mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-07 01:48:51 -06:00
Convert VariableFeatures into dataclass
This commit is contained in:
@@ -136,7 +136,7 @@ class PrimalSolutionComponent(Component):
|
|||||||
category_offset: Dict[Hashable, int] = {cat: 0 for cat in x.keys()}
|
category_offset: Dict[Hashable, int] = {cat: 0 for cat in x.keys()}
|
||||||
for (var_name, var_dict) in features.variables.items():
|
for (var_name, var_dict) in features.variables.items():
|
||||||
for (idx, var_features) in var_dict.items():
|
for (idx, var_features) in var_dict.items():
|
||||||
category = var_features["Category"]
|
category = var_features.category
|
||||||
offset = category_offset[category]
|
offset = category_offset[category]
|
||||||
category_offset[category] += 1
|
category_offset[category] += 1
|
||||||
if y_pred[category][offset, 0]:
|
if y_pred[category][offset, 0]:
|
||||||
@@ -159,15 +159,15 @@ class PrimalSolutionComponent(Component):
|
|||||||
solution = sample["Solution"]
|
solution = sample["Solution"]
|
||||||
for (var_name, var_dict) in features.variables.items():
|
for (var_name, var_dict) in features.variables.items():
|
||||||
for (idx, var_features) in var_dict.items():
|
for (idx, var_features) in var_dict.items():
|
||||||
category = var_features["Category"]
|
category = var_features.category
|
||||||
if category is None:
|
if category is None:
|
||||||
continue
|
continue
|
||||||
if category not in x.keys():
|
if category not in x.keys():
|
||||||
x[category] = []
|
x[category] = []
|
||||||
y[category] = []
|
y[category] = []
|
||||||
f: List[float] = []
|
f: List[float] = []
|
||||||
assert var_features["User features"] is not None
|
assert var_features.user_features is not None
|
||||||
f += var_features["User features"]
|
f += var_features.user_features
|
||||||
if "LP solution" in sample and sample["LP solution"] is not None:
|
if "LP solution" in sample and sample["LP solution"] is not None:
|
||||||
lp_value = sample["LP solution"][var_name][idx]
|
lp_value = sample["LP solution"][var_name][idx]
|
||||||
if lp_value is not None:
|
if lp_value is not None:
|
||||||
|
|||||||
@@ -4,9 +4,15 @@
|
|||||||
|
|
||||||
import numbers
|
import numbers
|
||||||
import collections
|
import collections
|
||||||
from typing import TYPE_CHECKING, Dict
|
from typing import TYPE_CHECKING, Dict, Hashable
|
||||||
|
|
||||||
from miplearn.types import Features, ConstraintFeatures, InstanceFeatures
|
from miplearn.types import (
|
||||||
|
Features,
|
||||||
|
ConstraintFeatures,
|
||||||
|
InstanceFeatures,
|
||||||
|
VariableFeatures,
|
||||||
|
VarIndex,
|
||||||
|
)
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from miplearn import InternalSolver, Instance
|
from miplearn import InternalSolver, Instance
|
||||||
@@ -24,9 +30,14 @@ class FeaturesExtractor:
|
|||||||
instance.features.constraints = self._extract_constraints(instance)
|
instance.features.constraints = self._extract_constraints(instance)
|
||||||
instance.features.instance = self._extract_instance(instance, instance.features)
|
instance.features.instance = self._extract_instance(instance, instance.features)
|
||||||
|
|
||||||
def _extract_variables(self, instance: "Instance") -> Dict:
|
def _extract_variables(
|
||||||
variables = self.solver.get_empty_solution()
|
self,
|
||||||
for (var_name, var_dict) in variables.items():
|
instance: "Instance",
|
||||||
|
) -> Dict[str, Dict[VarIndex, VariableFeatures]]:
|
||||||
|
result: Dict[str, Dict[VarIndex, VariableFeatures]] = {}
|
||||||
|
empty_solution = self.solver.get_empty_solution()
|
||||||
|
for (var_name, var_dict) in empty_solution.items():
|
||||||
|
result[var_name] = {}
|
||||||
for idx in var_dict.keys():
|
for idx in var_dict.keys():
|
||||||
user_features = None
|
user_features = None
|
||||||
category = instance.get_variable_category(var_name, idx)
|
category = instance.get_variable_category(var_name, idx)
|
||||||
@@ -47,11 +58,11 @@ class FeaturesExtractor:
|
|||||||
f"Found {type(v).__name__} instead "
|
f"Found {type(v).__name__} instead "
|
||||||
f"for var={var_name}[{idx}]."
