
# 3. Read problem instance
instance = UnitCommitment.read(["example/s1.json", "example/s2.json"], ph)
# 4. Build JuMP model
model = UnitCommitment.build_model(
instance = instance,
optimizer = HiGHS.Optimizer,
)
# 5. Run the decentralized optimization algorithm
UnitCommitment.optimize!(model, ph)
# 6. Fetch the solution
solution = UnitCommitment.solution(model, ph)
# 7. Close MPI
MPI.Finalize()
```
When using PH, the model can be customized as usual, with different formulations or additional user-provided constraints. Note that `read`, in this case, takes `ph` as an argument. This allows each Julia process to read only the instance files that are relevant to it. Similarly, the `solution` function gathers the optimal solution of each processes and returns a combined dictionary.
Each process solves a sub-problem with $\frac{s}{p}$ scenarios, where $s$ is the total number of scenarios and $p$ is the number of MPI processes. For instance, if we have 15 scenario files and 5 processes, then each process will solve a JuMP model that contains data for 3 scenarios. If the total number of scenarios is not divisible by the number of processes, then an error will be thrown.
!!! warning
Currently, PH can handle only equiprobable scenarios. Further, `solution(model, ph)` can only handle cases where only one scenario is modeled in each process.
## Computing Locational Marginal Prices
Locational marginal prices (LMPs) refer to the cost of supplying electricity at a particular location of the network. Multiple methods for computing LMPs have been proposed in the literature. UnitCommitment.jl implements two commonly-used methods: conventional LMPs and Approximated Extended LMPs (AELMPs). To compute LMPs for a given unit commitment instance, the `compute_lmp` function can be used, as shown in the examples below. The function accepts three arguments -- a solved SCUC model, an LMP method, and a linear optimizer -- and it returns a dictionary mapping `(bus_name, time)` to the marginal price.
!!! warning
Most mixed-integer linear optimizers, such as `HiGHS`, `Gurobi` and `CPLEX` can be used with `compute_lmp`, with the notable exception of `Cbc`, which does not support dual value evaluations. If using `Cbc`, please provide `Clp` as the linear optimizer.
### Conventional LMPs
LMPs are conventionally computed by: (1) solving the SCUC model, (2) fixing all binary variables to their optimal values, and (3) re-solving the resulting linear programming model. In this approach, the LMPs are defined as the dual variables' values associated with the net injection constraints. The example below shows how to compute conventional LMPs for a given unit commitment instance. First, we build and optimize the SCUC model. Then, we call the `compute_lmp` function, providing as the second argument `ConventionalLMP()`.
```julia
using UnitCommitment
using HiGHS
import UnitCommitment: ConventionalLMP
# Read benchmark instance
instance = UnitCommitment.read_benchmark("matpower/case118/2018-01-01")
# Build the model
model = UnitCommitment.build_model(
instance = instance,
optimizer = HiGHS.Optimizer,
)
# Optimize the model
UnitCommitment.optimize!(model)
# Compute the LMPs using the conventional method
lmp = UnitCommitment.compute_lmp(
model,
ConventionalLMP(),
optimizer = HiGHS.Optimizer,
)
# Access the LMPs
# Example: "s1" is the scenario name, "b1" is the bus name, 1 is the first time slot
@show lmp["s1","b1", 1]
```
### Approximate Extended LMPs
Approximate Extended LMPs (AELMPs) are an alternative method to calculate locational marginal prices which attemps to minimize uplift payments. The method internally works by modifying the instance data in three ways: (1) it sets the minimum power output of each generator to zero, (2) it averages the start-up cost over the offer blocks for each generator, and (3) it relaxes all integrality constraints. To compute AELMPs, as shown in the example below, we call `compute_lmp` and provide `AELMP()` as the second argument.
This method has two configurable parameters: `allow_offline_participation` and `consider_startup_costs`. If `allow_offline_participation = true`, then offline generators are allowed to participate in the pricing. If instead `allow_offline_participation = false`, offline generators are not allowed and therefore are excluded from the system. A solved UC model is optional if offline participation is allowed, but is required if not allowed. The method forces offline participation to be allowed if the UC model supplied by the user is not solved. For the second field, If `consider_startup_costs = true`, then start-up costs are integrated and averaged over each unit production; otherwise the production costs stay the same. By default, both fields are set to `true`.
!!! warning
This approximation method is still under active research, and has several limitations. The implementation provided in the package is based on MISO Phase I only. It only supports fast start resources. More specifically, the minimum up/down time of all generators must be 1, the initial power of all generators must be 0, and the initial status of all generators must be negative. The method does not support time-varying start-up costs. The method does not support multiple scenarios. If offline participation is not allowed, AELMPs treats an asset to be offline if it is never on throughout all time periods.
```julia
using UnitCommitment
using HiGHS
import UnitCommitment: AELMP
# Read benchmark instance
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
# Build the model
model = UnitCommitment.build_model(
instance = instance,
optimizer = HiGHS.Optimizer,
)
# Optimize the model
UnitCommitment.optimize!(model)
# Compute the AELMPs
aelmp = UnitCommitment.compute_lmp(
model,
AELMP(
allow_offline_participation = false,
consider_startup_costs = true
),
optimizer = HiGHS.Optimizer
)
# Access the AELMPs
# Example: "s1" is the scenario name, "b1" is the bus name, 1 is the first time slot
# Note: although scenario is supported, the query still keeps the scenario keys for consistency.
@show aelmp["s1", "b1", 1]
```
## Time Decomposition
Solving unit commitment instances that have long time horizons (for example, year-long 8760-hour instances) requires a substantial amount of computational power. To address this issue, UC.jl offers a time decomposition method, which breaks the instance down into multiple overlapping subproblems, solves them sequentially, then reassembles the solution.
When solving a unit commitment instance with a dense time slot structure, computational complexity can become a significant challenge. For instance, if the instance contains hourly data for an entire year (8760 hours), solving such a model can require a substantial amount of computational power. To address this issue, UC.jl provides a time_decomposition method within the `optimize!` function. This method decomposes the problem into multiple sub-problems, solving them sequentially.
The `optimize!` function takes 5 parameters: a unit commitment instance, a `TimeDecomposition` method, an optimizer, and two optional functions `after_build` and `after_optimize`. It returns a solution dictionary. The `TimeDecomposition` method itself requires four arguments: `time_window`, `time_increment`, `inner_method` (optional), and `formulation` (optional). These arguments define the time window for each sub-problem, the time increment to move to the next sub-problem, the method used to solve each sub-problem, and the formulation employed, respectively. The two functions, namely `after_build` and `after_optimize`, are invoked subsequent to the construction and optimization of each sub-model, respectively. It is imperative that the `after_build` function requires its two arguments to be consistently mapped to `model` and `instance`, while the `after_optimize` function necessitates its three arguments to be consistently mapped to `solution`, `model`, and `instance`.
The code snippet below illustrates an example of solving an instance by decomposing the model into multiple 36-hour sub-problems using the `XavQiuWanThi2019` method. Each sub-problem advances 24 hours at a time. The first sub-problem covers time steps 1 to 36, the second covers time steps 25 to 60, the third covers time steps 49 to 84, and so on. The initial power levels and statuses of the second and subsequent sub-problems are set based on the results of the first 24 hours from each of their immediate prior sub-problems. In essence, this approach addresses the complexity of solving a large problem by tackling it in 24-hour intervals, while incorporating an additional 12-hour buffer to mitigate the closing window effect for each sub-problem. Furthermore, the `after_build` function imposes the restriction that `g3` and `g4` cannot be activated simultaneously during the initial time slot of each sub-problem. On the other hand, the `after_optimize` function is invoked to calculate the conventional Locational Marginal Prices (LMPs) for each sub-problem, and subsequently appends the computed values to the `lmps` vector.
> **Warning**
> Specifying `TimeDecomposition` as the value of the `inner_method` field of another `TimeDecomposition` causes errors when calling the `optimize!` function due to the different argument structures between the two `optimize!` functions.
```julia
using UnitCommitment, JuMP, Cbc, HiGHS
import UnitCommitment:
TimeDecomposition,
ConventionalLMP,
XavQiuWanThi2019,
Formulation
# specifying the after_build and after_optimize functions
function after_build(model, instance)
@constraint(
model,
model[:is_on]["g3", 1] + model[:is_on]["g4", 1] <= 1,
)
end
lmps = []
function after_optimize(solution, model, instance)
lmp = UnitCommitment.compute_lmp(
model,
ConventionalLMP(),
optimizer = HiGHS.Optimizer,
)
return push!(lmps, lmp)
end
# assume the instance is given as a 120h problem
instance = UnitCommitment.read("instance.json")
solution = UnitCommitment.optimize!(
instance,
TimeDecomposition(
time_window = 36, # solve 36h problems
time_increment = 24, # advance by 24h each time
inner_method = XavQiuWanThi2019.Method(),
formulation = Formulation(),
),
optimizer = Cbc.Optimizer,
after_build = after_build,
after_optimize = after_optimize,
)
```
## Day-ahead (DA) Market to Real-time (RT) Markets
The UC.jl package offers a comprehensive set of functions for solving marketing problems. The primary function, `solve_market`, facilitates the solution of day-ahead (DA) markets, which can be either deterministic or stochastic in nature. Subsequently, it sequentially maps the commitment status obtained from the DA market to all the real-time (RT) markets, which are deterministic instances. It is essential to ensure that the time span of the DA market encompasses all the RT markets, and the file paths for the RT markets must be specified in chronological order. Each RT market should represent a single time slot, and it is recommended to include a few additional time slots to mitigate the closing window effect.
The `solve_market` function accepts several parameters, including the file path (or a list of file paths in the case of stochastic markets) for the DA market, a list of file paths for the RT markets, the market settings specified by the `MarketSettings` structure, and an optimizer. The `MarketSettings` structure itself requires three optional arguments: `inner_method`, `lmp_method`, and `formulation`. If the computation of Locational Marginal Prices (LMPs) is not desired, the `lmp_method` can be set to `nothing`. Additional optional parameters include a linear programming optimizer for solving LMPs (if a different optimizer than the required one is desired), callback functions `after_build_da` and `after_optimize_da`, which are invoked after the construction and optimization of the DA market, and callback functions `after_build_rt` and `after_optimize_rt`, which are invoked after the construction and optimization of each RT market. It is crucial to note that the `after_build` function requires its two arguments to consistently correspond to `model` and `instance`, while the `after_optimize` function requires its three arguments to consistently correspond to `solution`, `model`, and `instance`.
As an illustrative example, suppose the DA market predicts hourly data for a 24-hour period, while the RT markets represent 5-minute intervals. In this scenario, each RT market file corresponds to a specific 5-minute interval, with the first RT market representing the initial 5 minutes, the second RT market representing the subsequent 5 minutes, and so on. Consequently, there should be 12 RT market files for each hour. To mitigate the closing window effect, except for the last few RT markets, each RT market should contain three time slots, resulting in a total time span of 15 minutes. However, only the first time slot is considered in the final solution. The last two RT markets should only contain 2 and 1 time slot(s), respectively, to ensure that the total time covered by all RT markets does not exceed the time span of the DA market. The code snippet below demonstrates a simplified example of how to utilize the `solve_market` function. Please note that it only serves as a simplified example and may require further customization based on the specific requirements of your use case.
```julia
using UnitCommitment, Cbc, HiGHS
import UnitCommitment:
MarketSettings,
XavQiuWanThi2019,
ConventionalLMP,
Formulation
solution = UnitCommitment.solve_market(
"da_instance.json",
["rt_instance_1.json", "rt_instance_2.json", "rt_instance_3.json"],
MarketSettings(
inner_method = XavQiuWanThi2019.Method(),
lmp_method = ConventionalLMP(),
formulation = Formulation(),
),
optimizer = Cbc.Optimizer,
lp_optimizer = HiGHS.Optimizer,
)
```

View File

@@ -1,149 +0,0 @@
```{sectnum}
---
start: 1
depth: 2
suffix: .
---
```
Usage
=====
Installation
------------
UnitCommitment.jl was tested and developed with [Julia 1.6](https://julialang.org/). To install Julia, please follow the [installation guide on the official Julia website](https://julialang.org/downloads/platform.html). To install UnitCommitment.jl, run the Julia interpreter, type `]` to open the package manager, then type:
```text
pkg> add UnitCommitment@0.2
```
To test that the package has been correctly installed, run:
```text
pkg> test UnitCommitment
```
If all tests pass, the package should now be ready to be used by any Julia script on the machine.
To solve the optimization models, a mixed-integer linear programming (MILP) solver is also required. Please see the [JuMP installation guide](https://jump.dev/JuMP.jl/stable/installation/) for more instructions on installing a solver. Typical open-source choices are [Cbc](https://github.com/JuliaOpt/Cbc.jl) and [GLPK](https://github.com/JuliaOpt/GLPK.jl). In the instructions below, Cbc will be used, but any other MILP solver listed in JuMP installation guide should also be compatible.
Typical Usage
-------------
### Solving user-provided instances
The first step to use UC.jl is to construct a JSON file describing your unit commitment instance. See [Data Format](format.md) for a complete description of the data format UC.jl expects. The next steps, as shown below, are to: (1) read the instance from file; (2) construct the optimization model; (3) run the optimization; and (4) extract the optimal solution.
```julia
using Cbc
using JSON
using UnitCommitment
# 1. Read instance
instance = UnitCommitment.read("/path/to/input.json")
# 2. Construct optimization model
model = UnitCommitment.build_model(
instance=instance,
optimizer=Cbc.Optimizer,
)
# 3. Solve model
UnitCommitment.optimize!(model)
# 4. Write solution to a file
solution = UnitCommitment.solution(model)
UnitCommitment.write("/path/to/output.json", solution)
```
### Solving benchmark instances
UnitCommitment.jl contains a large number of benchmark instances collected from the literature and converted into a common data format. To solve one of these instances individually, instead of constructing your own, the function `read_benchmark` can be used, as shown below. See [Instances](instances.md) for the complete list of available instances.
```julia
using UnitCommitment
instance = UnitCommitment.read_benchmark("matpower/case3375wp/2017-02-01")
```
Advanced usage
--------------
### Customizing the formulation
By default, `build_model` uses a formulation that combines modeling components from different publications, and that has been carefully tested, using our own benchmark scripts, to provide good performance across a wide variety of instances. This default formulation is expected to change over time, as new methods are proposed in the literature. You can, however, construct your own formulation, based on the modeling components that you choose, as shown in the next example.
```julia
using Cbc
using UnitCommitment
import UnitCommitment:
Formulation,
KnuOstWat2018,
MorLatRam2013,
ShiftFactorsFormulation
instance = UnitCommitment.read_benchmark(
"matpower/case118/2017-02-01",
)
model = UnitCommitment.build_model(
instance = instance,
optimizer = Cbc.Optimizer,
formulation = Formulation(
pwl_costs = KnuOstWat2018.PwlCosts(),
ramping = MorLatRam2013.Ramping(),
startup_costs = MorLatRam2013.StartupCosts(),
transmission = ShiftFactorsFormulation(
isf_cutoff = 0.005,
lodf_cutoff = 0.001,
),
),
)
```
### Generating initial conditions
When creating random unit commitment instances for benchmark purposes, it is often hard to compute, in advance, sensible initial conditions for all generators. Setting initial conditions naively (for example, making all generators initially off and producing no power) can easily cause the instance to become infeasible due to excessive ramping. Initial conditions can also make it hard to modify existing instances. For example, increasing the system load without carefully modifying the initial conditions may make the problem infeasible or unrealistically challenging to solve.
To help with this issue, UC.jl provides a utility function which can generate feasible initial conditions by solving a single-period optimization problem, as shown below:
```julia
using Cbc
using UnitCommitment
# Read original instance
instance = UnitCommitment.read("instance.json")
# Generate initial conditions (in-place)
UnitCommitment.generate_initial_conditions!(instance, Cbc.Optimizer)
# Construct and solve optimization model
model = UnitCommitment.build_model(
instance=instance,
optimizer=Cbc.Optimizer,
)
UnitCommitment.optimize!(model)
```
```{warning}
The function `generate_initial_conditions!` may return different initial conditions after each call, even if the same instance and the same optimizer is provided. The particular algorithm may also change in a future version of UC.jl. For these reasons, it is recommended that you generate initial conditions exactly once for each instance and store them for later use.
```
### Verifying solutions
When developing new formulations, it is very easy to introduce subtle errors in the model that result in incorrect solutions. To help with this, UC.jl includes a utility function that verifies if a given solution is feasible, and, if not, prints all the validation errors it found. The implementation of this function is completely independent from the implementation of the optimization model, and therefore can be used to validate it. The function can also be used to verify solutions produced by other optimization packages, as long as they follow the [UC.jl data format](format.md).
```julia
using JSON
using UnitCommitment
# Read instance
instance = UnitCommitment.read("instance.json")
# Read solution (potentially produced by other packages)
solution = JSON.parsefile("solution.json")
# Validate solution and print validation errors
UnitCommitment.validate(instance, solution)
```

68
juliaw
View File

@@ -1,68 +0,0 @@
#!/bin/bash
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
if [ ! -e Project.toml ]; then
echo "juliaw: Project.toml not found"
exit 1
fi
if [ ! -e Manifest.toml ]; then
julia --project=. -e 'using Pkg; Pkg.instantiate()' || exit 1
fi
if [ ! -e build/sysimage.so -o Project.toml -nt build/sysimage.so ]; then
echo "juliaw: rebuilding system image..."
# Generate temporary project folder
rm -rf $HOME/.juliaw
mkdir -p $HOME/.juliaw/src
cp Project.toml Manifest.toml $HOME/.juliaw
NAME=$(julia -e 'using TOML; toml = TOML.parsefile("Project.toml"); "name" in keys(toml) && print(toml["name"])')
if [ ! -z $NAME ]; then
cat > $HOME/.juliaw/src/$NAME.jl << EOF
module $NAME
end
EOF
fi
# Add PackageCompiler dependencies to temporary project
julia --project=$HOME/.juliaw -e 'using Pkg; Pkg.add(["PackageCompiler", "TOML", "Logging"])'
# Generate system image scripts
cat > $HOME/.juliaw/sysimage.jl << EOF
using PackageCompiler
using TOML
using Logging
Logging.disable_logging(Logging.Info)
mkpath("$PWD/build")
println("juliaw: generating precompilation statements...")
run(\`julia --project="$PWD" --trace-compile="$PWD"/build/precompile.jl \$(ARGS)\`)
println("juliaw: finding dependencies...")
project = TOML.parsefile("Project.toml")
manifest = TOML.parsefile("Manifest.toml")
deps = Symbol[]
for dep in keys(project["deps"])
if "path" in keys(manifest[dep][1])
println(" - \$(dep) [skip]")
else
println(" - \$(dep)")
push!(deps, Symbol(dep))
end
end
println("juliaw: building system image...")
create_sysimage(
deps,
precompile_statements_file = "$PWD/build/precompile.jl",
sysimage_path = "$PWD/build/sysimage.so",
)
EOF
julia --project=$HOME/.juliaw $HOME/.juliaw/sysimage.jl $*
else
julia --project=. --sysimage build/sysimage.so $*
fi

View File

@@ -4,9 +4,15 @@
module UnitCommitment
using Requires
using Base: String
include("instance/structs.jl")
include("model/formulations/base/structs.jl")
include("solution/structs.jl")
include("lmp/structs.jl")
include("market/structs.jl")
include("model/formulations/ArrCon2000/structs.jl")
include("model/formulations/CarArr2006/structs.jl")
@@ -16,9 +22,13 @@ include("model/formulations/KnuOstWat2018/structs.jl")
include("model/formulations/MorLatRam2013/structs.jl")
include("model/formulations/PanGua2016/structs.jl")
include("solution/methods/XavQiuWanThi2019/structs.jl")
include("solution/methods/ProgressiveHedging/structs.jl")
include("model/formulations/WanHob2016/structs.jl")
include("solution/methods/TimeDecomposition/structs.jl")
include("import/egret.jl")
include("instance/read.jl")
include("instance/migrate.jl")
include("model/build.jl")
include("model/formulations/ArrCon2000/ramp.jl")
include("model/formulations/base/bus.jl")
@@ -27,6 +37,8 @@ include("model/formulations/base/psload.jl")
include("model/formulations/base/sensitivity.jl")
include("model/formulations/base/system.jl")
include("model/formulations/base/unit.jl")
include("model/formulations/base/punit.jl")
include("model/formulations/base/storage.jl")
include("model/formulations/CarArr2006/pwlcosts.jl")
include("model/formulations/DamKucRajAta2016/ramp.jl")
include("model/formulations/Gar1962/pwlcosts.jl")
@@ -36,12 +48,17 @@ include("model/formulations/KnuOstWat2018/pwlcosts.jl")
include("model/formulations/MorLatRam2013/ramp.jl")
include("model/formulations/MorLatRam2013/scosts.jl")
include("model/formulations/PanGua2016/ramp.jl")
include("model/formulations/WanHob2016/ramp.jl")
include("model/jumpext.jl")
include("solution/fix.jl")
include("solution/methods/XavQiuWanThi2019/enforce.jl")
include("solution/methods/XavQiuWanThi2019/filter.jl")
include("solution/methods/XavQiuWanThi2019/find.jl")
include("solution/methods/XavQiuWanThi2019/optimize.jl")
include("solution/methods/TimeDecomposition/optimize.jl")
include("solution/methods/ProgressiveHedging/optimize.jl")
include("solution/methods/ProgressiveHedging/read.jl")
include("solution/methods/ProgressiveHedging/solution.jl")
include("solution/optimize.jl")
include("solution/solution.jl")
include("solution/warmstart.jl")
@@ -53,5 +70,15 @@ include("utils/log.jl")
include("utils/benchmark.jl")
include("validation/repair.jl")
include("validation/validate.jl")
include("lmp/conventional.jl")
include("lmp/aelmp.jl")
include("market/market.jl")
function __init__()
@require MIPLearn = "2b1277c3-b477-4c49-a15e-7ba350325c68" begin
include("solution/methods/MIPLearn/structs.jl")
include("solution/methods/MIPLearn/miplearn.jl")
end
end
end

View File

@@ -18,9 +18,9 @@ function read_egret_solution(path::String)::OrderedDict
solution = OrderedDict()
is_on = solution["Is on"] = OrderedDict()
production = solution["Production (MW)"] = OrderedDict()
production = solution["Thermal production (MW)"] = OrderedDict()
reserve = solution["Reserve (MW)"] = OrderedDict()
production_cost = solution["Production cost (\$)"] = OrderedDict()
production_cost = solution["Thermal production cost (\$)"] = OrderedDict()
startup_cost = solution["Startup cost (\$)"] = OrderedDict()
for (gen_name, gen_dict) in egret["elements"]["generator"]

50
src/instance/migrate.jl Normal file
View File

@@ -0,0 +1,50 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataStructures
using JSON
function _migrate(json)
version = json["Parameters"]["Version"]
if version === nothing
error(
"The provided input file cannot be loaded because it does not " *
"specify what version of UnitCommitment.jl it was written for. " *
"Please modify the \"Parameters\" section of the file and include " *
"a \"Version\" entry. For example: {\"Parameters\":{\"Version\":\"0.3\"}}",
)
end
version = VersionNumber(version)
version >= v"0.3" || _migrate_to_v03(json)
version >= v"0.4" || _migrate_to_v04(json)
return
end
function _migrate_to_v03(json)
# Migrate reserves
if json["Reserves"] !== nothing &&
json["Reserves"]["Spinning (MW)"] !== nothing
amount = json["Reserves"]["Spinning (MW)"]
json["Reserves"] = DefaultOrderedDict(nothing)
json["Reserves"]["r1"] = DefaultOrderedDict(nothing)
json["Reserves"]["r1"]["Type"] = "spinning"
json["Reserves"]["r1"]["Amount (MW)"] = amount
for (gen_name, gen) in json["Generators"]
if gen["Provides spinning reserves?"] == true
gen["Reserve eligibility"] = ["r1"]
end
end
end
end
function _migrate_to_v04(json)
# Migrate thermal units
if json["Generators"] !== nothing
for (gen_name, gen) in json["Generators"]
if gen["Type"] === nothing
gen["Type"] = "Thermal"
end
end
end
end

View File

@@ -8,20 +8,18 @@ using DataStructures
using GZip
import Base: getindex, time
const INSTANCES_URL = "https://axavier.org/UnitCommitment.jl/0.2/instances"
const INSTANCES_URL = "https://axavier.org/UnitCommitment.jl/0.3/instances"
"""
read_benchmark(name::AbstractString)::UnitCommitmentInstance
Read one of the benchmark unit commitment instances included in the package.
See "Instances" section of the documentation for the entire list of benchmark
instances available.
Read one of the benchmark instances included in the package. See
[Instances](instances.md) for the entire list of benchmark instances available.
Example
-------
import UnitCommitment
# Example
```julia
instance = UnitCommitment.read_benchmark("matpower/case3375wp/2017-02-01")
```
"""
function read_benchmark(
name::AbstractString;
@@ -45,26 +43,76 @@ function read_benchmark(
return UnitCommitment.read(filename)
end
function _repair_scenario_names_and_probabilities!(
scenarios::Vector{UnitCommitmentScenario},
path::Vector{String},
)::Nothing
total_weight = sum([sc.probability for sc in scenarios])
for (sc_path, sc) in zip(path, scenarios)
sc.name !== "" ||
(sc.name = first(split(last(split(sc_path, "/")), ".")))
sc.probability = (sc.probability / total_weight)
end
return
end
"""
read(path::AbstractString)::UnitCommitmentInstance
Read a unit commitment instance from a file. The file may be gzipped.
Read a deterministic test case from the given file. The file may be gzipped.
Example
-------
# Example
import UnitCommitment
instance = UnitCommitment.read("/path/to/input.json.gz")
```julia
instance = UnitCommitment.read("s1.json.gz")
```
"""
function read(path::AbstractString)::UnitCommitmentInstance
if endswith(path, ".gz")
return _read(gzopen(path))
else
return _read(open(path))
end
function read(path::String)::UnitCommitmentInstance
scenarios = Vector{UnitCommitmentScenario}()
scenario = _read_scenario(path)
scenario.name = "s1"
scenario.probability = 1.0
scenarios = [scenario]
instance =
UnitCommitmentInstance(time = scenario.time, scenarios = scenarios)
return instance
end
function _read(file::IO)::UnitCommitmentInstance
"""
read(path::Vector{String})::UnitCommitmentInstance
Read a stochastic unit commitment instance from the given files. Each file
describes a scenario. The files may be gzipped.
# Example
```julia
instance = UnitCommitment.read(["s1.json.gz", "s2.json.gz"])
```
"""
function read(paths::Vector{String})::UnitCommitmentInstance
scenarios = UnitCommitmentScenario[]
for p in paths
push!(scenarios, _read_scenario(p))
end
_repair_scenario_names_and_probabilities!(scenarios, paths)
instance =
UnitCommitmentInstance(time = scenarios[1].time, scenarios = scenarios)
return instance
end
function _read_scenario(path::String)::UnitCommitmentScenario
if endswith(path, ".gz")
scenario = _read(gzopen(path))
elseif endswith(path, ".json")
scenario = _read(open(path))
else
error("Unsupported input format")
end
return scenario
end
function _read(file::IO)::UnitCommitmentScenario
return _from_json(
JSON.parse(file, dicttype = () -> DefaultOrderedDict(nothing)),
)
@@ -79,32 +127,54 @@ function _read_json(path::String)::OrderedDict
return JSON.parse(file, dicttype = () -> DefaultOrderedDict(nothing))
end
function _from_json(json; repair = true)
units = Unit[]
function _from_json(json; repair = true)::UnitCommitmentScenario
_migrate(json)
thermal_units = ThermalUnit[]
buses = Bus[]
contingencies = Contingency[]
lines = TransmissionLine[]
loads = PriceSensitiveLoad[]
reserves = Reserve[]
profiled_units = ProfiledUnit[]
storage_units = StorageUnit[]
function scalar(x; default = nothing)
x !== nothing || return default
return x
end
time_horizon = json["Parameters"]["Time horizon (min)"]
if time_horizon === nothing
time_horizon = json["Parameters"]["Time (h)"]
if time_horizon === nothing
time_horizon = json["Parameters"]["Time horizon (h)"]
end
time_horizon !== nothing || error("Missing parameter: Time horizon (h)")
if time_horizon !== nothing
time_horizon *= 60
end
end
time_horizon !== nothing || error("Missing parameter: Time horizon (min)")
isinteger(time_horizon) ||
error("Time horizon must be an integer in minutes")
time_horizon = Int(time_horizon)
time_step = scalar(json["Parameters"]["Time step (min)"], default = 60)
(60 % time_step == 0) ||
error("Time step $time_step is not a divisor of 60")
(time_horizon % time_step == 0) || error(
"Time step $time_step is not a divisor of time horizon $time_horizon",
)
time_multiplier = 60 ÷ time_step
T = time_horizon * time_multiplier
T = time_horizon ÷ time_step
probability = json["Parameters"]["Scenario weight"]
probability !== nothing || (probability = 1)
scenario_name = json["Parameters"]["Scenario name"]
scenario_name !== nothing || (scenario_name = "")
name_to_bus = Dict{String,Bus}()
name_to_line = Dict{String,TransmissionLine}()
name_to_unit = Dict{String,Unit}()
name_to_unit = Dict{String,ThermalUnit}()
name_to_reserve = Dict{String,Reserve}()
function timeseries(x; default = nothing)
x !== nothing || return default
@@ -117,10 +187,6 @@ function _from_json(json; repair = true)
json["Parameters"]["Power balance penalty (\$/MW)"],
default = [1000.0 for t in 1:T],
)
shortfall_penalty = timeseries(
json["Parameters"]["Reserve shortfall penalty (\$/MW)"],
default = [-1.0 for t in 1:T],
)
# Read buses
for (bus_name, dict) in json["Buses"]
@@ -128,24 +194,54 @@ function _from_json(json; repair = true)
bus_name,
length(buses),
timeseries(dict["Load (MW)"]),
Unit[],
ThermalUnit[],
PriceSensitiveLoad[],
ProfiledUnit[],
StorageUnit[],
)
name_to_bus[bus_name] = bus
push!(buses, bus)
end
# Read reserves
if "Reserves" in keys(json)
for (reserve_name, dict) in json["Reserves"]
r = Reserve(
name = reserve_name,
type = lowercase(dict["Type"]),
amount = timeseries(dict["Amount (MW)"]),
thermal_units = [],
shortfall_penalty = scalar(
dict["Shortfall penalty (\$/MW)"],
default = -1,
),
)
name_to_reserve[reserve_name] = r
push!(reserves, r)
end
end
# Read units
for (unit_name, dict) in json["Generators"]
# Read and validate unit type
unit_type = scalar(dict["Type"], default = nothing)
unit_type !== nothing || error("unit $unit_name has no type specified")
bus = name_to_bus[dict["Bus"]]
if lowercase(unit_type) === "thermal"
# Read production cost curve
K = length(dict["Production cost curve (MW)"])
curve_mw = hcat(
[timeseries(dict["Production cost curve (MW)"][k]) for k in 1:K]...,
[
timeseries(dict["Production cost curve (MW)"][k]) for
k in 1:K
]...,
)
curve_cost = hcat(
[timeseries(dict["Production cost curve (\$)"][k]) for k in 1:K]...,
[
timeseries(dict["Production cost curve (\$)"][k]) for
k in 1:K
]...,
)
min_power = curve_mw[:, 1]
max_power = curve_mw[:, K]
@@ -172,15 +268,26 @@ function _from_json(json; repair = true)
)
end
# Read reserve eligibility
unit_reserves = Reserve[]
if "Reserve eligibility" in keys(dict)
unit_reserves =
[name_to_reserve[n] for n in dict["Reserve eligibility"]]
end
# Read and validate initial conditions
initial_power = scalar(dict["Initial power (MW)"], default = nothing)
initial_status = scalar(dict["Initial status (h)"], default = nothing)
initial_power =
scalar(dict["Initial power (MW)"], default = nothing)
initial_status =
scalar(dict["Initial status (h)"], default = nothing)
if initial_power === nothing
initial_status === nothing ||
error("unit $unit_name has initial status but no initial power")
initial_status === nothing || error(
"unit $unit_name has initial status but no initial power",
)
else
initial_status !== nothing ||
error("unit $unit_name has initial power but no initial status")
initial_status !== nothing || error(
"unit $unit_name has initial power but no initial status",
)
initial_status != 0 ||
error("unit $unit_name has invalid initial status")
if initial_status < 0 && initial_power > 1e-3
@@ -189,7 +296,13 @@ function _from_json(json; repair = true)
initial_status *= time_multiplier
end
unit = Unit(
# Read commitment status
commitment_status = scalar(
dict["Commitment status"],
default = Vector{Union{Bool,Nothing}}(nothing, T),
)
unit = ThermalUnit(
unit_name,
bus,
max_power,
@@ -197,30 +310,40 @@ function _from_json(json; repair = true)
timeseries(dict["Must run?"], default = [false for t in 1:T]),
min_power_cost,
segments,
scalar(dict["Minimum uptime (h)"], default = 1) * time_multiplier,
scalar(dict["Minimum downtime (h)"], default = 1) * time_multiplier,
scalar(dict["Minimum uptime (h)"], default = 1) *
time_multiplier,
scalar(dict["Minimum downtime (h)"], default = 1) *
time_multiplier,
scalar(dict["Ramp up limit (MW)"], default = 1e6),
scalar(dict["Ramp down limit (MW)"], default = 1e6),
scalar(dict["Startup limit (MW)"], default = 1e6),
scalar(dict["Shutdown limit (MW)"], default = 1e6),
initial_status,
initial_power,
timeseries(
dict["Provides spinning reserves?"],
default = [true for t in 1:T],
),
startup_categories,
unit_reserves,
commitment_status,
)
push!(bus.units, unit)
name_to_unit[unit_name] = unit
push!(units, unit)
push!(bus.thermal_units, unit)
for r in unit_reserves
push!(r.thermal_units, unit)
end
name_to_unit[unit_name] = unit
push!(thermal_units, unit)
elseif lowercase(unit_type) === "profiled"
bus = name_to_bus[dict["Bus"]]
pu = ProfiledUnit(
unit_name,
bus,
timeseries(scalar(dict["Minimum power (MW)"], default = 0.0)),
timeseries(dict["Maximum power (MW)"]),
timeseries(dict["Cost (\$/MW)"]),
)
push!(bus.profiled_units, pu)
push!(profiled_units, pu)
else
error("unit $unit_name has an invalid type")
end
# Read reserves
reserves = Reserves(zeros(T))
if "Reserves" in keys(json)
reserves.spinning =
timeseries(json["Reserves"]["Spinning (MW)"], default = zeros(T))
end
# Read transmission lines
@@ -231,7 +354,6 @@ function _from_json(json; repair = true)
length(lines) + 1,
name_to_bus[dict["Source bus"]],
name_to_bus[dict["Target bus"]],
scalar(dict["Reactance (ohms)"]),
scalar(dict["Susceptance (S)"]),
timeseries(
dict["Normal flow limit (MW)"],
@@ -254,7 +376,7 @@ function _from_json(json; repair = true)
# Read contingencies
if "Contingencies" in keys(json)
for (cont_name, dict) in json["Contingencies"]
affected_units = Unit[]
affected_units = ThermalUnit[]
affected_lines = TransmissionLine[]
if "Affected lines" in keys(dict)
affected_lines =
@@ -284,7 +406,55 @@ function _from_json(json; repair = true)
end
end
instance = UnitCommitmentInstance(
# Read storage units
if "Storage units" in keys(json)
for (storage_name, dict) in json["Storage units"]
bus = name_to_bus[dict["Bus"]]
min_level =
timeseries(scalar(dict["Minimum level (MWh)"], default = 0.0))
max_level = timeseries(dict["Maximum level (MWh)"])
storage = StorageUnit(
storage_name,
bus,
min_level,
max_level,
timeseries(
scalar(
dict["Allow simultaneous charging and discharging"],
default = true,
),
),
timeseries(dict["Charge cost (\$/MW)"]),
timeseries(dict["Discharge cost (\$/MW)"]),
timeseries(scalar(dict["Charge efficiency"], default = 1.0)),
timeseries(scalar(dict["Discharge efficiency"], default = 1.0)),
timeseries(scalar(dict["Loss factor"], default = 0.0)),
timeseries(
scalar(dict["Minimum charge rate (MW)"], default = 0.0),
),
timeseries(dict["Maximum charge rate (MW)"]),
timeseries(
scalar(dict["Minimum discharge rate (MW)"], default = 0.0),
),
timeseries(dict["Maximum discharge rate (MW)"]),
scalar(dict["Initial level (MWh)"], default = 0.0),
scalar(
dict["Last period minimum level (MWh)"],
default = min_level[T],
),
scalar(
dict["Last period maximum level (MWh)"],
default = max_level[T],
),
)
push!(bus.storage_units, storage)
push!(storage_units, storage)
end
end
scenario = UnitCommitmentScenario(
name = scenario_name,
probability = probability,
buses_by_name = Dict(b.name => b for b in buses),
buses = buses,
contingencies_by_name = Dict(c.name => c for c in contingencies),
@@ -295,13 +465,20 @@ function _from_json(json; repair = true)
price_sensitive_loads_by_name = Dict(ps.name => ps for ps in loads),
price_sensitive_loads = loads,
reserves = reserves,
shortfall_penalty = shortfall_penalty,
reserves_by_name = name_to_reserve,
time = T,
units_by_name = Dict(g.name => g for g in units),
units = units,
time_step = time_step,
thermal_units_by_name = Dict(g.name => g for g in thermal_units),
thermal_units = thermal_units,
profiled_units_by_name = Dict(pu.name => pu for pu in profiled_units),
profiled_units = profiled_units,
storage_units_by_name = Dict(su.name => su for su in storage_units),
storage_units = storage_units,
isf = spzeros(Float64, length(lines), length(buses) - 1),
lodf = spzeros(Float64, length(lines), length(lines)),
)
if repair
UnitCommitment.repair!(instance)
UnitCommitment.repair!(scenario)
end
return instance
return scenario
end

View File

@@ -6,8 +6,10 @@ mutable struct Bus
name::String
offset::Int
load::Vector{Float64}
units::Vector
thermal_units::Vector
price_sensitive_loads::Vector
profiled_units::Vector
storage_units::Vector
end
mutable struct CostSegment
@@ -20,7 +22,15 @@ mutable struct StartupCategory
cost::Float64
end
mutable struct Unit
Base.@kwdef mutable struct Reserve
name::String
type::String
amount::Vector{Float64}
thermal_units::Vector
shortfall_penalty::Float64
end
mutable struct ThermalUnit
name::String
bus::Bus
max_power::Vector{Float64}
@@ -36,8 +46,9 @@ mutable struct Unit
shutdown_limit::Float64
initial_status::Union{Int,Nothing}
initial_power::Union{Float64,Nothing}
provides_spinning_reserves::Vector{Bool}
startup_categories::Vector{StartupCategory}
reserves::Vector{Reserve}
commitment_status::Vector{Union{Bool,Nothing}}
end
mutable struct TransmissionLine
@@ -45,21 +56,16 @@ mutable struct TransmissionLine
offset::Int
source::Bus
target::Bus
reactance::Float64
susceptance::Float64
normal_flow_limit::Vector{Float64}
emergency_flow_limit::Vector{Float64}
flow_limit_penalty::Vector{Float64}
end
mutable struct Reserves
spinning::Vector{Float64}
end
mutable struct Contingency
name::String
lines::Vector{TransmissionLine}
units::Vector{Unit}
thermal_units::Vector{ThermalUnit}
end
mutable struct PriceSensitiveLoad
@@ -69,33 +75,75 @@ mutable struct PriceSensitiveLoad
revenue::Vector{Float64}
end
Base.@kwdef mutable struct UnitCommitmentInstance
mutable struct ProfiledUnit
name::String
bus::Bus
min_power::Vector{Float64}
max_power::Vector{Float64}
cost::Vector{Float64}
end
mutable struct StorageUnit
name::String
bus::Bus
min_level::Vector{Float64}
max_level::Vector{Float64}
simultaneous_charge_and_discharge::Vector{Bool}
charge_cost::Vector{Float64}
discharge_cost::Vector{Float64}
charge_efficiency::Vector{Float64}
discharge_efficiency::Vector{Float64}
loss_factor::Vector{Float64}
min_charge_rate::Vector{Float64}
max_charge_rate::Vector{Float64}
min_discharge_rate::Vector{Float64}
max_discharge_rate::Vector{Float64}
initial_level::Float64
min_ending_level::Float64
max_ending_level::Float64
end
Base.@kwdef mutable struct UnitCommitmentScenario
buses_by_name::Dict{AbstractString,Bus}
buses::Vector{Bus}
contingencies_by_name::Dict{AbstractString,Contingency}
contingencies::Vector{Contingency}
isf::Array{Float64,2}
lines_by_name::Dict{AbstractString,TransmissionLine}
lines::Vector{TransmissionLine}
lodf::Array{Float64,2}
name::String
power_balance_penalty::Vector{Float64}
price_sensitive_loads_by_name::Dict{AbstractString,PriceSensitiveLoad}
price_sensitive_loads::Vector{PriceSensitiveLoad}
reserves::Reserves
shortfall_penalty::Vector{Float64}
probability::Float64
profiled_units_by_name::Dict{AbstractString,ProfiledUnit}
profiled_units::Vector{ProfiledUnit}
reserves_by_name::Dict{AbstractString,Reserve}
reserves::Vector{Reserve}
thermal_units_by_name::Dict{AbstractString,ThermalUnit}
thermal_units::Vector{ThermalUnit}
storage_units_by_name::Dict{AbstractString,StorageUnit}
storage_units::Vector{StorageUnit}
time::Int
units_by_name::Dict{AbstractString,Unit}
units::Vector{Unit}
time_step::Int
end
Base.@kwdef mutable struct UnitCommitmentInstance
time::Int
scenarios::Vector{UnitCommitmentScenario}
end
function Base.show(io::IO, instance::UnitCommitmentInstance)
sc = instance.scenarios[1]
print(io, "UnitCommitmentInstance(")
print(io, "$(length(instance.units)) units, ")
print(io, "$(length(instance.buses)) buses, ")
print(io, "$(length(instance.lines)) lines, ")
print(io, "$(length(instance.contingencies)) contingencies, ")
print(
io,
"$(length(instance.price_sensitive_loads)) price sensitive loads, ",
)
print(io, "$(length(instance.scenarios)) scenarios, ")
print(io, "$(length(sc.thermal_units)) thermal units, ")
print(io, "$(length(sc.profiled_units)) profiled units, ")
print(io, "$(length(sc.buses)) buses, ")
print(io, "$(length(sc.lines)) lines, ")
print(io, "$(length(sc.contingencies)) contingencies, ")
print(io, "$(length(sc.price_sensitive_loads)) price sensitive loads, ")
print(io, "$(instance.time) time steps")
print(io, ")")
return

212
src/lmp/aelmp.jl Normal file
View File

@@ -0,0 +1,212 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP
"""
function compute_lmp(
model::JuMP.Model,
method::AELMP;
optimizer,
)::OrderedDict{Tuple{String,Int},Float64}
Calculates the approximate extended locational marginal prices of the given unit commitment instance.
The AELPM does the following three things:
1. It sets the minimum power output of each generator to zero
2. It averages the start-up cost over the offer blocks for each generator
3. It relaxes all integrality constraints
Returns a dictionary mapping `(bus_name, time)` to the marginal price.
WARNING: This approximation method is not fully developed. The implementation is based on MISO Phase I only.
1. It only supports Fast Start resources. More specifically, the minimum up/down time has to be zero.
2. The method does NOT support time-varying start-up costs.
3. An asset is considered offline if it is never on throughout all time periods.
4. The method does NOT support multiple scenarios.
Arguments
---------
- `model`:
the UnitCommitment model, must be solved before calling this function if offline participation is not allowed.
- `method`:
the AELMP method.
- `optimizer`:
the optimizer for solving the LP problem.
Examples
--------
```julia
using UnitCommitment
using HiGHS
import UnitCommitment: AELMP
# Read benchmark instance
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
# Build the model
model = UnitCommitment.build_model(
instance = instance,
optimizer = HiGHS.Optimizer,
)
# Optimize the model
UnitCommitment.optimize!(model)
# Compute the AELMPs
aelmp = UnitCommitment.compute_lmp(
model,
AELMP(
allow_offline_participation = false,
consider_startup_costs = true
),
optimizer = HiGHS.Optimizer
)
# Access the AELMPs
# Example: "s1" is the scenario name, "b1" is the bus name, 1 is the first time slot
# Note: although scenario is supported, the query still keeps the scenario keys for consistency.
@show aelmp["s1", "b1", 1]
```
"""
function compute_lmp(
model::JuMP.Model,
method::AELMP;
optimizer,
)::OrderedDict{Tuple{String,String,Int},Float64}
@info "Building the approximation model..."
instance = deepcopy(model[:instance])
_aelmp_check_parameters(instance, model, method)
_modify_scenario!(instance.scenarios[1], model, method)
# prepare the result dictionary and solve the model
elmp = OrderedDict()
@info "Solving the approximation model."
approx_model = build_model(instance = instance, variable_names = true)
# relax the binary constraint, and relax integrality
for v in all_variables(approx_model)
if is_binary(v)
unset_binary(v)
end
end
relax_integrality(approx_model)
set_optimizer(approx_model, optimizer)
# solve the model
set_silent(approx_model)
optimize!(approx_model)
# access the dual values
@info "Getting dual values (AELMPs)."
for (key, val) in approx_model[:eq_net_injection]
elmp[key] = dual(val)
end
return elmp
end
function _aelmp_check_parameters(
instance::UnitCommitmentInstance,
model::JuMP.Model,
method::AELMP,
)
# CHECK: model cannot have multiple scenarios
if length(instance.scenarios) > 1
error("The method does NOT support multiple scenarios.")
end
sc = instance.scenarios[1]
# CHECK: model must be solved if allow_offline_participation=false
if !method.allow_offline_participation
if isnothing(model) || !has_values(model)
error(
"A solved UC model is required if allow_offline_participation=false.",
)
end
end
all_units = sc.thermal_units
# CHECK: model cannot handle non-fast-starts (MISO Phase I: can ONLY solve fast-starts)
if any(u -> u.min_uptime > 1 || u.min_downtime > 1, all_units)
error(
"The minimum up/down time of all generators must be 1. AELMP only supports fast-starts.",
)
end
if any(u -> u.initial_power > 0, all_units)
error("The initial power of all generators must be 0.")
end
if any(u -> u.initial_status >= 0, all_units)
error("The initial status of all generators must be negative.")
end
# CHECK: model does not support startup costs (in time series)
if any(u -> length(u.startup_categories) > 1, all_units)
error("The method does NOT support time-varying start-up costs.")
end
end
function _modify_scenario!(
sc::UnitCommitmentScenario,
model::JuMP.Model,
method::AELMP,
)
# this function modifies the sc units (generators)
if !method.allow_offline_participation
# 1. remove (if NOT allowing) the offline generators
units_to_remove = []
for unit in sc.thermal_units
# remove based on the solved UC model result
# remove the unit if it is never on
if all(t -> value(model[:is_on][unit.name, t]) == 0, sc.time)
# unregister from the bus
filter!(x -> x.name != unit.name, unit.bus.thermal_units)
# unregister from the reserve
for r in unit.reserves
filter!(x -> x.name != unit.name, r.thermal_units)
end
# append the name to the remove list
push!(units_to_remove, unit.name)
end
end
# unregister the units from the remove list
filter!(x -> !(x.name in units_to_remove), sc.thermal_units)
end
for unit in sc.thermal_units
# 2. set min generation requirement to 0 by adding 0 to production curve and cost
# min_power & min_costs are vectors with dimension T
if unit.min_power[1] != 0
first_cost_segment = unit.cost_segments[1]
pushfirst!(
unit.cost_segments,
CostSegment(
ones(size(first_cost_segment.mw)) * unit.min_power[1],
ones(size(first_cost_segment.cost)) *
unit.min_power_cost[1] / unit.min_power[1],
),
)
unit.min_power = zeros(size(first_cost_segment.mw))
unit.min_power_cost = zeros(size(first_cost_segment.cost))
end
# 3. average the start-up costs (if considering)
# if consider_startup_costs = false, then use the current first_startup_cost
first_startup_cost = unit.startup_categories[1].cost
if method.consider_startup_costs
additional_unit_cost = first_startup_cost / unit.max_power[1]
for i in eachindex(unit.cost_segments)
unit.cost_segments[i].cost .+= additional_unit_cost
end
first_startup_cost = 0.0 # zero out the start up cost
end
unit.startup_categories =
StartupCategory[StartupCategory(0, first_startup_cost)]
end
return sc.thermal_units_by_name =
Dict(g.name => g for g in sc.thermal_units)
end

92
src/lmp/conventional.jl Normal file
View File

@@ -0,0 +1,92 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP
"""
function compute_lmp(
model::JuMP.Model,
method::ConventionalLMP;
optimizer,
)::OrderedDict{Tuple{String,String,Int},Float64}
Calculates conventional locational marginal prices of the given unit commitment
instance. Returns a dictionary mapping `(bus_name, time)` to the marginal price.
Arguments
---------
- `model`:
the UnitCommitment model, must be solved before calling this function.
- `method`:
the LMP method.
- `optimizer`:
the optimizer for solving the LP problem.
Examples
--------
```julia
using UnitCommitment
using HiGHS
import UnitCommitment: ConventionalLMP
# Read benchmark instance
instance = UnitCommitment.read_benchmark("matpower/case118/2018-01-01")
# Build the model
model = UnitCommitment.build_model(
instance = instance,
optimizer = HiGHS.Optimizer,
)
# Optimize the model
UnitCommitment.optimize!(model)
# Compute the LMPs using the conventional method
lmp = UnitCommitment.compute_lmp(
model,
ConventionalLMP(),
optimizer = HiGHS.Optimizer,
)
# Access the LMPs
# Example: "s1" is the scenario name, "b1" is the bus name, 1 is the first time slot
@show lmp["s1", "b1", 1]
```
"""
function compute_lmp(
model::JuMP.Model,
::ConventionalLMP;
optimizer,
)::OrderedDict{Tuple{String,String,Int},Float64}
if !has_values(model)
error("The UC model must be solved before calculating the LMPs.")
end
lmp = OrderedDict()
@info "Fixing binary variables and relaxing integrality..."
vals = Dict(v => value(v) for v in all_variables(model))
for v in all_variables(model)
if is_binary(v)
unset_binary(v)
fix(v, vals[v])
end
end
relax_integrality(model)
set_optimizer(model, optimizer)
@info "Solving the LP..."
JuMP.optimize!(model)
@info "Getting dual values (LMPs)..."
for (key, val) in model[:eq_net_injection]
lmp[key] = dual(val)
end
return lmp
end

28
src/lmp/structs.jl Normal file
View File

@@ -0,0 +1,28 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
abstract type PricingMethod end
struct ConventionalLMP <: PricingMethod end
"""
struct AELMP <: PricingMethod
allow_offline_participation::Bool = true
consider_startup_costs::Bool = true
end
Approximate Extended LMPs.
Arguments
---------
- `allow_offline_participation`:
If true, offline assets are allowed to participate in pricing.
- `consider_startup_costs`:
If true, the start-up costs are averaged over each unit production; otherwise the production costs stay the same.
"""
Base.@kwdef struct AELMP <: PricingMethod
allow_offline_participation::Bool = true
consider_startup_costs::Bool = true
end

220
src/market/market.jl Normal file
View File

@@ -0,0 +1,220 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
"""
solve_market(
da_path::Union{String, Vector{String}},
rt_paths::Vector{String},
settings::MarketSettings;
optimizer,
lp_optimizer = nothing,
after_build_da = nothing,
after_optimize_da = nothing,
after_build_rt = nothing,
after_optimize_rt = nothing,
)::OrderedDict
Solve the day-ahead and the real-time markets by the means of commitment status mapping.
The method firstly acquires the commitment status outcomes through the resolution of the day-ahead market;
and secondly resolves each real-time market based on the corresponding results obtained previously.
Arguments
---------
- `da_path`:
the data file path of the day-ahead market, can be stochastic.
- `rt_paths`:
the list of data file paths of the real-time markets, must be deterministic for each market.
- `settings`:
the MarketSettings which include the problem formulation, the solving method, and LMP method.
- `optimizer`:
the optimizer for solving the problem.
- `lp_optimizer`:
the linear programming optimizer for solving the LMP problem, defaults to `nothing`.
If not specified by the user, the program uses `optimizer` instead.
- `after_build_da`:
a user-defined function that allows modifying the DA model after building,
must have 2 arguments `model` and `instance` in order.
- `after_optimize_da`:
a user-defined function that allows handling additional steps after optimizing the DA model,
must have 3 arguments `solution`, `model` and `instance` in order.
- `after_build_rt`:
a user-defined function that allows modifying each RT model after building,
must have 2 arguments `model` and `instance` in order.
- `after_optimize_rt`:
a user-defined function that allows handling additional steps after optimizing each RT model,
must have 3 arguments `solution`, `model` and `instance` in order.
Examples
--------
```julia
using UnitCommitment, Cbc, HiGHS
import UnitCommitment:
MarketSettings,
XavQiuWanThi2019,
ConventionalLMP,
Formulation
solution = UnitCommitment.solve_market(
"da_instance.json",
["rt_instance_1.json", "rt_instance_2.json", "rt_instance_3.json"],
MarketSettings(
inner_method = XavQiuWanThi2019.Method(),
lmp_method = ConventionalLMP(),
formulation = Formulation(),
),
optimizer = Cbc.Optimizer,
lp_optimizer = HiGHS.Optimizer,
)
"""
function solve_market(
da_path::Union{String,Vector{String}},
rt_paths::Vector{String},
settings::MarketSettings;
optimizer,
lp_optimizer = nothing,
after_build_da = nothing,
after_optimize_da = nothing,
after_build_rt = nothing,
after_optimize_rt = nothing,
)::OrderedDict
# solve da instance as usual
@info "Solving the day-ahead market with file $da_path..."
instance_da = UnitCommitment.read(da_path)
# LP optimizer is optional: if not specified, use optimizer
lp_optimizer = lp_optimizer === nothing ? optimizer : lp_optimizer
# build and optimize the DA market
model_da, solution_da = _build_and_optimize(
instance_da,
settings,
optimizer = optimizer,
lp_optimizer = lp_optimizer,
after_build = after_build_da,
after_optimize = after_optimize_da,
)
# prepare the final solution
solution = OrderedDict()
solution["Day-ahead market"] = solution_da
solution["Real-time markets"] = OrderedDict()
# count the time, sc.time = n-slots, sc.time_step = slot-interval
# sufficient to look at only one scenario
sc = instance_da.scenarios[1]
# max time (min) of the DA market
max_time = sc.time * sc.time_step
# current time increments through the RT market list
current_time = 0
# DA market time slots in (min)
da_time_intervals = [sc.time_step * ts for ts in 1:sc.time]
# get the uc status and set each uc fixed
solution_rt = OrderedDict()
prev_initial_status = OrderedDict()
for rt_path in rt_paths
@info "Solving the real-time market with file $rt_path..."
instance_rt = UnitCommitment.read(rt_path)
# check instance time
sc = instance_rt.scenarios[1]
# check each time slot in the RT model
for ts in 1:sc.time
slot_t_end = current_time + ts * sc.time_step
# ensure this RT's slot time ub never exceeds max time of DA
slot_t_end <= max_time || error(
"The time of the real-time market cannot exceed the time of the day-ahead market.",
)
# get the slot start time to determine commitment status
slot_t_start = slot_t_end - sc.time_step
# find the index of the first DA time slot that covers slot_t_start
da_time_slot = findfirst(ti -> slot_t_start < ti, da_time_intervals)
# update thermal unit commitment status
for g in sc.thermal_units
g.commitment_status[ts] =
value(model_da[:is_on][g.name, da_time_slot]) == 1.0
end
end
# update current time by ONE slot only
current_time += sc.time_step
# set initial status for all generators in all scenarios
if !isempty(solution_rt) && !isempty(prev_initial_status)
for g in sc.thermal_units
g.initial_power =
solution_rt["Thermal production (MW)"][g.name][1]
g.initial_status = UnitCommitment._determine_initial_status(
prev_initial_status[g.name],
[solution_rt["Is on"][g.name][1]],
)
end
end
# build and optimize the RT market
_, solution_rt = _build_and_optimize(
instance_rt,
settings,
optimizer = optimizer,
lp_optimizer = lp_optimizer,
after_build = after_build_rt,
after_optimize = after_optimize_rt,
)
prev_initial_status =
OrderedDict(g.name => g.initial_status for g in sc.thermal_units)
# rt_name = first(split(last(split(rt_path, "/")), "."))
solution["Real-time markets"][rt_path] = solution_rt
end # end of for-loop that checks each RT market
return solution
end
function _build_and_optimize(
instance::UnitCommitmentInstance,
settings::MarketSettings;
optimizer,
lp_optimizer,
after_build = nothing,
after_optimize = nothing,
)::Tuple{JuMP.Model,OrderedDict}
# build model with after build
model = UnitCommitment.build_model(
instance = instance,
optimizer = optimizer,
formulation = settings.formulation,
)
if after_build !== nothing
after_build(model, instance)
end
# optimize model
UnitCommitment.optimize!(model, settings.inner_method)
solution = UnitCommitment.solution(model)
# compute lmp and add to solution
if settings.lmp_method !== nothing
lmp = UnitCommitment.compute_lmp(
model,
settings.lmp_method,
optimizer = lp_optimizer,
)
if length(instance.scenarios) == 1
solution["Locational marginal price"] = lmp
else
for sc in instance.scenarios
solution[sc.name]["Locational marginal price"] = OrderedDict(
key => val for (key, val) in lmp if key[1] == sc.name
)
end
end
end
# run after optimize with solution
if after_optimize !== nothing
after_optimize(solution, model, instance)
end
return model, solution
end