|
f"for var={var_name}[{idx}]."
|
||||||
)
|
)
|
||||||
var_dict[idx] = {
|
result[var_name][idx] = VariableFeatures(
|
||||||
"Category": category,
|
category=category,
|
||||||
"User features": user_features,
|
user_features=user_features,
|
||||||
}
|
)
|
||||||
return variables
|
return result
|
||||||
|
|
||||||
def _extract_constraints(
|
def _extract_constraints(
|
||||||
self,
|
self,
|
||||||
|
|||||||
@@ -274,7 +274,7 @@ class InternalSolver(ABC):
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def get_empty_solution(self) -> Dict:
|
def get_empty_solution(self) -> Dict[str, Dict[VarIndex, Optional[float]]]:
|
||||||
"""
|
"""
|
||||||
Returns a dictionary with the same shape as the one produced by
|
Returns a dictionary with the same shape as the one produced by
|
||||||
`get_solution`, but with all values set to None. This method is
|
`get_solution`, but with all values set to None. This method is
|
||||||
|
|||||||
@@ -87,14 +87,12 @@ InstanceFeatures = TypedDict(
|
|||||||
total=False,
|
total=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
VariableFeatures = TypedDict(
|
|
||||||
"VariableFeatures",
|
@dataclass
|
||||||
{
|
class VariableFeatures:
|
||||||
"Category": Optional[Hashable],
|
category: Optional[Hashable] = None
|
||||||
"User features": Optional[List[float]],
|
user_features: Optional[List[float]] = None
|
||||||
},
|
|
||||||
total=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
ConstraintFeatures = TypedDict(
|
ConstraintFeatures = TypedDict(
|
||||||
"ConstraintFeatures",
|
"ConstraintFeatures",
|
||||||
|
|||||||
@@ -13,28 +13,28 @@ from miplearn.classifiers.threshold import Threshold
|
|||||||
from miplearn.components import classifier_evaluation_dict
|
from miplearn.components import classifier_evaluation_dict
|
||||||
from miplearn.components.primal import PrimalSolutionComponent
|
from miplearn.components.primal import PrimalSolutionComponent
|
||||||
from miplearn.problems.tsp import TravelingSalesmanGenerator
|
from miplearn.problems.tsp import TravelingSalesmanGenerator
|
||||||
from miplearn.types import TrainingSample, Features
|
from miplearn.types import TrainingSample, Features, VariableFeatures
|
||||||
|
|
||||||
|
|
||||||
def test_xy() -> None:
|
def test_xy() -> None:
|
||||||
features = Features(
|
features = Features(
|
||||||
variables={
|
variables={
|
||||||
"x": {
|
"x": {
|
||||||
0: {
|
0: VariableFeatures(
|
||||||
"Category": "default",
|
category="default",
|
||||||
"User features": [0.0, 0.0],
|
user_features=[0.0, 0.0],
|
||||||
},
|
),
|
||||||
1: {
|
1: VariableFeatures(
|
||||||
"Category": None,
|
category=None,
|
||||||
},
|
),
|
||||||
2: {
|
2: VariableFeatures(
|
||||||
"Category": "default",
|
category="default",
|
||||||
"User features": [1.0, 0.0],
|
user_features=[1.0, 0.0],
|
||||||
},
|
),
|
||||||
3: {
|
3: VariableFeatures(
|
||||||
"Category": "default",
|
category="default",
|
||||||
"User features": [1.0, 1.0],
|
user_features=[1.0, 1.0],
|
||||||
},
|
),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
@@ -81,21 +81,21 @@ def test_xy_without_lp_solution() -> None:
|
|||||||
features = Features(
|
features = Features(
|
||||||
variables={
|
variables={
|
||||||
"x": {
|
"x": {
|
||||||
0: {
|
0: VariableFeatures(
|
||||||
"Category": "default",
|
category="default",
|
||||||