33
src/market/structs.jl Normal file
View File

@@ -0,0 +1,33 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import ..SolutionMethod
import ..PricingMethod
import ..Formulation
"""
struct MarketSettings
inner_method::SolutionMethod = XavQiuWanThi2019.Method()
lmp_method::Union{PricingMethod, Nothing} = ConventionalLMP()
formulation::Formulation = Formulation()
end
Market setting struct, typically used to map a day-ahead market to real-time markets.
Arguments
---------
- `inner_method`:
method to solve each marketing problem.
- `lmp_method`:
a PricingMethod method to calculate the locational marginal prices.
If it is set to `nothing`, the LMPs will not be calculated.
- `formulation`:
problem formulation.
"""
Base.@kwdef struct MarketSettings
inner_method::SolutionMethod = XavQiuWanThi2019.Method()
lmp_method::Union{PricingMethod,Nothing} = ConventionalLMP()
formulation::Formulation = Formulation()
end

View File

@@ -9,22 +9,59 @@ import JuMP: value, fix, set_name
function build_model(;
instance::UnitCommitmentInstance,
optimizer = nothing,
formulation = Formulation(),
variable_names::Bool = false,
)::JuMP.Model
Build the JuMP model corresponding to the given unit commitment instance.
Arguments
=========
---------
- `instance`:
the instance.
- `optimizer`:
the optimizer factory that should be attached to this model (e.g. Cbc.Optimizer).
If not provided, no optimizer will be attached.
- `formulation`:
the MIP formulation to use. By default, uses a formulation that combines
modeling components from different publications that provides good
performance across a wide variety of instances. An alternative formulation
may also be provided.
- `variable_names`:
If true, set variable and constraint names. Important if the model is going
if true, set variable and constraint names. Important if the model is going
to be exported to an MPS file. For large models, this can take significant
time, so it's disabled by default.
Examples
--------
```julia
# Read benchmark instance
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
# Construct model (using state-of-the-art defaults)
model = UnitCommitment.build_model(
instance = instance,
optimizer = Cbc.Optimizer,
)
# Construct model (using customized formulation)
model = UnitCommitment.build_model(
instance = instance,
optimizer = Cbc.Optimizer,
formulation = Formulation(
pwl_costs = KnuOstWat2018.PwlCosts(),
ramping = MorLatRam2013.Ramping(),
startup_costs = MorLatRam2013.StartupCosts(),
transmission = ShiftFactorsFormulation(
isf_cutoff = 0.005,
lodf_cutoff = 0.001,
),
),
)
```
"""
function build_model(;
instance::UnitCommitmentInstance,
@@ -40,20 +77,33 @@ function build_model(;
end
model[:obj] = AffExpr()
model[:instance] = instance
_setup_transmission(model, formulation.transmission)
for l in instance.lines
_add_transmission_line!(model, l, formulation.transmission)
for g in instance.scenarios[1].thermal_units
_add_unit_commitment!(model, g, formulation)
end
for b in instance.buses
_add_bus!(model, b)
for sc in instance.scenarios
@info "Building scenario $(sc.name) with " *
"probability $(sc.probability)"
_setup_transmission(formulation.transmission, sc)
for l in sc.lines
_add_transmission_line!(model, l, formulation.transmission, sc)
end
for g in instance.units
_add_unit!(model, g, formulation)
for b in sc.buses
_add_bus!(model, b, sc)
end
for ps in instance.price_sensitive_loads
_add_price_sensitive_load!(model, ps)
for ps in sc.price_sensitive_loads
_add_price_sensitive_load!(model, ps, sc)
end
for g in sc.thermal_units
_add_unit_dispatch!(model, g, formulation, sc)
end
for pu in sc.profiled_units
_add_profiled_unit!(model, pu, sc)
end
for su in sc.storage_units
_add_storage_unit!(model, su, sc)
end
_add_system_wide_eqs!(model, sc)
end
_add_system_wide_eqs!(model)
@objective(model, Min, model[:obj])
end
@info @sprintf("Built model in %.2f seconds", time_model)

View File

@@ -4,10 +4,11 @@
function _add_ramp_eqs!(
model::JuMP.Model,
g::Unit,
g::ThermalUnit,
formulation_prod_vars::Gar1962.ProdVars,
formulation_ramping::ArrCon2000.Ramping,
formulation_status_vars::Gar1962.StatusVars,
sc::UnitCommitmentScenario,
)::Nothing
# TODO: Move upper case constants to model[:instance]
RESERVES_WHEN_START_UP = true
@@ -19,10 +20,10 @@ function _add_ramp_eqs!(
RD = g.ramp_down_limit
SU = g.startup_limit
SD = g.shutdown_limit
reserve = model[:reserve]
eq_ramp_down = _init(model, :eq_ramp_down)
eq_ramp_up = _init(model, :eq_ramp_up)
is_initially_on = (g.initial_status > 0)
reserve = _total_reserves(model, g, sc)
# Gar1962.ProdVars
prod_above = model[:prod_above]
@@ -37,27 +38,27 @@ function _add_ramp_eqs!(
if t == 1
if is_initially_on
# min power is _not_ multiplied by is_on because if !is_on, then ramp up is irrelevant
eq_ramp_up[gn, t] = @constraint(
eq_ramp_up[sc.name, gn, t] = @constraint(
model,
g.min_power[t] +
prod_above[gn, t] +
(RESERVES_WHEN_RAMP_UP ? reserve[gn, t] : 0.0) <=
prod_above[sc.name, gn, t] +
(RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0) <=
g.initial_power + RU
)
end
else
max_prod_this_period =
g.min_power[t] * is_on[gn, t] +
prod_above[gn, t] +
prod_above[sc.name, gn, t] +
(
RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ?
reserve[gn, t] : 0.0
reserve[t] : 0.0
)
min_prod_last_period =
g.min_power[t-1] * is_on[gn, t-1] + prod_above[gn, t-1]
g.min_power[t-1] * is_on[gn, t-1] + prod_above[sc.name, gn, t-1]
# Equation (24) in Kneuven et al. (2020)
eq_ramp_up[gn, t] = @constraint(
eq_ramp_up[sc.name, gn, t] = @constraint(
model,
max_prod_this_period - min_prod_last_period <=
RU * is_on[gn, t-1] + SU * switch_on[gn, t]
@@ -71,24 +72,25 @@ function _add_ramp_eqs!(
# min_power + RD < initial_power < SD
# then the generator should be able to shut down at time t = 1,
# but the constraint below will force the unit to produce power
eq_ramp_down[gn, t] = @constraint(
eq_ramp_down[sc.name, gn, t] = @constraint(
model,
g.initial_power - (g.min_power[t] + prod_above[gn, t]) <= RD
g.initial_power -
(g.min_power[t] + prod_above[sc.name, gn, t]) <= RD
)
end
else
max_prod_last_period =
g.min_power[t-1] * is_on[gn, t-1] +
prod_above[gn, t-1] +
prod_above[sc.name, gn, t-1] +
(
RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN ?
reserve[gn, t-1] : 0.0
reserve[t-1] : 0.0
)
min_prod_this_period =
g.min_power[t] * is_on[gn, t] + prod_above[gn, t]
g.min_power[t] * is_on[gn, t] + prod_above[sc.name, gn, t]
# Equation (25) in Kneuven et al. (2020)
eq_ramp_down[gn, t] = @constraint(
eq_ramp_down[sc.name, gn, t] = @constraint(
model,
max_prod_last_period - min_prod_this_period <=
RD * is_on[gn, t] + SD * switch_off[gn, t]

View File

@@ -4,10 +4,11 @@
function _add_production_piecewise_linear_eqs!(
model::JuMP.Model,
g::Unit,
g::ThermalUnit,
formulation_prod_vars::Gar1962.ProdVars,
formulation_pwl_costs::CarArr2006.PwlCosts,
formulation_status_vars::StatusVarsFormulation,
sc::UnitCommitmentScenario,
)::Nothing
eq_prod_above_def = _init(model, :eq_prod_above_def)
eq_segprod_limit = _init(model, :eq_segprod_limit)
@@ -26,28 +27,32 @@ function _add_production_piecewise_linear_eqs!(
# difference between max power for segments k and k-1 so the
# value of cost_segments[k].mw[t] is the max production *for
# that segment*
eq_segprod_limit[gn, t, k] = @constraint(
eq_segprod_limit[sc.name, gn, t, k] = @constraint(
model,
segprod[gn, t, k] <= g.cost_segments[k].mw[t]
segprod[sc.name, gn, t, k] <= g.cost_segments[k].mw[t]
)
# Also add this as an explicit upper bound on segprod to make the
# solver's work a bit easier
set_upper_bound(segprod[gn, t, k], g.cost_segments[k].mw[t])
set_upper_bound(
segprod[sc.name, gn, t, k],
g.cost_segments[k].mw[t],
)
# Definition of production
# Equation (43) in Kneuven et al. (2020)
eq_prod_above_def[gn, t] = @constraint(
eq_prod_above_def[sc.name, gn, t] = @constraint(
model,
prod_above[gn, t] == sum(segprod[gn, t, k] for k in 1:K)
prod_above[sc.name, gn, t] ==
sum(segprod[sc.name, gn, t, k] for k in 1:K)
)
# Objective function
# Equation (44) in Kneuven et al. (2020)
add_to_expression!(
model[:obj],
segprod[gn, t, k],
g.cost_segments[k].cost[t],
segprod[sc.name, gn, t, k],
sc.probability * g.cost_segments[k].cost[t],
)
end
end

View File

@@ -4,10 +4,11 @@
function _add_ramp_eqs!(
model::JuMP.Model,
g::Unit,
g::ThermalUnit,
formulation_prod_vars::Gar1962.ProdVars,
formulation_ramping::DamKucRajAta2016.Ramping,
formulation_status_vars::Gar1962.StatusVars,
sc::UnitCommitmentScenario,
)::Nothing
# TODO: Move upper case constants to model[:instance]
RESERVES_WHEN_START_UP = true
@@ -23,7 +24,7 @@ function _add_ramp_eqs!(
gn = g.name
eq_str_ramp_down = _init(model, :eq_str_ramp_down)
eq_str_ramp_up = _init(model, :eq_str_ramp_up)
reserve = model[:reserve]
reserve = _total_reserves(model, g, sc)
# Gar1962.ProdVars
prod_above = model[:prod_above]
@@ -48,17 +49,15 @@ function _add_ramp_eqs!(
# end
max_prod_this_period =
prod_above[gn, t] + (
RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ?
reserve[gn, t] : 0.0
)
prod_above[sc.name, gn, t] +
(RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0)
min_prod_last_period = 0.0
if t > 1 && time_invariant
min_prod_last_period = prod_above[gn, t-1]
min_prod_last_period = prod_above[sc.name, gn, t-1]
# Equation (35) in Kneuven et al. (2020)
# Sparser version of (24)
eq_str_ramp_up[gn, t] = @constraint(
eq_str_ramp_up[sc.name, gn, t] = @constraint(
model,
max_prod_this_period - min_prod_last_period <=
(SU - g.min_power[t] - RU) * switch_on[gn, t] +
@@ -67,7 +66,8 @@ function _add_ramp_eqs!(
elseif (t == 1 && is_initially_on) || (t > 1 && !time_invariant)
if t > 1
min_prod_last_period =
prod_above[gn, t-1] + g.min_power[t-1] * is_on[gn, t-1]
prod_above[sc.name, gn, t-1] +
g.min_power[t-1] * is_on[gn, t-1]
else
min_prod_last_period = max(g.initial_power, 0.0)
end
@@ -78,7 +78,7 @@ function _add_ramp_eqs!(
# Modified version of equation (35) in Kneuven et al. (2020)
# Equivalent to (24)
eq_str_ramp_up[gn, t] = @constraint(
eq_str_ramp_up[sc.name, gn, t] = @constraint(
model,
max_prod_this_period - min_prod_last_period <=
(SU - RU) * switch_on[gn, t] + RU * is_on[gn, t]
@@ -88,9 +88,9 @@ function _add_ramp_eqs!(
max_prod_last_period =
min_prod_last_period + (
t > 1 && (RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN) ?
reserve[gn, t-1] : 0.0
reserve[t-1] : 0.0
)
min_prod_this_period = prod_above[gn, t]
min_prod_this_period = prod_above[sc.name, gn, t]
on_last_period = 0.0
if t > 1
on_last_period = is_on[gn, t-1]
@@ -100,7 +100,7 @@ function _add_ramp_eqs!(
if t > 1 && time_invariant
# Equation (36) in Kneuven et al. (2020)
eq_str_ramp_down[gn, t] = @constraint(
eq_str_ramp_down[sc.name, gn, t] = @constraint(
model,
max_prod_last_period - min_prod_this_period <=
(SD - g.min_power[t] - RD) * switch_off[gn, t] +
@@ -112,7 +112,7 @@ function _add_ramp_eqs!(
# Modified version of equation (36) in Kneuven et al. (2020)
# Equivalent to (25)
eq_str_ramp_down[gn, t] = @constraint(
eq_str_ramp_down[sc.name, gn, t] = @constraint(
model,
max_prod_last_period - min_prod_this_period <=
(SD - RD) * switch_off[gn, t] + RD * on_last_period

View File

@@ -4,34 +4,35 @@
function _add_production_vars!(
model::JuMP.Model,
g::Unit,
g::ThermalUnit,
formulation_prod_vars::Gar1962.ProdVars,
sc::UnitCommitmentScenario,
)::Nothing
prod_above = _init(model, :prod_above)
segprod = _init(model, :segprod)
for t in 1:model[:instance].time
for k in 1:length(g.cost_segments)
segprod[g.name, t, k] = @variable(model, lower_bound = 0)
segprod[sc.name, g.name, t, k] = @variable(model, lower_bound = 0)
end
prod_above[g.name, t] = @variable(model, lower_bound = 0)
prod_above[sc.name, g.name, t] = @variable(model, lower_bound = 0)
end
return
end
function _add_production_limit_eqs!(
model::JuMP.Model,
g::Unit,
g::ThermalUnit,
formulation_prod_vars::Gar1962.ProdVars,
sc::UnitCommitmentScenario,
)::Nothing
eq_prod_limit = _init(model, :eq_prod_limit)
is_on = model[:is_on]
prod_above = model[:prod_above]
reserve = model[:reserve]
reserve = _total_reserves(model, g, sc)
gn = g.name
for t in 1:model[:instance].time
# Objective function terms for production costs
# Part of (69) of Kneuven et al. (2020) as C^R_g * u_g(t) term
add_to_expression!(model[:obj], is_on[gn, t], g.min_power_cost[t])
# Production limit
# Equation (18) in Kneuven et al. (2020)
@@ -42,9 +43,10 @@ function _add_production_limit_eqs!(
if power_diff < 1e-7
power_diff = 0.0
end
eq_prod_limit[gn, t] = @constraint(
eq_prod_limit[sc.name, gn, t] = @constraint(
model,
prod_above[gn, t] + reserve[gn, t] <= power_diff * is_on[gn, t]
prod_above[sc.name, gn, t] + reserve[t] <=
power_diff * is_on[gn, t]
)
end
end

View File

@@ -4,10 +4,11 @@
function _add_production_piecewise_linear_eqs!(
model::JuMP.Model,
g::Unit,
g::ThermalUnit,
formulation_prod_vars::Gar1962.ProdVars,
formulation_pwl_costs::Gar1962.PwlCosts,
formulation_status_vars::Gar1962.StatusVars,
sc::UnitCommitmentScenario,
)::Nothing
eq_prod_above_def = _init(model, :eq_prod_above_def)
eq_segprod_limit = _init(model, :eq_segprod_limit)
@@ -24,9 +25,10 @@ function _add_production_piecewise_linear_eqs!(
for t in 1:model[:instance].time
# Definition of production
# Equation (43) in Kneuven et al. (2020)
eq_prod_above_def[gn, t] = @constraint(
eq_prod_above_def[sc.name, gn, t] = @constraint(
model,
prod_above[gn, t] == sum(segprod[gn, t, k] for k in 1:K)
prod_above[sc.name, gn, t] ==
sum(segprod[sc.name, gn, t, k] for k in 1:K)
)
for k in 1:K
@@ -37,21 +39,25 @@ function _add_production_piecewise_linear_eqs!(
# difference between max power for segments k and k-1 so the
# value of cost_segments[k].mw[t] is the max production *for
# that segment*
eq_segprod_limit[gn, t, k] = @constraint(
eq_segprod_limit[sc.name, gn, t, k] = @constraint(
model,
segprod[gn, t, k] <= g.cost_segments[k].mw[t] * is_on[gn, t]
segprod[sc.name, gn, t, k] <=
g.cost_segments[k].mw[t] * is_on[gn, t]
)
# Also add this as an explicit upper bound on segprod to make the
# solver's work a bit easier
set_upper_bound(segprod[gn, t, k], g.cost_segments[k].mw[t])
set_upper_bound(
segprod[sc.name, gn, t, k],
g.cost_segments[k].mw[t],
)
# Objective function
# Equation (44) in Kneuven et al. (2020)
add_to_expression!(
model[:obj],
segprod[gn, t, k],
g.cost_segments[k].cost[t],
segprod[sc.name, gn, t, k],
sc.probability * g.cost_segments[k].cost[t],
)
end
end

View File

@@ -4,7 +4,7 @@
function _add_status_vars!(
model::JuMP.Model,
g::Unit,
g::ThermalUnit,
formulation_status_vars::Gar1962.StatusVars,
)::Nothing
is_on = _init(model, :is_on)
@@ -20,13 +20,14 @@ function _add_status_vars!(
switch_on[g.name, t] = @variable(model, binary = true)
switch_off[g.name, t] = @variable(model, binary = true)
end
add_to_expression!(model[:obj], is_on[g.name, t], g.min_power_cost[t])
end
return
end
function _add_status_eqs!(
model::JuMP.Model,
g::Unit,
g::ThermalUnit,
formulation_status_vars::Gar1962.StatusVars,
)::Nothing
eq_binary_link = _init(model, :eq_binary_link)

View File

@@ -4,10 +4,11 @@
function _add_production_piecewise_linear_eqs!(
model::JuMP.Model,
g::Unit,
g::ThermalUnit,
formulation_prod_vars::Gar1962.ProdVars,
formulation_pwl_costs::KnuOstWat2018.PwlCosts,
formulation_status_vars::Gar1962.StatusVars,
sc::UnitCommitmentScenario,
)::Nothing
eq_prod_above_def = _init(model, :eq_prod_above_def)
eq_segprod_limit_a = _init(model, :eq_segprod_limit_a)
@@ -58,27 +59,27 @@ function _add_production_piecewise_linear_eqs!(
if g.min_uptime > 1
# Equation (46) in Kneuven et al. (2020)
eq_segprod_limit_a[gn, t, k] = @constraint(
eq_segprod_limit_a[sc.name, gn, t, k] = @constraint(
model,
segprod[gn, t, k] <=
segprod[sc.name, gn, t, k] <=
g.cost_segments[k].mw[t] * is_on[gn, t] -
Cv * switch_on[gn, t] -
(t < T ? Cw * switch_off[gn, t+1] : 0.0)
)
else
# Equation (47a)/(48a) in Kneuven et al. (2020)
eq_segprod_limit_b[gn, t, k] = @constraint(
eq_segprod_limit_b[sc.name, gn, t, k] = @constraint(
model,
segprod[gn, t, k] <=
segprod[sc.name, gn, t, k] <=
g.cost_segments[k].mw[t] * is_on[gn, t] -
Cv * switch_on[gn, t] -
(t < T ? max(0, Cv - Cw) * switch_off[gn, t+1] : 0.0)
)
# Equation (47b)/(48b) in Kneuven et al. (2020)
eq_segprod_limit_c[gn, t, k] = @constraint(
eq_segprod_limit_c[sc.name, gn, t, k] = @constraint(
model,
segprod[gn, t, k] <=
segprod[sc.name, gn, t, k] <=
g.cost_segments[k].mw[t] * is_on[gn, t] -
max(0, Cw - Cv) * switch_on[gn, t] -
(t < T ? Cw * switch_off[gn, t+1] : 0.0)
@@ -87,22 +88,26 @@ function _add_production_piecewise_linear_eqs!(
# Definition of production
# Equation (43) in Kneuven et al. (2020)
eq_prod_above_def[gn, t] = @constraint(
eq_prod_above_def[sc.name, gn, t] = @constraint(
model,
prod_above[gn, t] == sum(segprod[gn, t, k] for k in 1:K)
prod_above[sc.name, gn, t] ==
sum(segprod[sc.name, gn, t, k] for k in 1:K)
)
# Objective function
# Equation (44) in Kneuven et al. (2020)
add_to_expression!(
model[:obj],
segprod[gn, t, k],
g.cost_segments[k].cost[t],
segprod[sc.name, gn, t, k],
sc.probability * g.cost_segments[k].cost[t],
)
# Also add an explicit upper bound on segprod to make the solver's
# work a bit easier
set_upper_bound(segprod[gn, t, k], g.cost_segments[k].mw[t])
set_upper_bound(
segprod[sc.name, gn, t, k],
g.cost_segments[k].mw[t],
)
end
end
end

View File

@@ -4,10 +4,11 @@
function _add_ramp_eqs!(
model::JuMP.Model,
g::Unit,
g::ThermalUnit,
formulation_prod_vars::Gar1962.ProdVars,
formulation_ramping::MorLatRam2013.Ramping,
formulation_status_vars::Gar1962.StatusVars,
sc::UnitCommitmentScenario,
)::Nothing
# TODO: Move upper case constants to model[:instance]
RESERVES_WHEN_START_UP = true
@@ -22,7 +23,7 @@ function _add_ramp_eqs!(
gn = g.name
eq_ramp_down = _init(model, :eq_ramp_down)
eq_ramp_up = _init(model, :eq_str_ramp_up)
reserve = model[:reserve]
reserve = _total_reserves(model, g, sc)
# Gar1962.ProdVars
prod_above = model[:prod_above]
@@ -39,11 +40,11 @@ function _add_ramp_eqs!(
# Ramp up limit
if t == 1
if is_initially_on
eq_ramp_up[gn, t] = @constraint(
eq_ramp_up[sc.name, gn, t] = @constraint(
model,
g.min_power[t] +
prod_above[gn, t] +
(RESERVES_WHEN_RAMP_UP ? reserve[gn, t] : 0.0) <=
prod_above[sc.name, gn, t] +
(RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0) <=
g.initial_power + RU
)
end
@@ -58,13 +59,14 @@ function _add_ramp_eqs!(
SU = g.startup_limit
max_prod_this_period =
g.min_power[t] * is_on[gn, t] +
prod_above[gn, t] +
prod_above[sc.name, gn, t] +
(
RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ?
reserve[gn, t] : 0.0
reserve[t] : 0.0
)
min_prod_last_period =
g.min_power[t-1] * is_on[gn, t-1] + prod_above[gn, t-1]
g.min_power[t-1] * is_on[gn, t-1] +
prod_above[sc.name, gn, t-1]
eq_ramp_up[gn, t] = @constraint(
model,
max_prod_this_period - min_prod_last_period <=
@@ -74,11 +76,11 @@ function _add_ramp_eqs!(
# Equation (26) in Kneuven et al. (2020)
# TODO: what if RU < SU? places too stringent upper bound
# prod_above[gn, t] when starting up, and creates diff with (24).
eq_ramp_up[gn, t] = @constraint(
eq_ramp_up[sc.name, gn, t] = @constraint(
model,
prod_above[gn, t] +
(RESERVES_WHEN_RAMP_UP ? reserve[gn, t] : 0.0) -
prod_above[gn, t-1] <= RU
prod_above[sc.name, gn, t] +
(RESERVES_WHEN_RAMP_UP ? reserve[t] : 0.0) -
prod_above[sc.name, gn, t-1] <= RU
)
end
end
@@ -90,9 +92,10 @@ function _add_ramp_eqs!(
# min_power + RD < initial_power < SD
# then the generator should be able to shut down at time t = 1,
# but the constraint below will force the unit to produce power
eq_ramp_down[gn, t] = @constraint(
eq_ramp_down[sc.name, gn, t] = @constraint(
model,
g.initial_power - (g.min_power[t] + prod_above[gn, t]) <= RD
g.initial_power -
(g.min_power[t] + prod_above[sc.name, gn, t]) <= RD
)
end
else
@@ -102,13 +105,13 @@ function _add_ramp_eqs!(
SD = g.shutdown_limit
max_prod_last_period =
g.min_power[t-1] * is_on[gn, t-1] +
prod_above[gn, t-1] +
prod_above[sc.name, gn, t-1] +
(
RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN ?
reserve[gn, t-1] : 0.0
reserve[t-1] : 0.0
)
min_prod_this_period =
g.min_power[t] * is_on[gn, t] + prod_above[gn, t]
g.min_power[t] * is_on[gn, t] + prod_above[sc.name, gn, t]
eq_ramp_down[gn, t] = @constraint(
model,
max_prod_last_period - min_prod_this_period <=
@@ -118,11 +121,11 @@ function _add_ramp_eqs!(
# Equation (27) in Kneuven et al. (2020)
# TODO: Similar to above, what to do if shutting down in time t
# and RD < SD? There is a difference with (25).
eq_ramp_down[gn, t] = @constraint(
eq_ramp_down[sc.name, gn, t] = @constraint(
model,
prod_above[gn, t-1] +
(RESERVES_WHEN_RAMP_DOWN ? reserve[gn, t-1] : 0.0) -
prod_above[gn, t] <= RD
prod_above[sc.name, gn, t-1] +
(RESERVES_WHEN_RAMP_DOWN ? reserve[t-1] : 0.0) -
prod_above[sc.name, gn, t] <= RD
)
end
end

View File

@@ -4,7 +4,7 @@
function _add_startup_cost_eqs!(
model::JuMP.Model,
g::Unit,
g::ThermalUnit,
formulation::MorLatRam2013.StartupCosts,
)::Nothing
eq_startup_choose = _init(model, :eq_startup_choose)

View File

@@ -4,15 +4,16 @@
function _add_ramp_eqs!(
model::JuMP.Model,
g::Unit,
g::ThermalUnit,
formulation_prod_vars::Gar1962.ProdVars,
formulation_ramping::PanGua2016.Ramping,
formulation_status_vars::Gar1962.StatusVars,
sc::UnitCommitmentScenario,
)::Nothing
# TODO: Move upper case constants to model[:instance]
RESERVES_WHEN_SHUT_DOWN = true
gn = g.name
reserve = model[:reserve]
reserve = _total_reserves(model, g, sc)
eq_str_prod_limit = _init(model, :eq_str_prod_limit)
eq_prod_limit_ramp_up_extra_period =
_init(model, :eq_prod_limit_ramp_up_extra_period)
@@ -52,11 +53,11 @@ function _add_ramp_eqs!(
# Generalization of (20)
# Necessary that if any of the switch_on = 1 in the sum,
# then switch_off[gn, t+1] = 0
eq_str_prod_limit[gn, t] = @constraint(
eq_str_prod_limit[sc.name, gn, t] = @constraint(
model,
prod_above[gn, t] +
prod_above[sc.name, gn, t] +
g.min_power[t] * is_on[gn, t] +
reserve[gn, t] <=
reserve[t] <=
Pbar * is_on[gn, t] -
(t < T ? (Pbar - SD) * switch_off[gn, t+1] : 0.0) - sum(
(Pbar - (SU + i * RU)) * switch_on[gn, t-i] for
@@ -67,11 +68,12 @@ function _add_ramp_eqs!(
if UT - 2 < TRU
# Equation (40) in Kneuven et al. (2020)
# Covers an additional time period of the ramp-up trajectory, compared to (38)
eq_prod_limit_ramp_up_extra_period[gn, t] = @constraint(
eq_prod_limit_ramp_up_extra_period[sc.name, gn, t] =
@constraint(
model,
prod_above[gn, t] +
prod_above[sc.name, gn, t] +
g.min_power[t] * is_on[gn, t] +
reserve[gn, t] <=
reserve[t] <=
Pbar * is_on[gn, t] - sum(
(Pbar - (SU + i * RU)) * switch_on[gn, t-i] for
i in 0:min(UT - 1, TRU, t - 1)
@@ -84,11 +86,11 @@ function _add_ramp_eqs!(
if KSD > 0
KSU = min(TRU, UT - 2 - KSD, t - 1)
# Equation (41) in Kneuven et al. (2020)
eq_prod_limit_shutdown_trajectory[gn, t] = @constraint(
eq_prod_limit_shutdown_trajectory[sc.name, gn, t] = @constraint(
model,
prod_above[gn, t] +
prod_above[sc.name, gn, t] +
g.min_power[t] * is_on[gn, t] +
(RESERVES_WHEN_SHUT_DOWN ? reserve[gn, t] : 0.0) <=
(RESERVES_WHEN_SHUT_DOWN ? reserve[t] : 0.0) <=
Pbar * is_on[gn, t] - sum(
(Pbar - (SD + i * RD)) * switch_off[gn, t+1+i] for
i in 0:KSD

View File

@@ -0,0 +1,193 @@
# UnitCommitmentFL.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function _add_ramp_eqs!(
model::JuMP.Model,
g::ThermalUnit,
::Gar1962.ProdVars,
::WanHob2016.Ramping,
::Gar1962.StatusVars,
sc::UnitCommitmentScenario,
)::Nothing
is_initially_on = (g.initial_status > 0)
SU = g.startup_limit
SD = g.shutdown_limit
RU = g.ramp_up_limit
RD = g.ramp_down_limit
gn = g.name
minp = g.min_power
maxp = g.max_power
initial_power = g.initial_power
is_on = model[:is_on]
prod_above = model[:prod_above]
upflexiramp = model[:upflexiramp]
dwflexiramp = model[:dwflexiramp]
mfg = model[:mfg]
if length(g.reserves) > 1
error("Each generator may only provide one flexiramp reserve")
end
for r in g.reserves
if r.type !== "flexiramp"
error(
"This formulation only supports flexiramp reserves, not $(r.type)",
)
end
rn = r.name
for t in 1:model[:instance].time
@constraint(
model,
prod_above[sc.name, gn, t] + (is_on[gn, t] * minp[t]) <=
mfg[sc.name, gn, t]
) # Eq. (19) in Wang & Hobbs (2016)
@constraint(model, mfg[sc.name, gn, t] <= is_on[gn, t] * maxp[t]) # Eq. (22) in Wang & Hobbs (2016)
if t != model[:instance].time
@constraint(
model,
minp[t] * (is_on[gn, t+1] + is_on[gn, t] - 1) <=
prod_above[sc.name, gn, t] -
dwflexiramp[sc.name, rn, gn, t] + (is_on[gn, t] * minp[t])
) # first inequality of Eq. (20) in Wang & Hobbs (2016)
@constraint(
model,
prod_above[sc.name, gn, t] -
dwflexiramp[sc.name, rn, gn, t] +
(is_on[gn, t] * minp[t]) <=
mfg[sc.name, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
) # second inequality of Eq. (20) in Wang & Hobbs (2016)
@constraint(
model,
minp[t] * (is_on[gn, t+1] + is_on[gn, t] - 1) <=
prod_above[sc.name, gn, t] +
upflexiramp[sc.name, rn, gn, t] +
(is_on[gn, t] * minp[t])
) # first inequality of Eq. (21) in Wang & Hobbs (2016)
@constraint(
model,
prod_above[sc.name, gn, t] +
upflexiramp[sc.name, rn, gn, t] +
(is_on[gn, t] * minp[t]) <=
mfg[sc.name, gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
) # second inequality of Eq. (21) in Wang & Hobbs (2016)
if t != 1
@constraint(
model,
mfg[sc.name, gn, t] <=
prod_above[sc.name, gn, t-1] +
(is_on[gn, t-1] * minp[t]) +
(RU * is_on[gn, t-1]) +
(SU * (is_on[gn, t] - is_on[gn, t-1])) +
maxp[t] * (1 - is_on[gn, t])
) # Eq. (23) in Wang & Hobbs (2016)
@constraint(
model,
(
prod_above[sc.name, gn, t-1] +
(is_on[gn, t-1] * minp[t])
) - (
prod_above[sc.name, gn, t] +
(is_on[gn, t] * minp[t])
) <=
RD * is_on[gn, t] +
SD * (is_on[gn, t-1] - is_on[gn, t]) +
maxp[t] * (1 - is_on[gn, t-1])
) # Eq. (25) in Wang & Hobbs (2016)
else
@constraint(
model,
mfg[sc.name, gn, t] <=
initial_power +
(RU * is_initially_on) +
(SU * (is_on[gn, t] - is_initially_on)) +
maxp[t] * (1 - is_on[gn, t])
) # Eq. (23) in Wang & Hobbs (2016) for the first time period
@constraint(
model,
initial_power - (
prod_above[sc.name, gn, t] +
(is_on[gn, t] * minp[t])
) <=
RD * is_on[gn, t] +
SD * (is_initially_on - is_on[gn, t]) +
maxp[t] * (1 - is_initially_on)
) # Eq. (25) in Wang & Hobbs (2016) for the first time period
end
@constraint(
model,
mfg[sc.name, gn, t] <=
(SD * (is_on[gn, t] - is_on[gn, t+1])) +
(maxp[t] * is_on[gn, t+1])
) # Eq. (24) in Wang & Hobbs (2016)
@constraint(
model,
-RD * is_on[gn, t+1] -
SD * (is_on[gn, t] - is_on[gn, t+1]) -
maxp[t] * (1 - is_on[gn, t]) <=
upflexiramp[sc.name, rn, gn, t]
) # first inequality of Eq. (26) in Wang & Hobbs (2016)
@constraint(
model,
upflexiramp[sc.name, rn, gn, t] <=
RU * is_on[gn, t] +
SU * (is_on[gn, t+1] - is_on[gn, t]) +
maxp[t] * (1 - is_on[gn, t+1])
) # second inequality of Eq. (26) in Wang & Hobbs (2016)
@constraint(
model,
-RU * is_on[gn, t] - SU * (is_on[gn, t+1] - is_on[gn, t]) -
maxp[t] * (1 - is_on[gn, t+1]) <=
dwflexiramp[sc.name, rn, gn, t]
) # first inequality of Eq. (27) in Wang & Hobbs (2016)
@constraint(
model,
dwflexiramp[sc.name, rn, gn, t] <=
RD * is_on[gn, t+1] +
SD * (is_on[gn, t] - is_on[gn, t+1]) +
maxp[t] * (1 - is_on[gn, t])
) # second inequality of Eq. (27) in Wang & Hobbs (2016)
@constraint(
model,
-maxp[t] * is_on[gn, t] + minp[t] * is_on[gn, t+1] <=
upflexiramp[sc.name, rn, gn, t]
) # first inequality of Eq. (28) in Wang & Hobbs (2016)
@constraint(
model,
upflexiramp[sc.name, rn, gn, t] <= maxp[t] * is_on[gn, t+1]
) # second inequality of Eq. (28) in Wang & Hobbs (2016)
@constraint(
model,
-maxp[t] * is_on[gn, t+1] <=
dwflexiramp[sc.name, rn, gn, t]
) # first inequality of Eq. (29) in Wang & Hobbs (2016)
@constraint(
model,
dwflexiramp[sc.name, rn, gn, t] <=
(maxp[t] * is_on[gn, t]) - (minp[t] * is_on[gn, t+1])
) # second inequality of Eq. (29) in Wang & Hobbs (2016)
else
@constraint(
model,
mfg[sc.name, gn, t] <=
prod_above[sc.name, gn, t-1] +
(is_on[gn, t-1] * minp[t]) +
(RU * is_on[gn, t-1]) +
(SU * (is_on[gn, t] - is_on[gn, t-1])) +
maxp[t] * (1 - is_on[gn, t])
) # Eq. (23) in Wang & Hobbs (2016) for the last time period
@constraint(
model,
(
prod_above[sc.name, gn, t-1] +
(is_on[gn, t-1] * minp[t])
) -
(prod_above[sc.name, gn, t] + (is_on[gn, t] * minp[t])) <=
RD * is_on[gn, t] +
SD * (is_on[gn, t-1] - is_on[gn, t]) +
maxp[t] * (1 - is_on[gn, t-1])
) # Eq. (25) in Wang & Hobbs (2016) for the last time period
end
end
end
end

View File

@@ -0,0 +1,18 @@
# UnitCommitmentFL.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
"""
Formulation described in:
B. Wang and B. F. Hobbs, "Real-Time Markets for Flexiramp: A Stochastic
Unit Commitment-Based Analysis," in IEEE Transactions on Power Systems,
vol. 31, no. 2, pp. 846-860, March 2016, doi: 10.1109/TPWRS.2015.2411268.
"""
module WanHob2016
import ..RampingFormulation
struct Ramping <: RampingFormulation end
end

View File

@@ -2,22 +2,30 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function _add_bus!(model::JuMP.Model, b::Bus)::Nothing
function _add_bus!(
model::JuMP.Model,
b::Bus,
sc::UnitCommitmentScenario,
)::Nothing
net_injection = _init(model, :expr_net_injection)
curtail = _init(model, :curtail)
for t in 1:model[:instance].time
# Fixed load
net_injection[b.name, t] = AffExpr(-b.load[t])
net_injection[sc.name, b.name, t] = AffExpr(-b.load[t])
# Load curtailment
curtail[b.name, t] =
curtail[sc.name, b.name, t] =
@variable(model, lower_bound = 0, upper_bound = b.load[t])
add_to_expression!(net_injection[b.name, t], curtail[b.name, t], 1.0)
add_to_expression!(
net_injection[sc.name, b.name, t],
curtail[sc.name, b.name, t],
1.0,
)
add_to_expression!(
model[:obj],
curtail[b.name, t],
model[:instance].power_balance_penalty[t],
curtail[sc.name, b.name, t],
sc.power_balance_penalty[t] * sc.probability,
)
end
return