"User features": [0.0, 0.0],
|
user_features=[0.0, 0.0],
|
||||||
},
|
),
|
||||||
1: {
|
1: VariableFeatures(
|
||||||
"Category": None,
|
category=None,
|
||||||
},
|
),
|
||||||
2: {
|
2: VariableFeatures(
|
||||||
"Category": "default",
|
category="default",
|
||||||
"User features": [1.0, 0.0],
|
user_features=[1.0, 0.0],
|
||||||
},
|
),
|
||||||
3: {
|
3: VariableFeatures(
|
||||||
"Category": "default",
|
category="default",
|
||||||
"User features": [1.0, 1.0],
|
user_features=[1.0, 1.0],
|
||||||
},
|
),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
@@ -146,18 +146,18 @@ def test_predict() -> None:
|
|||||||
features = Features(
|
features = Features(
|
||||||
variables={
|
variables={
|
||||||
"x": {
|
"x": {
|
||||||
0: {
|
0: VariableFeatures(
|
||||||
"Category": "default",
|
category="default",
|
||||||
"User features": [0.0, 0.0],
|
user_features=[0.0, 0.0],
|
||||||
},
|
),
|
||||||
1: {
|
1: VariableFeatures(
|
||||||
"Category": "default",
|
category="default",
|
||||||
"User features": [0.0, 2.0],
|
user_features=[0.0, 2.0],
|
||||||
},
|
),
|
||||||
2: {
|
2: VariableFeatures(
|
||||||
"Category": "default",
|
category="default",
|
||||||
"User features": [2.0, 0.0],
|
user_features=[2.0, 0.0],
|
||||||
},
|
),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
@@ -246,11 +246,11 @@ def test_evaluate() -> None:
|
|||||||
features = Features(
|
features = Features(
|
||||||
variables={
|
variables={
|
||||||
"x": {
|
"x": {
|
||||||
0: {},
|
0: VariableFeatures(),
|
||||||
1: {},
|
1: VariableFeatures(),
|
||||||
2: {},
|
2: VariableFeatures(),
|
||||||
3: {},
|
3: VariableFeatures(),
|
||||||
4: {},
|
4: VariableFeatures(),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|||||||
@@ -4,6 +4,7 @@
|
|||||||
|
|
||||||
from miplearn import GurobiSolver
|
from miplearn import GurobiSolver
|
||||||
from miplearn.features import FeaturesExtractor
|
from miplearn.features import FeaturesExtractor
|
||||||
|
from miplearn.types import VariableFeatures
|
||||||
from tests.fixtures.knapsack import get_knapsack_instance
|
from tests.fixtures.knapsack import get_knapsack_instance
|
||||||
|
|
||||||
|
|
||||||
@@ -16,22 +17,22 @@ def test_knapsack() -> None:
|
|||||||
FeaturesExtractor(solver).extract(instance)
|
FeaturesExtractor(solver).extract(instance)
|
||||||
assert instance.features.variables == {
|
assert instance.features.variables == {
|
||||||
"x": {
|
"x": {
|
||||||
0: {
|
0: VariableFeatures(
|
||||||
"Category": "default",
|
category="default",
|
||||||
"User features": [23.0, 505.0],
|
user_features=[23.0, 505.0],
|
||||||
},
|
),
|
||||||
1: {
|
1: VariableFeatures(
|
||||||
"Category": "default",
|
category="default",
|
||||||
"User features": [26.0, 352.0],
|
user_features=[26.0, 352.0],
|
||||||
},
|
),
|
||||||
2: {
|
2: VariableFeatures(
|
||||||
"Category": "default",
|
category="default",
|
||||||
"User features": [20.0, 458.0],
|
user_features=[20.0, 458.0],
|
||||||
},
|
),
|
||||||
3: {
|
3: VariableFeatures(
|
||||||
"Category": "default",
|
category="default",
|
||||||
"User features": [18.0, 220.0],
|
user_features=[18.0, 220.0],
|
||||||
},
|
),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
assert instance.features.constraints == {
|
assert instance.features.constraints == {
|
||||||
|
|||||||
Reference in New Issue
Block a user