View File

@@ -6,43 +6,43 @@ function _add_transmission_line!(
model::JuMP.Model,
lm::TransmissionLine,
f::ShiftFactorsFormulation,
sc::UnitCommitmentScenario,
)::Nothing
overflow = _init(model, :overflow)
for t in 1:model[:instance].time
overflow[lm.name, t] = @variable(model, lower_bound = 0)
overflow[sc.name, lm.name, t] = @variable(model, lower_bound = 0)
add_to_expression!(
model[:obj],
overflow[lm.name, t],
lm.flow_limit_penalty[t],
overflow[sc.name, lm.name, t],
lm.flow_limit_penalty[t] * sc.probability,
)
end
return
end
function _setup_transmission(
model::JuMP.Model,
formulation::ShiftFactorsFormulation,
sc::UnitCommitmentScenario,
)::Nothing
instance = model[:instance]
isf = formulation.precomputed_isf
lodf = formulation.precomputed_lodf
if length(instance.buses) == 1
if length(sc.buses) == 1
isf = zeros(0, 0)
lodf = zeros(0, 0)
elseif isf === nothing
@info "Computing injection shift factors..."
time_isf = @elapsed begin
isf = UnitCommitment._injection_shift_factors(
lines = instance.lines,
buses = instance.buses,
buses = sc.buses,
lines = sc.lines,
)
end
@info @sprintf("Computed ISF in %.2f seconds", time_isf)
@info "Computing line outage factors..."
time_lodf = @elapsed begin
lodf = UnitCommitment._line_outage_factors(
lines = instance.lines,
buses = instance.buses,
buses = sc.buses,
lines = sc.lines,
isf = isf,
)
end
@@ -55,7 +55,7 @@ function _setup_transmission(
isf[abs.(isf).<formulation.isf_cutoff] .= 0
lodf[abs.(lodf).<formulation.lodf_cutoff] .= 0
end
model[:isf] = isf
model[:lodf] = lodf
sc.isf = isf
sc.lodf = lodf
return
end

View File

@@ -5,21 +5,26 @@
function _add_price_sensitive_load!(
model::JuMP.Model,
ps::PriceSensitiveLoad,
sc::UnitCommitmentScenario,
)::Nothing
loads = _init(model, :loads)
net_injection = _init(model, :expr_net_injection)
for t in 1:model[:instance].time
# Decision variable
loads[ps.name, t] =
loads[sc.name, ps.name, t] =
@variable(model, lower_bound = 0, upper_bound = ps.demand[t])
# Objective function terms
add_to_expression!(model[:obj], loads[ps.name, t], -ps.revenue[t])
add_to_expression!(
model[:obj],
loads[sc.name, ps.name, t],
-ps.revenue[t] * sc.probability,
)
# Net injection
add_to_expression!(
net_injection[ps.bus.name, t],
loads[ps.name, t],
net_injection[sc.name, ps.bus.name, t],
loads[sc.name, ps.name, t],
-1.0,
)
end

View File

@@ -0,0 +1,35 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function _add_profiled_unit!(
model::JuMP.Model,
pu::ProfiledUnit,
sc::UnitCommitmentScenario,
)::Nothing
punits = _init(model, :prod_profiled)
net_injection = _init(model, :expr_net_injection)
for t in 1:model[:instance].time
# Decision variable
punits[sc.name, pu.name, t] = @variable(
model,
lower_bound = pu.min_power[t],
upper_bound = pu.max_power[t]
)
# Objective function terms
add_to_expression!(
model[:obj],
punits[sc.name, pu.name, t],
pu.cost[t] * sc.probability,
)
# Net injection
add_to_expression!(
net_injection[sc.name, pu.bus.name, t],
punits[sc.name, pu.name, t],
1.0,
)
end
return
end

View File

@@ -10,15 +10,15 @@ using SparseArrays, Base.Threads, LinearAlgebra, JuMP
Returns a (B-1)xL matrix M, where B is the number of buses and L is the number
of transmission lines. For a given bus b and transmission line l, the entry
M[l.offset, b.offset] indicates the amount of power (in MW) that flows through
transmission line l when 1 MW of power is injected at the slack bus (the bus
that has offset zero) and withdrawn from b.
transmission line l when 1 MW of power is injected at b and withdrawn from the
slack bus (the bus that has offset zero).
"""
function _injection_shift_factors(;
buses::Array{Bus},
lines::Array{TransmissionLine},
)
susceptance = _susceptance_matrix(lines)
incidence = _reduced_incidence_matrix(lines = lines, buses = buses)
incidence = _reduced_incidence_matrix(buses = buses, lines = lines)
laplacian = transpose(incidence) * susceptance * incidence
isf = susceptance * incidence * inv(Array(laplacian))
return isf

View File

@@ -0,0 +1,125 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function _add_storage_unit!(
model::JuMP.Model,
su::StorageUnit,
sc::UnitCommitmentScenario,
)::Nothing
# Initialize variables
storage_level = _init(model, :storage_level)
charge_rate = _init(model, :charge_rate)
discharge_rate = _init(model, :discharge_rate)
is_charging = _init(model, :is_charging)
is_discharging = _init(model, :is_discharging)
eq_min_charge_rate = _init(model, :eq_min_charge_rate)
eq_max_charge_rate = _init(model, :eq_max_charge_rate)
eq_min_discharge_rate = _init(model, :eq_min_discharge_rate)
eq_max_discharge_rate = _init(model, :eq_max_discharge_rate)
# Initialize constraints
net_injection = _init(model, :expr_net_injection)
eq_storage_transition = _init(model, :eq_storage_transition)
eq_ending_level = _init(model, :eq_ending_level)
# time in hours
time_step = sc.time_step / 60
for t in 1:model[:instance].time
# Decision variable
storage_level[sc.name, su.name, t] = @variable(
model,
lower_bound = su.min_level[t],
upper_bound = su.max_level[t]
)
charge_rate[sc.name, su.name, t] = @variable(model)
discharge_rate[sc.name, su.name, t] = @variable(model)
is_charging[sc.name, su.name, t] = @variable(model, binary = true)
is_discharging[sc.name, su.name, t] = @variable(model, binary = true)
# Objective function terms ##### CHECK & FIXME
add_to_expression!(
model[:obj],
charge_rate[sc.name, su.name, t],
su.charge_cost[t] * sc.probability,
)
add_to_expression!(
model[:obj],
discharge_rate[sc.name, su.name, t],
su.discharge_cost[t] * sc.probability,
)
# Net injection
add_to_expression!(
net_injection[sc.name, su.bus.name, t],
discharge_rate[sc.name, su.name, t],
1.0,
)
add_to_expression!(
net_injection[sc.name, su.bus.name, t],
charge_rate[sc.name, su.name, t],
-1.0,
)
# Simultaneous charging and discharging
if !su.simultaneous_charge_and_discharge[t]
# Initialize the model dictionary
eq_simultaneous_charge_and_discharge =
_init(model, :eq_simultaneous_charge_and_discharge)
# Constraints
eq_simultaneous_charge_and_discharge[sc.name, su.name, t] =
@constraint(
model,
is_charging[sc.name, su.name, t] +
is_discharging[sc.name, su.name, t] <= 1.0
)
end
# Charge and discharge constraints
eq_min_charge_rate[sc.name, su.name, t] = @constraint(
model,
charge_rate[sc.name, su.name, t] >=
is_charging[sc.name, su.name, t] * su.min_charge_rate[t]
)
eq_max_charge_rate[sc.name, su.name, t] = @constraint(
model,
charge_rate[sc.name, su.name, t] <=
is_charging[sc.name, su.name, t] * su.max_charge_rate[t]
)
eq_min_discharge_rate[sc.name, su.name, t] = @constraint(
model,
discharge_rate[sc.name, su.name, t] >=
is_discharging[sc.name, su.name, t] * su.min_discharge_rate[t]
)
eq_max_discharge_rate[sc.name, su.name, t] = @constraint(
model,
discharge_rate[sc.name, su.name, t] <=
is_discharging[sc.name, su.name, t] * su.max_discharge_rate[t]
)
# Storage energy transition constraint
prev_storage_level =
t == 1 ? su.initial_level : storage_level[sc.name, su.name, t-1]
eq_storage_transition[sc.name, su.name, t] = @constraint(
model,
storage_level[sc.name, su.name, t] ==
(1 - su.loss_factor[t]) * prev_storage_level +
charge_rate[sc.name, su.name, t] *
time_step *
su.charge_efficiency[t] -
discharge_rate[sc.name, su.name, t] * time_step /
su.discharge_efficiency[t]
)
# Storage ending level constraint
if t == sc.time
eq_ending_level[sc.name, su.name] = @constraint(
model,
su.min_ending_level <=
storage_level[sc.name, su.name, t] <=
su.max_ending_level
)
end
end
return
end

View File

@@ -9,6 +9,27 @@ abstract type StartupCostsFormulation end
abstract type StatusVarsFormulation end
abstract type ProductionVarsFormulation end
"""
struct Formulation
prod_vars::ProductionVarsFormulation
pwl_costs::PiecewiseLinearCostsFormulation
ramping::RampingFormulation
startup_costs::StartupCostsFormulation
status_vars::StatusVarsFormulation
transmission::TransmissionFormulation
end
Struct provided to `build_model` that holds various formulation components.
# Fields
- `prod_vars`: Formulation for the production decision variables
- `pwl_costs`: Formulation for the piecewise linear costs
- `ramping`: Formulation for ramping constraints
- `startup_costs`: Formulation for time-dependent start-up costs
- `status_vars`: Formulation for the status variables (e.g. `is_on`, `is_off`)
- `transmission`: Formulation for transmission and N-1 security constraints
"""
struct Formulation
prod_vars::ProductionVarsFormulation
pwl_costs::PiecewiseLinearCostsFormulation
@@ -38,10 +59,10 @@ end
"""
struct ShiftFactorsFormulation <: TransmissionFormulation
isf_cutoff::Float64
lodf_cutoff::Float64
precomputed_isf::Union{Nothing,Matrix{Float64}}
precomputed_lodf::Union{Nothing,Matrix{Float64}}
isf_cutoff::Float64 = 0.005
lodf_cutoff::Float64 = 0.001
precomputed_isf=nothing
precomputed_lodf=nothing
end
Transmission formulation based on Injection Shift Factors (ISF) and Line
@@ -49,15 +70,15 @@ Outage Distribution Factors (LODF). Constraints are enforced in a lazy way.
Arguments
---------
- `precomputed_isf::Union{Matrix{Float64},Nothing} = nothing`:
- `precomputed_isf`:
the injection shift factors matrix. If not provided, it will be computed.
- `precomputed_lodf::Union{Matrix{Float64},Nothing} = nothing`:
- `precomputed_lodf`:
the line outage distribution factors matrix. If not provided, it will be
computed.
- `isf_cutoff::Float64 = 0.005`:
- `isf_cutoff`:
the cutoff that should be applied to the ISF matrix. Entries with magnitude
smaller than this value will be set to zero.
- `lodf_cutoff::Float64 = 0.001`:
- `lodf_cutoff`:
the cutoff that should be applied to the LODF matrix. Entries with magnitude
smaller than this value will be set to zero.
"""

View File

@@ -2,55 +2,121 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function _add_system_wide_eqs!(model::JuMP.Model)::Nothing
_add_net_injection_eqs!(model)
_add_reserve_eqs!(model)
function _add_system_wide_eqs!(
model::JuMP.Model,
sc::UnitCommitmentScenario,
)::Nothing
_add_net_injection_eqs!(model, sc)
_add_spinning_reserve_eqs!(model, sc)
_add_flexiramp_reserve_eqs!(model, sc)
return
end
function _add_net_injection_eqs!(model::JuMP.Model)::Nothing
function _add_net_injection_eqs!(
model::JuMP.Model,
sc::UnitCommitmentScenario,
)::Nothing
T = model[:instance].time
net_injection = _init(model, :net_injection)
eq_net_injection = _init(model, :eq_net_injection)
eq_power_balance = _init(model, :eq_power_balance)
for t in 1:T, b in model[:instance].buses
n = net_injection[b.name, t] = @variable(model)
eq_net_injection[b.name, t] =
@constraint(model, -n + model[:expr_net_injection][b.name, t] == 0)
for t in 1:T, b in sc.buses
n = net_injection[sc.name, b.name, t] = @variable(model)
eq_net_injection[sc.name, b.name, t] = @constraint(
model,
-n + model[:expr_net_injection][sc.name, b.name, t] == 0
)
end
for t in 1:T
eq_power_balance[t] = @constraint(
eq_power_balance[sc.name, t] = @constraint(
model,
sum(net_injection[b.name, t] for b in model[:instance].buses) == 0
sum(net_injection[sc.name, b.name, t] for b in sc.buses) == 0
)
end
return
end
function _add_reserve_eqs!(model::JuMP.Model)::Nothing
eq_min_reserve = _init(model, :eq_min_reserve)
instance = model[:instance]
for t in 1:instance.time
function _add_spinning_reserve_eqs!(
model::JuMP.Model,
sc::UnitCommitmentScenario,
)::Nothing
T = model[:instance].time
eq_min_spinning_reserve = _init(model, :eq_min_spinning_reserve)
for r in sc.reserves
r.type == "spinning" || continue
for t in 1:T
# Equation (68) in Kneuven et al. (2020)
# As in Morales-España et al. (2013a)
# Akin to the alternative formulation with max_power_avail
# from Carrión and Arroyo (2006) and Ostrowski et al. (2012)
shortfall_penalty = instance.shortfall_penalty[t]
eq_min_reserve[t] = @constraint(
eq_min_spinning_reserve[sc.name, r.name, t] = @constraint(
model,
sum(model[:reserve][g.name, t] for g in instance.units) +
(shortfall_penalty >= 0 ? model[:reserve_shortfall][t] : 0.0) >=
instance.reserves.spinning[t]
sum(
model[:reserve][sc.name, r.name, g.name, t] for
g in r.thermal_units
) + model[:reserve_shortfall][sc.name, r.name, t] >=
r.amount[t]
)
# Account for shortfall contribution to objective
if shortfall_penalty >= 0
if r.shortfall_penalty >= 0
add_to_expression!(
model[:obj],
shortfall_penalty,
model[:reserve_shortfall][t],
r.shortfall_penalty * sc.probability,
model[:reserve_shortfall][sc.name, r.name, t],
)
end
end
end
return
end
function _add_flexiramp_reserve_eqs!(
model::JuMP.Model,
sc::UnitCommitmentScenario,
)::Nothing
# Note: The flexpramp requirements in Wang & Hobbs (2016) are imposed as hard constraints
# through Eq. (17) and Eq. (18). The constraints eq_min_upflexiramp and eq_min_dwflexiramp
# provided below are modified versions of Eq. (17) and Eq. (18), respectively, in that
# they include slack variables for flexiramp shortfall, which are penalized in the
# objective function.
eq_min_upflexiramp = _init(model, :eq_min_upflexiramp)
eq_min_dwflexiramp = _init(model, :eq_min_dwflexiramp)
T = model[:instance].time
for r in sc.reserves
r.type == "flexiramp" || continue
for t in 1:T
# Eq. (17) in Wang & Hobbs (2016)
eq_min_upflexiramp[sc.name, r.name, t] = @constraint(
model,
sum(
model[:upflexiramp][sc.name, r.name, g.name, t] for
g in r.thermal_units
) + model[:upflexiramp_shortfall][sc.name, r.name, t] >=
r.amount[t]
)
# Eq. (18) in Wang & Hobbs (2016)
eq_min_dwflexiramp[sc.name, r.name, t] = @constraint(
model,
sum(
model[:dwflexiramp][sc.name, r.name, g.name, t] for
g in r.thermal_units
) + model[:dwflexiramp_shortfall][sc.name, r.name, t] >=
r.amount[t]
)
# Account for flexiramp shortfall contribution to objective
if r.shortfall_penalty >= 0
add_to_expression!(
model[:obj],
r.shortfall_penalty * sc.probability,
(
model[:upflexiramp_shortfall][sc.name, r.name, t] +
model[:dwflexiramp_shortfall][sc.name, r.name, t]
),
)
end
end
end
return
end

View File

@@ -2,7 +2,13 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function _add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation)
# Function for adding variables, constraints, and objective function terms
# related to the binary commitment, startup and shutdown decisions of units
function _add_unit_commitment!(
model::JuMP.Model,
g::ThermalUnit,
formulation::Formulation,
)
if !all(g.must_run) && any(g.must_run)
error("Partially must-run units are not currently supported")
end
@@ -11,21 +17,41 @@ function _add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation)
end
# Variables
_add_production_vars!(model, g, formulation.prod_vars)
_add_reserve_vars!(model, g)
_add_startup_shutdown_vars!(model, g)
_add_status_vars!(model, g, formulation.status_vars)
# Constraints and objective function
_add_min_uptime_downtime_eqs!(model, g)
_add_net_injection_eqs!(model, g)
_add_production_limit_eqs!(model, g, formulation.prod_vars)
_add_startup_cost_eqs!(model, g, formulation.startup_costs)
_add_status_eqs!(model, g, formulation.status_vars)
_add_commitment_status_eqs!(model, g)
return
end
# Function for adding variables, constraints, and objective function terms
# related to the continuous dispatch decisions of units
function _add_unit_dispatch!(
model::JuMP.Model,
g::ThermalUnit,
formulation::Formulation,
sc::UnitCommitmentScenario,
)
# Variables
_add_production_vars!(model, g, formulation.prod_vars, sc)
_add_spinning_reserve_vars!(model, g, sc)
_add_flexiramp_reserve_vars!(model, g, sc)
# Constraints and objective function
_add_net_injection_eqs!(model, g, sc)
_add_production_limit_eqs!(model, g, formulation.prod_vars, sc)
_add_production_piecewise_linear_eqs!(
model,
g,
formulation.prod_vars,
formulation.pwl_costs,
formulation.status_vars,
sc,
)
_add_ramp_eqs!(
model,
@@ -33,40 +59,77 @@ function _add_unit!(model::JuMP.Model, g::Unit, formulation::Formulation)
formulation.prod_vars,
formulation.ramping,
formulation.status_vars,
sc,
)
_add_startup_cost_eqs!(model, g, formulation.startup_costs)
_add_startup_shutdown_limit_eqs!(model, g)
_add_status_eqs!(model, g, formulation.status_vars)
_add_startup_shutdown_limit_eqs!(model, g, sc)
return
end
_is_initially_on(g::Unit)::Float64 = (g.initial_status > 0 ? 1.0 : 0.0)
_is_initially_on(g::ThermalUnit)::Float64 = (g.initial_status > 0 ? 1.0 : 0.0)
function _add_reserve_vars!(model::JuMP.Model, g::Unit)::Nothing
function _add_spinning_reserve_vars!(
model::JuMP.Model,
g::ThermalUnit,
sc::UnitCommitmentScenario,
)::Nothing
reserve = _init(model, :reserve)
reserve_shortfall = _init(model, :reserve_shortfall)
for r in g.reserves
r.type == "spinning" || continue
for t in 1:model[:instance].time
if g.provides_spinning_reserves[t]
reserve[g.name, t] = @variable(model, lower_bound = 0)
else
reserve[g.name, t] = 0.0
reserve[sc.name, r.name, g.name, t] =
@variable(model, lower_bound = 0)
if (sc.name, r.name, t) keys(reserve_shortfall)
reserve_shortfall[sc.name, r.name, t] =
@variable(model, lower_bound = 0)
if r.shortfall_penalty < 0
set_upper_bound(reserve_shortfall[sc.name, r.name, t], 0.0)
end
end
end
reserve_shortfall[t] =
(model[:instance].shortfall_penalty[t] >= 0) ?
@variable(model, lower_bound = 0) : 0.0
end
return
end
function _add_reserve_eqs!(model::JuMP.Model, g::Unit)::Nothing
reserve = model[:reserve]
function _add_flexiramp_reserve_vars!(
model::JuMP.Model,
g::ThermalUnit,
sc::UnitCommitmentScenario,
)::Nothing
upflexiramp = _init(model, :upflexiramp)
upflexiramp_shortfall = _init(model, :upflexiramp_shortfall)
mfg = _init(model, :mfg)
dwflexiramp = _init(model, :dwflexiramp)
dwflexiramp_shortfall = _init(model, :dwflexiramp_shortfall)
for t in 1:model[:instance].time
add_to_expression!(expr_reserve[g.bus.name, t], reserve[g.name, t], 1.0)
# maximum feasible generation, \bar{g_{its}} in Wang & Hobbs (2016)
mfg[sc.name, g.name, t] = @variable(model, lower_bound = 0)
for r in g.reserves
r.type == "flexiramp" || continue
upflexiramp[sc.name, r.name, g.name, t] = @variable(model) # up-flexiramp, ur_{it} in Wang & Hobbs (2016)
dwflexiramp[sc.name, r.name, g.name, t] = @variable(model) # down-flexiramp, dr_{it} in Wang & Hobbs (2016)
if (sc.name, r.name, t) keys(upflexiramp_shortfall)
upflexiramp_shortfall[sc.name, r.name, t] =
@variable(model, lower_bound = 0)
dwflexiramp_shortfall[sc.name, r.name, t] =
@variable(model, lower_bound = 0)
if r.shortfall_penalty < 0
set_upper_bound(
upflexiramp_shortfall[sc.name, r.name, t],
0.0,
)
set_upper_bound(
dwflexiramp_shortfall[sc.name, r.name, t],
0.0,
)
end
end
end
end
return
end
function _add_startup_shutdown_vars!(model::JuMP.Model, g::Unit)::Nothing
function _add_startup_shutdown_vars!(model::JuMP.Model, g::ThermalUnit)::Nothing
startup = _init(model, :startup)
for t in 1:model[:instance].time
for s in 1:length(g.startup_categories)
@@ -76,32 +139,36 @@ function _add_startup_shutdown_vars!(model::JuMP.Model, g::Unit)::Nothing
return
end
function _add_startup_shutdown_limit_eqs!(model::JuMP.Model, g::Unit)::Nothing
function _add_startup_shutdown_limit_eqs!(
model::JuMP.Model,
g::ThermalUnit,
sc::UnitCommitmentScenario,
)::Nothing
eq_shutdown_limit = _init(model, :eq_shutdown_limit)
eq_startup_limit = _init(model, :eq_startup_limit)
is_on = model[:is_on]
prod_above = model[:prod_above]
reserve = model[:reserve]
reserve = _total_reserves(model, g, sc)
switch_off = model[:switch_off]
switch_on = model[:switch_on]
T = model[:instance].time
for t in 1:T
# Startup limit
eq_startup_limit[g.name, t] = @constraint(
eq_startup_limit[sc.name, g.name, t] = @constraint(
model,
prod_above[g.name, t] + reserve[g.name, t] <=
prod_above[sc.name, g.name, t] + reserve[t] <=
(g.max_power[t] - g.min_power[t]) * is_on[g.name, t] -
max(0, g.max_power[t] - g.startup_limit) * switch_on[g.name, t]
)
# Shutdown limit
if g.initial_power > g.shutdown_limit
eq_shutdown_limit[g.name, 0] =
eq_shutdown_limit[sc.name, g.name, 0] =
@constraint(model, switch_off[g.name, 1] <= 0)
end
if t < T
eq_shutdown_limit[g.name, t] = @constraint(
eq_shutdown_limit[sc.name, g.name, t] = @constraint(
model,
prod_above[g.name, t] <=
prod_above[sc.name, g.name, t] <=
(g.max_power[t] - g.min_power[t]) * is_on[g.name, t] -
max(0, g.max_power[t] - g.shutdown_limit) *
switch_off[g.name, t+1]
@@ -113,51 +180,55 @@ end
function _add_ramp_eqs!(
model::JuMP.Model,
g::Unit,
g::ThermalUnit,
formulation::RampingFormulation,
sc::UnitCommitmentScenario,
)::Nothing
prod_above = model[:prod_above]
reserve = model[:reserve]
reserve = _total_reserves(model, g, sc)
eq_ramp_up = _init(model, :eq_ramp_up)
eq_ramp_down = _init(model, :eq_ramp_down)
for t in 1:model[:instance].time
# Ramp up limit
if t == 1
if _is_initially_on(g) == 1
eq_ramp_up[g.name, t] = @constraint(
eq_ramp_up[sc.name, g.name, t] = @constraint(
model,
prod_above[g.name, t] + reserve[g.name, t] <=
prod_above[sc.name, g.name, t] + reserve[t] <=
(g.initial_power - g.min_power[t]) + g.ramp_up_limit
)
end
else
eq_ramp_up[g.name, t] = @constraint(
eq_ramp_up[sc.name, g.name, t] = @constraint(
model,
prod_above[g.name, t] + reserve[g.name, t] <=
prod_above[g.name, t-1] + g.ramp_up_limit
prod_above[sc.name, g.name, t] + reserve[t] <=
prod_above[sc.name, g.name, t-1] + g.ramp_up_limit
)
end
# Ramp down limit
if t == 1
if _is_initially_on(g) == 1
eq_ramp_down[g.name, t] = @constraint(
eq_ramp_down[sc.name, g.name, t] = @constraint(
model,
prod_above[g.name, t] >=
prod_above[sc.name, g.name, t] >=
(g.initial_power - g.min_power[t]) - g.ramp_down_limit
)
end
else
eq_ramp_down[g.name, t] = @constraint(
eq_ramp_down[sc.name, g.name, t] = @constraint(
model,
prod_above[g.name, t] >=
prod_above[g.name, t-1] - g.ramp_down_limit
prod_above[sc.name, g.name, t] >=
prod_above[sc.name, g.name, t-1] - g.ramp_down_limit
)
end
end
end
function _add_min_uptime_downtime_eqs!(model::JuMP.Model, g::Unit)::Nothing
function _add_min_uptime_downtime_eqs!(
model::JuMP.Model,
g::ThermalUnit,
)::Nothing
is_on = model[:is_on]
switch_off = model[:switch_off]
switch_on = model[:switch_on]
@@ -200,19 +271,53 @@ function _add_min_uptime_downtime_eqs!(model::JuMP.Model, g::Unit)::Nothing
end
end
function _add_net_injection_eqs!(model::JuMP.Model, g::Unit)::Nothing
function _add_commitment_status_eqs!(model::JuMP.Model, g::ThermalUnit)::Nothing
is_on = model[:is_on]
T = model[:instance].time
eq_commitment_status = _init(model, :eq_commitment_status)
for t in 1:T
if g.commitment_status[t] !== nothing
eq_commitment_status[g.name, t] = @constraint(
model,
is_on[g.name, t] == (g.commitment_status[t] ? 1.0 : 0.0)
)
end
end
return
end
function _add_net_injection_eqs!(
model::JuMP.Model,
g::ThermalUnit,
sc::UnitCommitmentScenario,
)::Nothing
expr_net_injection = model[:expr_net_injection]
for t in 1:model[:instance].time
# Add to net injection expression
add_to_expression!(
expr_net_injection[g.bus.name, t],
model[:prod_above][g.name, t],
expr_net_injection[sc.name, g.bus.name, t],
model[:prod_above][sc.name, g.name, t],
1.0,
)
add_to_expression!(
expr_net_injection[g.bus.name, t],
expr_net_injection[sc.name, g.bus.name, t],
model[:is_on][g.name, t],
g.min_power[t],
)
end
end
function _total_reserves(model, g, sc)::Vector
T = model[:instance].time
reserve = [0.0 for _ in 1:T]
spinning_reserves = [r for r in g.reserves if r.type == "spinning"]
if !isempty(spinning_reserves)
reserve += [
sum(
model[:reserve][sc.name, r.name, g.name, t] for
r in spinning_reserves
) for t in 1:model[:instance].time
]
end
return reserve
end

View File

@@ -10,23 +10,42 @@ solution. Useful for computing LMPs.
"""
function fix!(model::JuMP.Model, solution::AbstractDict)::Nothing
instance, T = model[:instance], model[:instance].time
"Thermal production (MW)" keys(solution) ?
solution = Dict("s1" => solution) : nothing
is_on = model[:is_on]
prod_above = model[:prod_above]
reserve = model[:reserve]
for g in instance.units
for sc in instance.scenarios
for g in sc.thermal_units
for t in 1:T
is_on_value = round(solution["Is on"][g.name][t])
prod_value =
round(solution["Production (MW)"][g.name][t], digits = 5)
reserve_value =
round(solution["Reserve (MW)"][g.name][t], digits = 5)
is_on_value = round(solution[sc.name]["Is on"][g.name][t])
prod_value = round(
solution[sc.name]["Thermal production (MW)"][g.name][t],
digits = 5,
)
JuMP.fix(is_on[g.name, t], is_on_value, force = true)
JuMP.fix(
prod_above[g.name, t],
prod_above[sc.name, g.name, t],
prod_value - is_on_value * g.min_power[t],
force = true,
)
JuMP.fix(reserve[g.name, t], reserve_value, force = true)
end
end
for r in sc.reserves
r.type == "spinning" || continue
for g in r.thermal_units
for t in 1:T
reserve_value = round(
solution[sc.name]["Spinning reserve (MW)"][r.name][g.name][t],
digits = 5,
)
JuMP.fix(
reserve[sc.name, r.name, g.name, t],
reserve_value,
force = true,
)
end
end
end
end
return

View File

@@ -0,0 +1,71 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using .MIPLearn
using Suppressor
using JuMP
function _build_ucjl_model(instance, method)
if instance isa String
instance = UnitCommitment.read(instance)
end
model = UnitCommitment.build_model(
instance = instance,
optimizer = method.optimizer,
variable_names = true,
)
write_to_file(model, "/tmp/model.lp")
return JumpModel(model)
end
function _set_default_collectors!(method::MIPLearnMethod)
method.collectors = [BasicCollector()]
return
end
function _set_default_solver!(method::MIPLearnMethod)
KNN = MIPLearn.pyimport("sklearn.neighbors").KNeighborsClassifier
method.solver = LearningSolver(
components = [
MemorizingPrimalComponent(
clf = KNN(n_neighbors = 30),
extractor = H5FieldsExtractor(
instance_fields = ["static_var_obj_coeffs"],
),
constructor = MergeTopSolutions(30, [0.0, 1.0]),
action = FixVariables(),
),
],
)
return
end
function collect!(filenames::Vector, method::MIPLearnMethod)
build(x) = _build_ucjl_model(x, method)
if method.collectors === nothing
_set_default_collectors!(method)
end
for c in method.collectors
c.collect(filenames, build)
end
end
function fit!(filenames::Vector, method::MIPLearnMethod)
if method.solver === nothing
_set_default_solver!(method)
end
return method.solver.fit(filenames)
end
function optimize!(filename::AbstractString, method::MIPLearnMethod)
build(x) = _build_ucjl_model(x, method)
method.solver.optimize(filename, build)
return
end
function optimize!(instance::UnitCommitmentInstance, method::MIPLearnMethod)
model = _build_ucjl_model(instance, method)
method.solver.optimize(model)
return
end

View File

@@ -0,0 +1,11 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Suppressor
Base.@kwdef mutable struct MIPLearnMethod
optimizer::Any
collectors::Any = nothing
solver::Any = nothing
end

View File

@@ -0,0 +1,230 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using MPI, Printf
using TimerOutputs
import JuMP
const to = TimerOutput()
function optimize!(model::JuMP.Model, method::ProgressiveHedging)::Nothing
mpi = MpiInfo(MPI.COMM_WORLD)
iterations = PHIterationInfo[]
consensus_vars = [var for var in all_variables(model) if is_binary(var)]
nvars = length(consensus_vars)
weights = ones(nvars)
if method.initial_weights !== nothing
weights = copy(method.initial_weights)
end
target = zeros(nvars)
if method.initial_target !== nothing
target = copy(method.initial_target)
end
params = PHSubProblemParams(
ρ = method.ρ,
λ = [method.λ for _ in 1:nvars],
target = target,
)
sp = PHSubProblem(model, model[:obj], consensus_vars, weights)
while true
iteration_time = @elapsed begin
solution = solve_subproblem(sp, params, method.inner_method)
MPI.Barrier(mpi.comm)
global_obj = compute_global_objective(mpi, solution)
target = compute_target(mpi, solution)
update_λ_and_residuals!(solution, params, target)
global_infeas = compute_global_infeasibility(solution, mpi)
global_residual = compute_global_residual(mpi, solution)
if has_numerical_issues(target)
break
end
end
total_elapsed_time =
compute_total_elapsed_time(iteration_time, iterations)
current_iteration = PHIterationInfo(
global_infeas = global_infeas,
global_obj = global_obj,
global_residual = global_residual,
iteration_number = length(iterations) + 1,
iteration_time = iteration_time,
sp_vals = solution.vals,
sp_obj = solution.obj,
target = target,
total_elapsed_time = total_elapsed_time,
)
push!(iterations, current_iteration)
print_progress(mpi, current_iteration, method.print_interval)
if should_stop(mpi, iterations, method.termination)
break
end
end
return
end
function compute_total_elapsed_time(
iteration_time::Float64,
iterations::Array{PHIterationInfo,1},
)::Float64
length(iterations) > 0 ?
current_total_time = last(iterations).total_elapsed_time :
current_total_time = 0
return current_total_time + iteration_time
end
function compute_global_objective(
mpi::MpiInfo,
s::PhSubProblemSolution,
)::Float64
global_obj = MPI.Allreduce(s.obj, MPI.SUM, mpi.comm)
global_obj /= mpi.nprocs
return global_obj
end
function compute_target(mpi::MpiInfo, s::PhSubProblemSolution)::Array{Float64,1}
sp_vals = s.vals
target = MPI.Allreduce(sp_vals, MPI.SUM, mpi.comm)
target = target / mpi.nprocs
return target
end
function compute_global_residual(mpi::MpiInfo, s::PhSubProblemSolution)::Float64
n_vars = length(s.vals)
local_residual_sum = abs.(s.residuals)
global_residual_sum = MPI.Allreduce(local_residual_sum, MPI.SUM, mpi.comm)
return sum(global_residual_sum) / n_vars
end
function compute_global_infeasibility(
solution::PhSubProblemSolution,
mpi::MpiInfo,
)::Float64
local_infeasibility = norm(solution.residuals)
global_infeas = MPI.Allreduce(local_infeasibility, MPI.SUM, mpi.comm)
return global_infeas
end
function solve_subproblem(
sp::PHSubProblem,
params::PHSubProblemParams,
method::SolutionMethod,
)::PhSubProblemSolution
G = length(sp.consensus_vars)
if norm(params.λ) < 1e-3
@objective(sp.mip, Min, sp.obj)
else
@objective(
sp.mip,
Min,
sp.obj +
sum(
sp.weights[g] *
params.λ[g] *
(sp.consensus_vars[g] - params.target[g]) for g in 1:G
) +
(params.ρ / 2) * sum(
sp.weights[g] * (sp.consensus_vars[g] - params.target[g])^2 for
g in 1:G
)
)
end
optimize!(sp.mip, method)
obj = objective_value(sp.mip)
sp_vals = value.(sp.consensus_vars)
return PhSubProblemSolution(obj = obj, vals = sp_vals, residuals = zeros(G))
end
function update_λ_and_residuals!(
solution::PhSubProblemSolution,
params::PHSubProblemParams,
target::Array{Float64,1},
)::Nothing
n_vars = length(solution.vals)
params.target = target
for n in 1:n_vars
solution.residuals[n] = solution.vals[n] - params.target[n]
params.λ[n] += params.ρ * solution.residuals[n]
end
end
function print_header(mpi::MpiInfo)::Nothing
if !mpi.root
return
end
@info "Solving via Progressive Hedging:"
@info @sprintf(
"%8s %20s %20s %14s %8s %8s",
"iter",
"obj",
"infeas",
"consensus",
"time-it",
"time"
)
end
function print_progress(
mpi::MpiInfo,
iteration::PHIterationInfo,
print_interval,
)::Nothing
if !mpi.root
return
end
if iteration.iteration_number % print_interval != 0
return
end
@info @sprintf(
"%8d %20.6e %20.6e %12.2f %% %8.2f %8.2f",
iteration.iteration_number,
iteration.global_obj,
iteration.global_infeas,
iteration.global_residual * 100,
iteration.iteration_time,
iteration.total_elapsed_time
)
end
function has_numerical_issues(target::Array{Float64,1})::Bool
if target == NaN
@warn "Numerical issues detected. Stopping."
return true
end
return false
end
function should_stop(
mpi::MpiInfo,
iterations::Array{PHIterationInfo,1},
termination::PHTermination,
)::Bool
if length(iterations) >= termination.max_iterations
if mpi.root
@info "Iteration limit reached. Stopping."
end
return true
end
if length(iterations) < termination.min_iterations
return false
end
if last(iterations).total_elapsed_time > termination.max_time
if mpi.root
@info "Time limit reached. Stopping."
end
return true
end
curr_it = last(iterations)
prev_it = iterations[length(iterations)-1]
if curr_it.global_infeas < termination.min_feasibility
obj_change = abs(prev_it.global_obj - curr_it.global_obj)
if obj_change < termination.min_improvement
if mpi.root
@info "Feasibility limit reached. Stopping."
end
return true
end
end
return false
end

View File

@@ -0,0 +1,18 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function read(
paths::Vector{String},
::ProgressiveHedging,
)::UnitCommitmentInstance
comm = MPI.COMM_WORLD
mpi = MpiInfo(comm)
(length(paths) % mpi.nprocs == 0) || error(
"Number of processes $(mpi.nprocs) is not a divisor of $(length(paths))",
)
bundled_scenarios = length(paths) ÷ mpi.nprocs
sc_num_start = (mpi.rank - 1) * bundled_scenarios + 1
sc_num_end = mpi.rank * bundled_scenarios
return read(paths[sc_num_start:sc_num_end])
end

View File

@@ -0,0 +1,83 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using MPI, DataStructures
const FIRST_STAGE_VARS = ["Is on", "Switch on", "Switch off"]
function solution(model::JuMP.Model, method::ProgressiveHedging)::OrderedDict
comm = MPI.COMM_WORLD
mpi = MpiInfo(comm)
sp_solution = UnitCommitment.solution(model)
gather_solution = OrderedDict()
for (solution_key, dict) in sp_solution
if solution_key !== "Spinning reserve (MW)" &&
solution_key FIRST_STAGE_VARS
push!(gather_solution, solution_key => OrderedDict())
for (gen_bus_key, values) in dict
global T = length(values)
receive_values =
MPI.UBuffer(Vector{Float64}(undef, T * mpi.nprocs), T)
MPI.Gather!(float.(values), receive_values, comm)
if mpi.root
push!(
gather_solution[solution_key],
gen_bus_key => receive_values.data,
)
end
end
end
end
push!(gather_solution, "Spinning reserve (MW)" => OrderedDict())
for (reserve_type, dict) in sp_solution["Spinning reserve (MW)"]
push!(
gather_solution["Spinning reserve (MW)"],
reserve_type => OrderedDict(),
)
for (gen_key, values) in dict
receive_values =
MPI.UBuffer(Vector{Float64}(undef, T * mpi.nprocs), T)
MPI.Gather!(float.(values), receive_values, comm)
if mpi.root
push!(
gather_solution["Spinning reserve (MW)"][reserve_type],
gen_key => receive_values.data,
)
end
end
end
aggregate_solution = OrderedDict()
if mpi.root
for first_stage_var in FIRST_STAGE_VARS
aggregate_solution[first_stage_var] = OrderedDict()
for gen_key in keys(sp_solution[first_stage_var])
aggregate_solution[first_stage_var][gen_key] =
sp_solution[first_stage_var][gen_key]
end
end
for i in 1:mpi.nprocs
push!(aggregate_solution, "s$i" => OrderedDict())
for (solution_key, solution_dict) in gather_solution
push!(aggregate_solution["s$i"], solution_key => OrderedDict())
if solution_key !== "Spinning reserve (MW)"
for (gen_bus_key, values) in solution_dict
aggregate_solution["s$i"][solution_key][gen_bus_key] =
gather_solution[solution_key][gen_bus_key][(i-1)*T+1:i*T]
end
else
for (reserve_name, reserve_dict) in solution_dict
push!(
aggregate_solution["s$i"][solution_key],
reserve_name => OrderedDict(),
)
for (gen_key, values) in reserve_dict
aggregate_solution["s$i"][solution_key][reserve_name][gen_key] =
gather_solution[solution_key][reserve_name][gen_key][(i-1)*T+1:i*T]
end
end
end
end
end
end
return aggregate_solution
end

View File

@@ -0,0 +1,73 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP, MPI, TimerOutputs
Base.@kwdef mutable struct PHTermination
max_iterations::Int = 1000
max_time::Float64 = 14400.0
min_feasibility::Float64 = 1e-3
min_improvement::Float64 = 1e-3
min_iterations::Int = 2
end
Base.@kwdef mutable struct PHIterationInfo
global_infeas::Float64
global_obj::Float64
global_residual::Float64
iteration_number::Int
iteration_time::Float64
sp_vals::Array{Float64,1}
sp_obj::Float64
target::Array{Float64,1}
total_elapsed_time::Float64
end
Base.@kwdef mutable struct ProgressiveHedging <: SolutionMethod
initial_weights::Union{Vector{Float64},Nothing} = nothing
initial_target::Union{Vector{Float64},Nothing} = nothing
ρ::Float64 = 1.0
λ::Float64 = 0.0
print_interval::Int = 1
termination::PHTermination = PHTermination()
inner_method::SolutionMethod = XavQiuWanThi2019.Method()
end
struct SpResult
obj::Float64
vals::Array{Float64,1}
end
Base.@kwdef mutable struct PHSubProblem
mip::JuMP.Model
obj::AffExpr
consensus_vars::Array{VariableRef,1}
weights::Array{Float64,1}
end
Base.@kwdef struct PhSubProblemSolution
obj::Float64
vals::Array{Float64,1}
residuals::Array{Float64,1}
end
Base.@kwdef mutable struct PHSubProblemParams
ρ::Float64
λ::Array{Float64,1}
target::Array{Float64,1}
end
struct MpiInfo
comm::Any
rank::Int
root::Bool
nprocs::Int
function MpiInfo(comm)
rank = MPI.Comm_rank(comm) + 1
is_root = (rank == 1)
nprocs = MPI.Comm_size(comm)
return new(comm, rank, is_root, nprocs)
end
end

View File

@@ -0,0 +1,259 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
"""
optimize!(
instance::UnitCommitmentInstance,
method::TimeDecomposition;
optimizer,
after_build = nothing,
after_optimize = nothing,
)::OrderedDict
Solve the given unit commitment instance with time decomposition.
The model solves each sub-problem of a given time length specified by method.time_window,
and proceeds to the next sub-problem by incrementing the time length of `method.time_increment`.
Arguments
---------
- `instance`:
the UnitCommitment instance.
- `method`:
the `TimeDecomposition` method.
- `optimizer`:
the optimizer for solving the problem.
- `after_build`:
a user-defined function that allows modifying the model after building,
must have 2 arguments `model` and `instance` in order.
- `after_optimize`:
a user-defined function that allows handling additional steps after optimizing,
must have 3 arguments `solution`, `model` and `instance` in order.
Examples
--------
```julia
using UnitCommitment, JuMP, Cbc, HiGHS
import UnitCommitment:
TimeDecomposition,
ConventionalLMP,
XavQiuWanThi2019,
Formulation
# specifying the after_build and after_optimize functions
function after_build(model, instance)
@constraint(
model,
model[:is_on]["g3", 1] + model[:is_on]["g4", 1] <= 1,
)
end
lmps = []
function after_optimize(solution, model, instance)
lmp = UnitCommitment.compute_lmp(
model,
ConventionalLMP(),
optimizer = HiGHS.Optimizer,
)
return push!(lmps, lmp)
end
# assume the instance is given as a 120h problem
instance = UnitCommitment.read("instance.json")
solution = UnitCommitment.optimize!(
instance,
TimeDecomposition(
time_window = 36, # solve 36h problems
time_increment = 24, # advance by 24h each time
inner_method = XavQiuWanThi2019.Method(),
formulation = Formulation(),
),
optimizer = Cbc.Optimizer,
after_build = after_build,
after_optimize = after_optimize,
)
"""
function optimize!(
instance::UnitCommitmentInstance,
method::TimeDecomposition;
optimizer,
after_build = nothing,
after_optimize = nothing,
)::OrderedDict
# get instance total length
T = instance.time
solution = OrderedDict()
if length(instance.scenarios) > 1
for sc in instance.scenarios
solution[sc.name] = OrderedDict()
end
end
# for each iteration, time increment by method.time_increment
for t_start in 1:method.time_increment:T
t_end = t_start + method.time_window - 1
# if t_end exceed total T
t_end = t_end > T ? T : t_end
# slice the model
@info "Solving the sub-problem of time $t_start to $t_end..."
sub_instance = UnitCommitment.slice(instance, t_start:t_end)
# build and optimize the model
sub_model = UnitCommitment.build_model(
instance = sub_instance,
optimizer = optimizer,
formulation = method.formulation,
)
if after_build !== nothing
@info "Calling after build..."
after_build(sub_model, sub_instance)
end
UnitCommitment.optimize!(sub_model, method.inner_method)
# get the result of each time period
sub_solution = UnitCommitment.solution(sub_model)
if after_optimize !== nothing
@info "Calling after optimize..."
after_optimize(sub_solution, sub_model, sub_instance)
end
# merge solution
if length(instance.scenarios) == 1
_update_solution!(solution, sub_solution, method.time_increment)
else
for sc in instance.scenarios
_update_solution!(
solution[sc.name],
sub_solution[sc.name],
method.time_increment,
)
end
end
# set the initial status for the next sub-problem
_set_initial_status!(instance, solution, method.time_increment)
end
return solution
end
"""
_set_initial_status!(
instance::UnitCommitmentInstance,
solution::OrderedDict,
time_increment::Int,
)
Set the thermal units' initial power levels and statuses based on the last bunch of time slots
specified by time_increment in the solution dictionary.
"""
function _set_initial_status!(
instance::UnitCommitmentInstance,
solution::OrderedDict,
time_increment::Int,
)
for sc in instance.scenarios
for thermal_unit in sc.thermal_units
if length(instance.scenarios) == 1
prod = solution["Thermal production (MW)"][thermal_unit.name]
is_on = solution["Is on"][thermal_unit.name]
else
prod =
solution[sc.name]["Thermal production (MW)"][thermal_unit.name]
is_on = solution[sc.name]["Is on"][thermal_unit.name]
end
thermal_unit.initial_power = prod[end]
thermal_unit.initial_status = _determine_initial_status(
thermal_unit.initial_status,
is_on[end-time_increment+1:end],
)
end
end
end
"""
_determine_initial_status(
prev_initial_status::Union{Float64,Int},
status_sequence::Vector{Float64},
)::Union{Float64,Int}
Determines a thermal unit's initial status based on its previous initial status, and
the on/off statuses in the last operation.
"""
function _determine_initial_status(
prev_initial_status::Union{Float64,Int},
status_sequence::Vector{Float64},
)::Union{Float64,Int}
# initialize the two flags
on_status = prev_initial_status
off_status = prev_initial_status
# read through the status sequence
# at each time if the unit is on, reset off_status, increment on_status
# if the on_status < 0, set it to 1.0
# at each time if the unit is off, reset on_status, decrement off_status
# if the off_status > 0, set it to -1.0
for status in status_sequence
if status == 1.0
on_status = on_status < 0.0 ? 1.0 : on_status + 1.0
off_status = 0.0
else
on_status = 0.0
off_status = off_status > 0.0 ? -1.0 : off_status - 1.0
end
end
# only one of them has non-zero value
return on_status + off_status
end
"""
_update_solution!(
solution::OrderedDict,
sub_solution::OrderedDict,
time_increment::Int,
)
Updates the solution (of each scenario) by concatenating the first bunch of
time slots of the newly generated sub-solution to the end of the final solution dictionary.
This function traverses through the dictionary keys, finds the vector and finally
does the concatenation. For now, the function is hardcoded to traverse at most 3 layers
of depth until it finds a vector object.
"""
function _update_solution!(
solution::OrderedDict,
sub_solution::OrderedDict,
time_increment::Int,
)
# the solution has at most 3 layers
for (l1_k, l1_v) in sub_solution
for (l2_k, l2_v) in l1_v
if l2_v isa Array
# slice the sub_solution
values_of_interest = l2_v[1:time_increment]
sub_solution[l1_k][l2_k] = values_of_interest
# append to the solution
if !isempty(solution)
append!(solution[l1_k][l2_k], values_of_interest)
end
elseif l2_v isa OrderedDict
for (l3_k, l3_v) in l2_v
# slice the sub_solution
values_of_interest = l3_v[1:time_increment]
sub_solution[l1_k][l2_k][l3_k] = values_of_interest
# append to the solution
if !isempty(solution)
append!(solution[l1_k][l2_k][l3_k], values_of_interest)
end
end
end
end
end
# if solution is never initialized, deep copy the sliced sub_solution
if isempty(solution)
merge!(solution, sub_solution)
end
end

View File

@@ -0,0 +1,35 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import ..SolutionMethod
import ..Formulation
"""
mutable struct TimeDecomposition <: SolutionMethod
time_window::Int
time_increment::Int
inner_method::SolutionMethod = XavQiuWanThi2019.Method()
formulation::Formulation = Formulation()
end
Time decomposition method to solve a problem with moving time window.
Fields
------
- `time_window`:
the time window of each sub-problem during the entire optimization procedure.
- `time_increment`:
the time incremented to the next sub-problem.
- `inner_method`:
method to solve each sub-problem.
- `formulation`:
problem formulation.
"""
Base.@kwdef mutable struct TimeDecomposition <: SolutionMethod
time_window::Int
time_increment::Int
inner_method::SolutionMethod = XavQiuWanThi2019.Method()
formulation::Formulation = Formulation()
end

View File

@@ -5,13 +5,15 @@
function _enforce_transmission(
model::JuMP.Model,
violations::Vector{_Violation},
sc::UnitCommitmentScenario,
)::Nothing
for v in violations
_enforce_transmission(
model = model,
sc = sc,
violation = v,
isf = model[:isf],
lodf = model[:lodf],
isf = sc.isf,
lodf = sc.lodf,
)
end
return
@@ -19,6 +21,7 @@ end
function _enforce_transmission(;
model::JuMP.Model,
sc::UnitCommitmentScenario,
violation::_Violation,
isf::Matrix{Float64},
lodf::Matrix{Float64},
@@ -31,19 +34,21 @@ function _enforce_transmission(;
if violation.outage_line === nothing
limit = violation.monitored_line.normal_flow_limit[violation.time]
@info @sprintf(
" %8.3f MW overflow in %-5s time %3d (pre-contingency)",
" %8.3f MW overflow in %-5s time %3d (pre-contingency, scenario %s)",
violation.amount,
violation.monitored_line.name,
violation.time,
sc.name,
)
else
limit = violation.monitored_line.emergency_flow_limit[violation.time]
@info @sprintf(
" %8.3f MW overflow in %-5s time %3d (outage: line %s)",
" %8.3f MW overflow in %-5s time %3d (outage: line %s, scenario %s)",
violation.amount,
violation.monitored_line.name,
violation.time,
violation.outage_line.name,
sc.name,
)
end
@@ -51,7 +56,7 @@ function _enforce_transmission(;
t = violation.time
flow = @variable(model, base_name = "flow[$fm,$t]")
v = overflow[violation.monitored_line.name, violation.time]
v = overflow[sc.name, violation.monitored_line.name, violation.time]
@constraint(model, flow <= limit + v)
@constraint(model, -flow <= limit + v)
@@ -59,23 +64,23 @@ function _enforce_transmission(;
@constraint(
model,
flow == sum(
net_injection[b.name, violation.time] *
net_injection[sc.name, b.name, violation.time] *
isf[violation.monitored_line.offset, b.offset] for
b in instance.buses if b.offset > 0
b in sc.buses if b.offset > 0
)
)
else
@constraint(
model,
flow == sum(
net_injection[b.name, violation.time] * (
net_injection[sc.name, b.name, violation.time] * (
isf[violation.monitored_line.offset, b.offset] + (
lodf[
violation.monitored_line.offset,
violation.outage_line.offset,
] * isf[violation.outage_line.offset, b.offset]
)
) for b in instance.buses if b.offset > 0
) for b in sc.buses if b.offset > 0
)
)
end

View File

@@ -5,40 +5,36 @@
import Base.Threads: @threads
function _find_violations(
model::JuMP.Model;
model::JuMP.Model,
sc::UnitCommitmentScenario;
max_per_line::Int,
max_per_period::Int,
)
instance = model[:instance]
net_injection = model[:net_injection]
overflow = model[:overflow]
length(instance.buses) > 1 || return []
length(sc.buses) > 1 || return []
violations = []
@info "Verifying transmission limits..."
time_screening = @elapsed begin
non_slack_buses = [b for b in instance.buses if b.offset > 0]
non_slack_buses = [b for b in sc.buses if b.offset > 0]
net_injection_values = [
value(net_injection[b.name, t]) for b in non_slack_buses,
value(net_injection[sc.name, b.name, t]) for b in non_slack_buses,
t in 1:instance.time
]
overflow_values = [
value(overflow[lm.name, t]) for lm in instance.lines,
value(overflow[sc.name, lm.name, t]) for lm in sc.lines,
t in 1:instance.time
]
violations = UnitCommitment._find_violations(
instance = instance,
sc = sc,
net_injections = net_injection_values,
overflow = overflow_values,
isf = model[:isf],
lodf = model[:lodf],
isf = sc.isf,
lodf = sc.lodf,
max_per_line = max_per_line,
max_per_period = max_per_period,
)
end
@info @sprintf(
"Verified transmission limits in %.2f seconds",
time_screening
)
return violations
end
@@ -64,6 +60,7 @@ matrix, where L is the number of transmission lines.
"""
function _find_violations(;
instance::UnitCommitmentInstance,
sc::UnitCommitmentScenario,
net_injections::Array{Float64,2},
overflow::Array{Float64,2},
isf::Array{Float64,2},
@@ -71,8 +68,8 @@ function _find_violations(;
max_per_line::Int,
max_per_period::Int,
)::Array{_Violation,1}
B = length(instance.buses) - 1
L = length(instance.lines)
B = length(sc.buses) - 1
L = length(sc.lines)
T = instance.time
K = nthreads()
@@ -93,17 +90,17 @@ function _find_violations(;
post_v::Array{Float64} = zeros(L, L, K) # post_v[lm, lc, thread]
normal_limits::Array{Float64,2} = [
l.normal_flow_limit[t] + overflow[l.offset, t] for
l in instance.lines, t in 1:T
l.normal_flow_limit[t] + overflow[l.offset, t] for l in sc.lines,
t in 1:T
]
emergency_limits::Array{Float64,2} = [
l.emergency_flow_limit[t] + overflow[l.offset, t] for
l in instance.lines, t in 1:T
l.emergency_flow_limit[t] + overflow[l.offset, t] for l in sc.lines,
t in 1:T
]
is_vulnerable::Array{Bool} = zeros(Bool, L)
for c in instance.contingencies
for c in sc.contingencies
is_vulnerable[c.lines[1].offset] = true
end
@@ -144,7 +141,7 @@ function _find_violations(;
filters[t],
_Violation(
time = t,
monitored_line = instance.lines[lm],
monitored_line = sc.lines[lm],
outage_line = nothing,
amount = pre_v[lm, k],
),
@@ -159,8 +156,8 @@ function _find_violations(;
filters[t],
_Violation(
time = t,
monitored_line = instance.lines[lm],
outage_line = instance.lines[lc],
monitored_line = sc.lines[lm],
outage_line = sc.lines[lc],
amount = post_v[lm, lc, k],
),
)

View File

@@ -3,22 +3,24 @@
# Released under the modified BSD license. See COPYING.md for more details.
function optimize!(model::JuMP.Model, method::XavQiuWanThi2019.Method)::Nothing
if !occursin("Gurobi", JuMP.solver_name(model))
method.two_phase_gap = false
end
function set_gap(gap)
try
JuMP.set_optimizer_attribute(model, "MIPGap", gap)
@info @sprintf("MIP gap tolerance set to %f", gap)
catch
@warn "Could not change MIP gap tolerance"
end
end
initial_time = time()
large_gap = false
has_transmission = (length(model[:isf]) > 0)
has_transmission = false
for sc in model[:instance].scenarios
if length(sc.isf) > 0
has_transmission = true
end
if has_transmission && method.two_phase_gap
set_gap(1e-2)
large_gap = true
else
set_gap(method.gap_limit)
end
end
while true
time_elapsed = time() - initial_time
@@ -34,13 +36,41 @@ function optimize!(model::JuMP.Model, method::XavQiuWanThi2019.Method)::Nothing
JuMP.set_time_limit_sec(model, time_remaining)
@info "Solving MILP..."
JuMP.optimize!(model)
has_transmission || break
violations = _find_violations(
@info "Verifying transmission limits..."
time_screening = @elapsed begin
violations = []
for sc in model[:instance].scenarios
push!(
violations,
_find_violations(
model,
sc,
max_per_line = method.max_violations_per_line,
max_per_period = method.max_violations_per_period,
),
)
if isempty(violations)
end
end
@info @sprintf(
"Verified transmission limits in %.2f seconds",
time_screening
)
violations_found = false
for v in violations
if !isempty(v)
violations_found = true
end
end
if violations_found
for (i, v) in enumerate(violations)
_enforce_transmission(model, v, model[:instance].scenarios[i])
end
else
@info "No violations found"
if large_gap
large_gap = false
@@ -48,8 +78,6 @@ function optimize!(model::JuMP.Model, method::XavQiuWanThi2019.Method)::Nothing
else
break
end
else
_enforce_transmission(model, violations)
end
end
return

View File

@@ -2,18 +2,10 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
"""
Lazy constraint solution method described in:
Xavier, A. S., Qiu, F., Wang, F., & Thimmapuram, P. R. (2019). Transmission
constraint filtering in large-scale security-constrained unit commitment.
IEEE Transactions on Power Systems, 34(3), 2457-2460.
DOI: https://doi.org/10.1109/TPWRS.2019.2892620
"""
module XavQiuWanThi2019
import ..SolutionMethod
"""
struct Method
mutable struct Method
time_limit::Float64
gap_limit::Float64
two_phase_gap::Bool
@@ -21,13 +13,20 @@ import ..SolutionMethod
max_violations_per_period::Int
end
Lazy constraint solution method described in:
Xavier, A. S., Qiu, F., Wang, F., & Thimmapuram, P. R. (2019). Transmission
constraint filtering in large-scale security-constrained unit commitment.
IEEE Transactions on Power Systems, 34(3), 2457-2460.
DOI: https://doi.org/10.1109/TPWRS.2019.2892620
Fields
------
- `time_limit`:
the time limit over the entire optimization procedure.
- `gap_limit`:
the desired relative optimality gap.
the desired relative optimality gap. Only used when `two_phase_gap=true`.
- `two_phase_gap`:
if true, solve the problem with large gap tolerance first, then reduce
the gap tolerance when no further violated constraints are found.
@@ -39,7 +38,7 @@ Fields
formulation per time period.
"""
struct Method <: SolutionMethod
mutable struct Method <: SolutionMethod
time_limit::Float64
gap_limit::Float64
two_phase_gap::Bool

View File

@@ -3,9 +3,9 @@
# Released under the modified BSD license. See COPYING.md for more details.
"""
function optimize!(model::JuMP.Model)::Nothing
optimize!(model::JuMP.Model)::Nothing
Solve the given unit commitment model. Unlike JuMP.optimize!, this uses more
Solve the given unit commitment model. Unlike `JuMP.optimize!`, this uses more
advanced methods to accelerate the solution process and to enforce transmission
and N-1 security constraints.
"""

View File

@@ -2,36 +2,58 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
"""
solution(model::JuMP.Model)::OrderedDict
Extracts the optimal solution from the UC.jl model. The model must be solved beforehand.
# Example
```julia
UnitCommitment.optimize!(model)
solution = UnitCommitment.solution(model)
```
"""
function solution(model::JuMP.Model)::OrderedDict
instance, T = model[:instance], model[:instance].time
function timeseries(vars, collection)
function timeseries(vars, collection; sc = nothing)
if sc === nothing
return OrderedDict(
b.name => [round(value(vars[b.name, t]), digits = 5) for t in 1:T]
for b in collection
b.name =>
[round(value(vars[b.name, t]), digits = 5) for t in 1:T] for
b in collection
)
else
return OrderedDict(
b.name => [
round(value(vars[sc.name, b.name, t]), digits = 5) for
t in 1:T
] for b in collection
)
end
function production_cost(g)
end
function production_cost(g, sc)
return [
value(model[:is_on][g.name, t]) * g.min_power_cost[t] + sum(
Float64[
value(model[:segprod][g.name, t, k]) *
value(model[:segprod][sc.name, g.name, t, k]) *
g.cost_segments[k].cost[t] for
k in 1:length(g.cost_segments)
],
) for t in 1:T
]
end
function production(g)
function production(g, sc)
return [
value(model[:is_on][g.name, t]) * g.min_power[t] + sum(
Float64[
value(model[:segprod][g.name, t, k]) for
value(model[:segprod][sc.name, g.name, t, k]) for
k in 1:length(g.cost_segments)
],
) for t in 1:T
]
end
function startup_cost(g)
function startup_cost(g, sc)
S = length(g.startup_categories)
return [
sum(
@@ -41,31 +63,111 @@ function solution(model::JuMP.Model)::OrderedDict
]
end
sol = OrderedDict()
sol["Production (MW)"] =
OrderedDict(g.name => production(g) for g in instance.units)
sol["Production cost (\$)"] =
OrderedDict(g.name => production_cost(g) for g in instance.units)
sol["Startup cost (\$)"] =
OrderedDict(g.name => startup_cost(g) for g in instance.units)
sol["Is on"] = timeseries(model[:is_on], instance.units)
sol["Switch on"] = timeseries(model[:switch_on], instance.units)
sol["Switch off"] = timeseries(model[:switch_off], instance.units)
sol["Reserve (MW)"] = timeseries(model[:reserve], instance.units)
sol["Reserve shortfall (MW)"] = OrderedDict(
t =>
(instance.shortfall_penalty[t] >= 0) ?
round(value(model[:reserve_shortfall][t]), digits = 5) : 0.0 for
t in 1:instance.time
for sc in instance.scenarios
sol[sc.name] = OrderedDict()
if !isempty(sc.thermal_units)
sol[sc.name]["Thermal production (MW)"] = OrderedDict(
g.name => production(g, sc) for g in sc.thermal_units
)
sol["Net injection (MW)"] =
timeseries(model[:net_injection], instance.buses)
sol["Load curtail (MW)"] = timeseries(model[:curtail], instance.buses)
if !isempty(instance.lines)
sol["Line overflow (MW)"] = timeseries(model[:overflow], instance.lines)
sol[sc.name]["Thermal production cost (\$)"] = OrderedDict(
g.name => production_cost(g, sc) for g in sc.thermal_units
)
sol[sc.name]["Startup cost (\$)"] = OrderedDict(
g.name => startup_cost(g, sc) for g in sc.thermal_units
)
sol[sc.name]["Is on"] = timeseries(model[:is_on], sc.thermal_units)
sol[sc.name]["Switch on"] =
timeseries(model[:switch_on], sc.thermal_units)
sol[sc.name]["Switch off"] =
timeseries(model[:switch_off], sc.thermal_units)
sol[sc.name]["Net injection (MW)"] =
timeseries(model[:net_injection], sc.buses, sc = sc)
sol[sc.name]["Load curtail (MW)"] =
timeseries(model[:curtail], sc.buses, sc = sc)
end
if !isempty(instance.price_sensitive_loads)
sol["Price-sensitive loads (MW)"] =
timeseries(model[:loads], instance.price_sensitive_loads)
if !isempty(sc.lines)
sol[sc.name]["Line overflow (MW)"] =
timeseries(model[:overflow], sc.lines, sc = sc)
end
if !isempty(sc.price_sensitive_loads)
sol[sc.name]["Price-sensitive loads (MW)"] =
timeseries(model[:loads], sc.price_sensitive_loads, sc = sc)
end
if !isempty(sc.profiled_units)
sol[sc.name]["Profiled production (MW)"] =
timeseries(model[:prod_profiled], sc.profiled_units, sc = sc)
sol[sc.name]["Profiled production cost (\$)"] = OrderedDict(
pu.name => [
value(model[:prod_profiled][sc.name, pu.name, t]) *
pu.cost[t] for t in 1:instance.time
] for pu in sc.profiled_units
)
end
if !isempty(sc.storage_units)
sol[sc.name]["Storage level (MWh)"] =
timeseries(model[:storage_level], sc.storage_units, sc = sc)
sol[sc.name]["Is charging"] =
timeseries(model[:is_charging], sc.storage_units, sc = sc)
sol[sc.name]["Storage charging rates (MW)"] =
timeseries(model[:charge_rate], sc.storage_units, sc = sc)
sol[sc.name]["Storage charging cost (\$)"] = OrderedDict(
su.name => [
value(model[:charge_rate][sc.name, su.name, t]) *
su.charge_cost[t] for t in 1:instance.time
] for su in sc.storage_units
)
sol[sc.name]["Is discharging"] =
timeseries(model[:is_discharging], sc.storage_units, sc = sc)
sol[sc.name]["Storage discharging rates (MW)"] =
timeseries(model[:discharge_rate], sc.storage_units, sc = sc)
sol[sc.name]["Storage discharging cost (\$)"] = OrderedDict(
su.name => [
value(model[:discharge_rate][sc.name, su.name, t]) *
su.discharge_cost[t] for t in 1:instance.time
] for su in sc.storage_units
)
end
sol[sc.name]["Spinning reserve (MW)"] = OrderedDict(
r.name => OrderedDict(
g.name => [
value(model[:reserve][sc.name, r.name, g.name, t]) for t in 1:instance.time
] for g in r.thermal_units
) for r in sc.reserves if r.type == "spinning"
)
sol[sc.name]["Spinning reserve shortfall (MW)"] = OrderedDict(
r.name => [
value(model[:reserve_shortfall][sc.name, r.name, t]) for
t in 1:instance.time
] for r in sc.reserves if r.type == "spinning"
)
sol[sc.name]["Up-flexiramp (MW)"] = OrderedDict(
r.name => OrderedDict(
g.name => [
value(model[:upflexiramp][sc.name, r.name, g.name, t]) for t in 1:instance.time
] for g in r.thermal_units
) for r in sc.reserves if r.type == "flexiramp"
)
sol[sc.name]["Up-flexiramp shortfall (MW)"] = OrderedDict(
r.name => [
value(model[:upflexiramp_shortfall][sc.name, r.name, t]) for t in 1:instance.time
] for r in sc.reserves if r.type == "flexiramp"
)
sol[sc.name]["Down-flexiramp (MW)"] = OrderedDict(
r.name => OrderedDict(
g.name => [
value(model[:dwflexiramp][sc.name, r.name, g.name, t]) for t in 1:instance.time
] for g in r.thermal_units
) for r in sc.reserves if r.type == "flexiramp"
)
sol[sc.name]["Down-flexiramp shortfall (MW)"] = OrderedDict(
r.name => [
value(model[:dwflexiramp_shortfall][sc.name, r.name, t]) for t in 1:instance.time
] for r in sc.reserves if r.type == "flexiramp"
)
end
if length(instance.scenarios) == 1
return first(values(sol))
else
return sol
end
end

View File

@@ -5,7 +5,7 @@
function set_warm_start!(model::JuMP.Model, solution::AbstractDict)::Nothing
instance, T = model[:instance], model[:instance].time
is_on = model[:is_on]
for g in instance.units
for g in instance.thermal_units
for t in 1:T
JuMP.set_start_value(is_on[g.name, t], solution["Is on"][g.name][t])
JuMP.set_start_value(

View File

@@ -2,6 +2,18 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
"""
write(filename::AbstractString, solution::AbstractDict)::Nothing
Write the given solution to a JSON file.
# Example
```julia
solution = UnitCommitment.solution(model)
UnitCommitment.write("/tmp/output.json", solution)
```
"""
function write(filename::AbstractString, solution::AbstractDict)::Nothing
open(filename, "w") do file
return JSON.print(file, solution, 2)

View File

@@ -15,26 +15,49 @@ function generate_initial_conditions!(
instance::UnitCommitmentInstance,
optimizer,
)::Nothing
G = instance.units
B = instance.buses
# Process first scenario
_generate_initial_conditions!(instance.scenarios[1], optimizer)
# Copy initial conditions to remaining scenarios
for (si, sc) in enumerate(instance.scenarios)
si > 1 || continue
for (gi, g) in sc.thermal_units
g_ref = instance.scenarios[1].thermal_units[gi]
g.initial_power = g_ref.initial_power
g.initial_status = g_ref.initial_status
end
end
end
function _generate_initial_conditions!(
sc::UnitCommitmentScenario,
optimizer,
)::Nothing
G = sc.thermal_units
B = sc.buses
PU = sc.profiled_units
t = 1
mip = JuMP.Model(optimizer)
# Decision variables
@variable(mip, x[G], Bin)
@variable(mip, p[G] >= 0)
@variable(mip, pu[PU])
# Constraint: Minimum power
@constraint(mip, min_power[g in G], p[g] >= g.min_power[t] * x[g])
@constraint(mip, pu_min_power[k in PU], pu[k] >= k.min_power[t])
# Constraint: Maximum power
@constraint(mip, max_power[g in G], p[g] <= g.max_power[t] * x[g])
@constraint(mip, pu_max_power[k in PU], pu[k] <= k.max_power[t])
# Constraint: Production equals demand
@constraint(
mip,
power_balance,
sum(b.load[t] for b in B) == sum(p[g] for g in G)
sum(b.load[t] for b in B) ==
sum(p[g] for g in G) + sum(pu[k] for k in PU)
)
# Constraint: Must run
@@ -58,7 +81,12 @@ function generate_initial_conditions!(
return c / mw
end
end
@objective(mip, Min, sum(p[g] * cost_slope(g) for g in G))
@objective(
mip,
Min,
sum(p[g] * cost_slope(g) for g in G) +
sum(pu[k] * k.cost[t] for k in PU)
)
JuMP.optimize!(mip)

View File

@@ -2,17 +2,11 @@
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
"""
Methods described in:
Xavier, Álinson S., Feng Qiu, and Shabbir Ahmed. "Learning to solve
large-scale security-constrained unit commitment problems." INFORMS
Journal on Computing 33.2 (2021): 739-756. DOI: 10.1287/ijoc.2020.0976
"""
module XavQiuAhm2021
using Distributions
import ..UnitCommitmentInstance
import ..UnitCommitmentScenario
"""
struct Randomization
@@ -55,6 +49,13 @@ load profile, as follows:
The default parameters were obtained based on an analysis of publicly available
bid and hourly data from PJM, corresponding to the month of January, 2017. For
more details, see Section 4.2 of the paper.
# References
- **Xavier, Álinson S., Feng Qiu, and Shabbir Ahmed.** *"Learning to solve
large-scale security-constrained unit commitment problems."* INFORMS Journal
on Computing 33.2 (2021): 739-756. DOI: 10.1287/ijoc.2020.0976
"""
Base.@kwdef struct Randomization
cost = Uniform(0.95, 1.05)
@@ -118,11 +119,12 @@ Base.@kwdef struct Randomization
end
function _randomize_costs(
instance::UnitCommitmentInstance,
rng,
sc::UnitCommitmentScenario,
distribution,
)::Nothing
for unit in instance.units
α = rand(distribution)
for unit in sc.thermal_units
α = rand(rng, distribution)
unit.min_power_cost *= α
for k in unit.cost_segments
k.cost *= α
@@ -131,21 +133,29 @@ function _randomize_costs(
s.cost *= α
end
end
for pu in sc.profiled_units
α = rand(rng, distribution)
pu.cost *= α
end
for su in sc.storage_units
α = rand(rng, distribution)
su.charge_cost *= α
su.discharge_cost *= α
end
return
end
function _randomize_load_share(
instance::UnitCommitmentInstance,
rng,
sc::UnitCommitmentScenario,
distribution,
)::Nothing
α = rand(distribution, length(instance.buses))
for t in 1:instance.time
total = sum(bus.load[t] for bus in instance.buses)
den = sum(
bus.load[t] / total * α[i] for
(i, bus) in enumerate(instance.buses)
)
for (i, bus) in enumerate(instance.buses)
α = rand(rng, distribution, length(sc.buses))
for t in 1:sc.time
total = sum(bus.load[t] for bus in sc.buses)
den =
sum(bus.load[t] / total * α[i] for (i, bus) in enumerate(sc.buses))
for (i, bus) in enumerate(sc.buses)
bus.load[t] *= α[i] / den
end
end
@@ -153,26 +163,28 @@ function _randomize_load_share(
end
function _randomize_load_profile(
instance::UnitCommitmentInstance,
rng,
sc::UnitCommitmentScenario,
params::Randomization,
)::Nothing
# Generate new system load
system_load = [1.0]
for t in 2:instance.time
for t in 2:sc.time
idx = (t - 1) % length(params.load_profile_mu) + 1
gamma = rand(
rng,
Normal(params.load_profile_mu[idx], params.load_profile_sigma[idx]),
)
push!(system_load, system_load[t-1] * gamma)
end
capacity = sum(maximum(u.max_power) for u in instance.units)
peak_load = rand(params.peak_load) * capacity
capacity = sum(maximum(u.max_power) for u in sc.thermal_units)
peak_load = rand(rng, params.peak_load) * capacity
system_load = system_load ./ maximum(system_load) .* peak_load
# Scale bus loads to match the new system load
prev_system_load = sum(b.load for b in instance.buses)
for b in instance.buses
for t in 1:instance.time
prev_system_load = sum(b.load for b in sc.buses)
for b in sc.buses
for t in 1:sc.time
b.load[t] *= system_load[t] / prev_system_load[t]
end
end
@@ -186,24 +198,64 @@ end
function randomize!(
instance::UnitCommitment.UnitCommitmentInstance,
method::XavQiuAhm2021.Randomization,
rng = MersenneTwister(),
)::Nothing
Randomize costs and loads based on the method described in XavQiuAhm2021.
"""
function randomize!(
instance::UnitCommitment.UnitCommitmentInstance,
method::XavQiuAhm2021.Randomization,
method::XavQiuAhm2021.Randomization;
rng = MersenneTwister(),
)::Nothing
if method.randomize_costs
XavQiuAhm2021._randomize_costs(instance, method.cost)
end
if method.randomize_load_share
XavQiuAhm2021._randomize_load_share(instance, method.load_share)
end
if method.randomize_load_profile
XavQiuAhm2021._randomize_load_profile(instance, method)
for sc in instance.scenarios
randomize!(sc, method; rng)
end
return
end
function randomize!(
sc::UnitCommitment.UnitCommitmentScenario,
method::XavQiuAhm2021.Randomization;
rng = MersenneTwister(),
)::Nothing
if method.randomize_costs
XavQiuAhm2021._randomize_costs(rng, sc, method.cost)
end
if method.randomize_load_share
XavQiuAhm2021._randomize_load_share(rng, sc, method.load_share)
end
if method.randomize_load_profile
XavQiuAhm2021._randomize_load_profile(rng, sc, method)
end
return
end
"""
function randomize!(
instance::UnitCommitmentInstance;
method = UnitCommitment.XavQiuAhm2021.Randomization();
rng = MersenneTwister(),
)::Nothing
Randomizes instance parameters according to the provided randomization method.
# Example
```julia
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
UnitCommitment.randomize!(instance)
model = UnitCommitment.build_model(; instance)
```
"""
function randomize!(
instance::UnitCommitment.UnitCommitmentInstance;
method = XavQiuAhm2021.Randomization(),
rng = MersenneTwister(),
)::Nothing
randomize!(instance, method; rng)
return
end
export randomize!

View File

@@ -12,10 +12,11 @@ conditions are also not modified.
Example
-------
```julia
# Build a 2-hour UC instance
instance = UnitCommitment.read_benchmark("test/case14")
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
modified = UnitCommitment.slice(instance, 1:2)
```
"""
function slice(
instance::UnitCommitmentInstance,
@@ -23,30 +24,53 @@ function slice(
)::UnitCommitmentInstance
modified = deepcopy(instance)
modified.time = length(range)
modified.power_balance_penalty = modified.power_balance_penalty[range]
modified.reserves.spinning = modified.reserves.spinning[range]
for u in modified.units
for sc in modified.scenarios
sc.power_balance_penalty = sc.power_balance_penalty[range]
for r in sc.reserves
r.amount = r.amount[range]
end
for u in sc.thermal_units
u.max_power = u.max_power[range]
u.min_power = u.min_power[range]
u.must_run = u.must_run[range]
u.min_power_cost = u.min_power_cost[range]
u.provides_spinning_reserves = u.provides_spinning_reserves[range]
for s in u.cost_segments
s.mw = s.mw[range]
s.cost = s.cost[range]
end
end
for b in modified.buses
for pu in sc.profiled_units
pu.max_power = pu.max_power[range]
pu.min_power = pu.min_power[range]
pu.cost = pu.cost[range]
end
for b in sc.buses
b.load = b.load[range]
end
for l in modified.lines
for l in sc.lines
l.normal_flow_limit = l.normal_flow_limit[range]
l.emergency_flow_limit = l.emergency_flow_limit[range]
l.flow_limit_penalty = l.flow_limit_penalty[range]
end
for ps in modified.price_sensitive_loads
for ps in sc.price_sensitive_loads
ps.demand = ps.demand[range]
ps.revenue = ps.revenue[range]
end
for su in sc.storage_units
su.min_level = su.min_level[range]
su.max_level = su.max_level[range]
su.simultaneous_charge_and_discharge =
su.simultaneous_charge_and_discharge[range]
su.charge_cost = su.charge_cost[range]
su.discharge_cost = su.discharge_cost[range]
su.charge_efficiency = su.charge_efficiency[range]
su.discharge_efficiency = su.discharge_efficiency[range]
su.loss_factor = su.loss_factor[range]
su.min_charge_rate = su.min_charge_rate[range]
su.max_charge_rate = su.max_charge_rate[range]
su.min_discharge_rate = su.min_discharge_rate[range]
su.max_discharge_rate = su.max_discharge_rate[range]
end
end
return modified
end

View File

@@ -5,20 +5,11 @@
import Logging: min_enabled_level, shouldlog, handle_message
using Base.CoreLogging, Logging, Printf
struct TimeLogger <: AbstractLogger
Base.@kwdef struct TimeLogger <: AbstractLogger
initial_time::Float64
file::Union{Nothing,IOStream}
screen_log_level::Any
io_log_level::Any
end
function TimeLogger(;
initial_time::Float64,
file::Union{Nothing,IOStream} = nothing,
screen_log_level = CoreLogging.Info,
io_log_level = CoreLogging.Info,
)::TimeLogger
return TimeLogger(initial_time, file, screen_log_level, io_log_level)
file::Union{Nothing,IOStream} = nothing
screen_log_level::Any = CoreLogging.Info
io_log_level::Any = CoreLogging.Info
end
min_enabled_level(logger::TimeLogger) = logger.io_log_level
@@ -61,7 +52,9 @@ function handle_message(
end
end
function _setup_logger()
function _setup_logger(; level = CoreLogging.Info)
initial_time = time()
return global_logger(TimeLogger(initial_time = initial_time))
return global_logger(
TimeLogger(initial_time = initial_time, screen_log_level = level),
)
end

View File

@@ -3,19 +3,19 @@
# Released under the modified BSD license. See COPYING.md for more details.
"""
repair!(instance)
repair!(sc)
Verifies that the given unit commitment instance is valid and automatically
Verifies that the given unit commitment scenario is valid and automatically
fixes some validation errors if possible, issuing a warning for each error
found. If a validation error cannot be automatically fixed, issues an
exception.
Returns the number of validation errors found.
"""
function repair!(instance::UnitCommitmentInstance)::Int
function repair!(sc::UnitCommitmentScenario)::Int
n_errors = 0
for g in instance.units
for g in sc.thermal_units
# Startup costs and delays must be increasing
for s in 2:length(g.startup_categories)
@@ -38,7 +38,7 @@ function repair!(instance::UnitCommitmentInstance)::Int
end
end
for t in 1:instance.time
for t in 1:sc.time
# Production cost curve should be convex
for k in 2:length(g.cost_segments)
cost = g.cost_segments[k].cost[t]

View File

@@ -28,6 +28,8 @@ function validate(
instance::UnitCommitmentInstance,
solution::Union{Dict,OrderedDict},
)::Bool
"Thermal production (MW)" keys(solution) ?
solution = Dict("s1" => solution) : nothing
err_count = 0
err_count += _validate_units(instance, solution)
err_count += _validate_reserve_and_demand(instance, solution)
@@ -40,15 +42,25 @@ function validate(
return true
end
function _validate_units(instance, solution; tol = 0.01)
function _validate_units(instance::UnitCommitmentInstance, solution; tol = 0.01)
err_count = 0
for unit in instance.units
production = solution["Production (MW)"][unit.name]
reserve = solution["Reserve (MW)"][unit.name]
actual_production_cost = solution["Production cost (\$)"][unit.name]
actual_startup_cost = solution["Startup cost (\$)"][unit.name]
is_on = bin(solution["Is on"][unit.name])
for sc in instance.scenarios
for unit in sc.thermal_units
production = solution[sc.name]["Thermal production (MW)"][unit.name]
reserve = [0.0 for _ in 1:instance.time]
spinning_reserves =
[r for r in unit.reserves if r.type == "spinning"]
if !isempty(spinning_reserves)
reserve += sum(
solution[sc.name]["Spinning reserve (MW)"][r.name][unit.name]
for r in spinning_reserves
)
end
actual_production_cost =
solution[sc.name]["Thermal production cost (\$)"][unit.name]
actual_startup_cost =
solution[sc.name]["Startup cost (\$)"][unit.name]
is_on = bin(solution[sc.name]["Is on"][unit.name])
for t in 1:instance.time
# Auxiliary variables
@@ -61,7 +73,8 @@ function _validate_units(instance, solution; tol = 0.01)
else
is_starting_up = !is_on[t-1] && is_on[t]
is_shutting_down = is_on[t-1] && !is_on[t]
ramp_up = max(0, production[t] + reserve[t] - production[t-1])
ramp_up =
max(0, production[t] + reserve[t] - production[t-1])
ramp_down = max(0, production[t-1] - production[t])
end
@@ -99,14 +112,22 @@ function _validate_units(instance, solution; tol = 0.01)
end
# Verify reserve eligibility
if !unit.provides_spinning_reserves[t] && reserve[t] > tol
for r in sc.reserves
if r.type == "spinning"
if unit r.thermal_units && (
unit in keys(
solution[sc.name]["Spinning reserve (MW)"][r.name],
)
)
@error @sprintf(
"Unit %s is not eligible to provide spinning reserves at time %d",
"Unit %s is not eligible to provide reserve %s",
unit.name,
t
r.name,
)
err_count += 1
end
end
end
# If unit is on, must produce at least its minimum power
if is_on[t] && (production[t] < unit.min_power[t] - tol)
@@ -137,9 +158,11 @@ function _validate_units(instance, solution; tol = 0.01)
# If unit is off, must produce zero
if !is_on[t] && production[t] + reserve[t] > tol
@error @sprintf(
"Unit %s produces power at time %d while off",
"Unit %s produces power at time %d while off (%.2f + %.2f > 0)",
unit.name,
t
t,
production[t],
reserve[t],
)
err_count += 1
end
@@ -282,62 +305,354 @@ function _validate_units(instance, solution; tol = 0.01)
end
end
end
for pu in sc.profiled_units
production = solution[sc.name]["Profiled production (MW)"][pu.name]
for t in 1:instance.time
# Unit must produce at least its minimum power
if production[t] < pu.min_power[t] - tol
@error @sprintf(
"Profiled unit %s produces below its minimum limit at time %d (%.2f < %.2f)",
pu.name,
t,
production[t],
pu.min_power[t]
)
err_count += 1
end
# Unit must produce at most its maximum power
if production[t] > pu.max_power[t] + tol
@error @sprintf(
"Profiled unit %s produces above its maximum limit at time %d (%.2f > %.2f)",
pu.name,
t,
production[t],
pu.max_power[t]
)
err_count += 1
end
end
end
for su in sc.storage_units
storage_level = solution[sc.name]["Storage level (MWh)"][su.name]
charge_rate =
solution[sc.name]["Storage charging rates (MW)"][su.name]
discharge_rate =
solution[sc.name]["Storage discharging rates (MW)"][su.name]
actual_charge_cost =
solution[sc.name]["Storage charging cost (\$)"][su.name]
actual_discharge_cost =
solution[sc.name]["Storage discharging cost (\$)"][su.name]
is_charging = bin(solution[sc.name]["Is charging"][su.name])
is_discharging = bin(solution[sc.name]["Is discharging"][su.name])
# time in hours
time_step = sc.time_step / 60
for t in 1:instance.time
# Unit must store at least its minimum level
if storage_level[t] < su.min_level[t] - tol
@error @sprintf(
"Storage unit %s stores below its minimum level at time %d (%.2f < %.2f)",
su.name,
t,
storage_level[t],
su.min_level[t]
)
err_count += 1
end
# Unit must store at most its maximum level
if storage_level[t] > su.max_level[t] + tol
@error @sprintf(
"Storage unit %s stores above its maximum level at time %d (%.2f > %.2f)",
su.name,
t,
storage_level[t],
su.max_level[t]
)
err_count += 1
end
if t == instance.time
# Unit must store at least its minimum level at last time period
if storage_level[t] < su.min_ending_level - tol
@error @sprintf(
"Storage unit %s stores below its minimum ending level (%.2f < %.2f)",
su.name,
storage_level[t],
su.min_ending_level
)
err_count += 1
end
# Unit must store at most its maximum level at last time period
if storage_level[t] > su.max_ending_level + tol
@error @sprintf(
"Storage unit %s stores above its maximum ending level (%.2f > %.2f)",
su.name,
storage_level[t],
su.max_ending_level
)
err_count += 1
end
end
# Unit must follow the energy transition constraint
prev_level = t == 1 ? su.initial_level : storage_level[t-1]
current_level =
(1 - su.loss_factor[t]) * prev_level +
time_step * (
charge_rate[t] * su.charge_efficiency[t] -
discharge_rate[t] / su.discharge_efficiency[t]
)
if abs(storage_level[t] - current_level) > tol
@error @sprintf(
"Storage unit %s has unexpected level at time %d (%.2f should be %.2f)",
unit.name,
t,
storage_level[t],
current_level
)
err_count += 1
end
# Unit cannot simultaneous charge and discharge if it is not allowed
if !su.simultaneous_charge_and_discharge[t] &&
is_charging[t] &&
is_discharging[t]
@error @sprintf(
"Storage unit %s is charging and discharging simultaneous at time %d",
su.name,
t
)
err_count += 1
end
# Unit must charge at least its minimum rate
if is_charging[t] &&
(charge_rate[t] < su.min_charge_rate[t] - tol)
@error @sprintf(
"Storage unit %s charges below its minimum limit at time %d (%.2f < %.2f)",
unit.name,
t,
charge_rate[t],
su.min_charge_rate[t]
)
err_count += 1
end
# Unit must charge at most its maximum rate
if is_charging[t] &&
(charge_rate[t] > su.max_charge_rate[t] + tol)
@error @sprintf(
"Storage unit %s charges above its maximum limit at time %d (%.2f > %.2f)",
unit.name,
t,
charge_rate[t],
su.max_charge_rate[t]
)
err_count += 1
end
# Unit must have zero charge when it is not charging
if !is_charging[t] && (charge_rate[t] > tol)
@error @sprintf(
"Storage unit %s charges power at time %d while not charging (%.2f > 0)",
unit.name,
t,
charge_rate[t]
)
err_count += 1
end
# Unit must discharge at least its minimum rate
if is_discharging[t] &&
(discharge_rate[t] < su.min_discharge_rate[t] - tol)
@error @sprintf(
"Storage unit %s discharges below its minimum limit at time %d (%.2f < %.2f)",
unit.name,
t,
discharge_rate[t],
su.min_discharge_rate[t]
)
err_count += 1
end
# Unit must discharge at most its maximum rate
if is_discharging[t] &&
(discharge_rate[t] > su.max_discharge_rate[t] + tol)
@error @sprintf(
"Storage unit %s discharges above its maximum limit at time %d (%.2f > %.2f)",
unit.name,
t,
discharge_rate[t],
su.max_discharge_rate[t]
)
err_count += 1
end
# Unit must have zero discharge when it is not charging
if !is_discharging[t] && (discharge_rate[t] > tol)
@error @sprintf(
"Storage unit %s discharges power at time %d while not discharging (%.2f > 0)",
unit.name,
t,
discharge_rate[t]
)
err_count += 1
end
# Compute storage costs
charge_cost = su.charge_cost[t] * charge_rate[t]
discharge_cost = su.discharge_cost[t] * discharge_rate[t]
# Compare costs
if abs(actual_charge_cost[t] - charge_cost) > tol
@error @sprintf(
"Storage unit %s has unexpected charge cost at time %d (%.2f should be %.2f)",
unit.name,
t,
actual_charge_cost[t],
charge_cost
)
err_count += 1
end
if abs(actual_discharge_cost[t] - discharge_cost) > tol
@error @sprintf(
"Storage unit %s has unexpected discharge cost at time %d (%.2f should be %.2f)",
unit.name,
t,
actual_discharge_cost[t],
discharge_cost
)
err_count += 1
end
end
end
end
return err_count
end
function _validate_reserve_and_demand(instance, solution, tol = 0.01)
err_count = 0
for sc in instance.scenarios
for t in 1:instance.time
load_curtail = 0
fixed_load = sum(b.load[t] for b in instance.buses)
fixed_load = sum(b.load[t] for b in sc.buses)
ps_load = 0
if length(instance.price_sensitive_loads) > 0
production = 0
storage_charge = 0
storage_discharge = 0
if length(sc.price_sensitive_loads) > 0
ps_load = sum(
solution["Price-sensitive loads (MW)"][ps.name][t] for
ps in instance.price_sensitive_loads
solution[sc.name]["Price-sensitive loads (MW)"][ps.name][t]
for ps in sc.price_sensitive_loads
)
end
if length(sc.thermal_units) > 0
production = sum(
solution[sc.name]["Thermal production (MW)"][g.name][t]
for g in sc.thermal_units
)
end
if length(sc.profiled_units) > 0
production += sum(
solution[sc.name]["Profiled production (MW)"][pu.name][t]
for pu in sc.profiled_units
)
end
if length(sc.storage_units) > 0
storage_charge += sum(
solution[sc.name]["Storage charging rates (MW)"][su.name][t]
for su in sc.storage_units
)
storage_discharge += sum(
solution[sc.name]["Storage discharging rates (MW)"][su.name][t]
for su in sc.storage_units
)
end
production =
sum(solution["Production (MW)"][g.name][t] for g in instance.units)
if "Load curtail (MW)" in keys(solution)
load_curtail = sum(
solution["Load curtail (MW)"][b.name][t] for
b in instance.buses
solution[sc.name]["Load curtail (MW)"][b.name][t] for
b in sc.buses
)
end
balance = fixed_load - load_curtail - production + ps_load
balance =
fixed_load - load_curtail - production +
ps_load +
storage_charge - storage_discharge
# Verify that production equals demand
if abs(balance) > tol
@error @sprintf(
"Non-zero power balance at time %d (%.2f + %.2f - %.2f - %.2f != 0)",
"Non-zero power balance at time %d (%.2f + %.2f - %.2f - %.2f + %.2f - %.2f != 0)",
t,
fixed_load,
ps_load,
load_curtail,
production,
storage_charge,
storage_discharge,
)
err_count += 1
end
# Verify spinning reserves
reserve =
sum(solution["Reserve (MW)"][g.name][t] for g in instance.units)
reserve_shortfall =
(instance.shortfall_penalty[t] >= 0) ?
solution["Reserve shortfall (MW)"][t] : 0
# Verify reserves
for r in sc.reserves
if r.type == "spinning"
provided = sum(
solution[sc.name]["Spinning reserve (MW)"][r.name][g.name][t]
for g in r.thermal_units
)
shortfall =
solution[sc.name]["Spinning reserve shortfall (MW)"][r.name][t]
required = r.amount[t]
if reserve + reserve_shortfall < instance.reserves.spinning[t] - tol
if provided + shortfall < required - tol
@error @sprintf(
"Insufficient spinning reserves at time %d (%.2f + %.2f should be %.2f)",
"Insufficient reserve %s at time %d (%.2f + %.2f < %.2f)",
r.name,
t,
reserve,
reserve_shortfall,
instance.reserves.spinning[t],
provided,
shortfall,
required,
)
end
elseif r.type == "flexiramp"
upflexiramp = sum(
solution[sc.name]["Up-flexiramp (MW)"][r.name][g.name][t]
for g in r.thermal_units
)
upflexiramp_shortfall =
solution[sc.name]["Up-flexiramp shortfall (MW)"][r.name][t]
if upflexiramp + upflexiramp_shortfall < r.amount[t] - tol
@error @sprintf(
"Insufficient up-flexiramp at time %d (%.2f + %.2f < %.2f)",
t,
upflexiramp,
upflexiramp_shortfall,
r.amount[t],
)
err_count += 1
end
dwflexiramp = sum(
solution[sc.name]["Down-flexiramp (MW)"][r.name][g.name][t]
for g in r.thermal_units
)
dwflexiramp_shortfall =
solution[sc.name]["Down-flexiramp shortfall (MW)"][r.name][t]
if dwflexiramp + dwflexiramp_shortfall < r.amount[t] - tol
@error @sprintf(
"Insufficient down-flexiramp at time %d (%.2f + %.2f < %.2f)",
t,
dwflexiramp,
dwflexiramp_shortfall,
r.amount[t],
)
err_count += 1
end
else
error("Unknown reserve type: $(r.type)")
end
end
end
end
return err_count

View File

@@ -1,26 +1,22 @@
name = "UnitCommitmentT"
uuid = "a3b7a17a-ab64-45e4-a924-cd5ae7dc644e"
authors = ["Alinson S. Xavier <git@axavier.org>"]
version = "0.1.0"
[deps]
Cbc = "9961bab8-2fa3-5c5a-9d89-47fab24efd76"
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
GZip = "92fee26a-97fe-5a0c-ad85-20a5f3185b63"
Gurobi = "2e9cd046-0924-5485-92f1-d5272153d98b"
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b"
JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
JuliaFormatter = "98e50ef6-434e-11e9-1051-2b60c6c9e899"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Logging = "56ddb016-857b-54e1-b83d-db4d58db5568"
MIPLearn = "2b1277c3-b477-4c49-a15e-7ba350325c68"
MPI = "da04e1cc-30fd-572f-bb4f-1f8673147195"
MathOptInterface = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
PackageCompiler = "9b87118b-4619-50d2-8e1e-99f35a4d4d9d"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[compat]
DataStructures = "0.18"
Distributions = "0.25"
GZip = "0.5"
JSON = "0.21"
JuMP = "0.21"
MathOptInterface = "0.9"
PackageCompiler = "1"
julia = "1"
UnitCommitment = "64606440-39ea-11e9-0f29-3303a1d3d877"

BIN
test/fixtures/aelmp_simple.json.gz vendored Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
test/fixtures/case14-flex.json.gz vendored Normal file

Binary file not shown.

BIN
test/fixtures/case14-profiled.json.gz vendored Normal file

Binary file not shown.

BIN
test/fixtures/case14-storage.json.gz vendored Normal file

Binary file not shown.

BIN
test/fixtures/case14-sub-hourly.json.gz vendored Normal file

Binary file not shown.

BIN
test/fixtures/case14.json.gz vendored Normal file

Binary file not shown.

BIN
test/fixtures/case14.json.gz.h5 vendored Normal file

Binary file not shown.

BIN
test/fixtures/lmp_simple_test_1.json.gz vendored Normal file

Binary file not shown.

BIN
test/fixtures/lmp_simple_test_2.json.gz vendored Normal file

Binary file not shown.

BIN
test/fixtures/lmp_simple_test_3.json.gz vendored Normal file

Binary file not shown.

BIN
test/fixtures/lmp_simple_test_4.json.gz vendored Normal file

Binary file not shown.

BIN
test/fixtures/market_da_scenario.json.gz vendored Normal file

Binary file not shown.

Some files were not shown because too many files have changed in this diff Show More