Convert VariableFeatures into dataclass

master
Alinson S. Xavier 5 years ago
parent 59f4f75a53
commit d79eec5da6
No known key found for this signature in database
GPG Key ID: DCA0DAD4D2F58624

@ -136,7 +136,7 @@ class PrimalSolutionComponent(Component):
category_offset: Dict[Hashable, int] = {cat: 0 for cat in x.keys()} category_offset: Dict[Hashable, int] = {cat: 0 for cat in x.keys()}
for (var_name, var_dict) in features.variables.items(): for (var_name, var_dict) in features.variables.items():
for (idx, var_features) in var_dict.items(): for (idx, var_features) in var_dict.items():
category = var_features["Category"] category = var_features.category
offset = category_offset[category] offset = category_offset[category]
category_offset[category] += 1 category_offset[category] += 1
if y_pred[category][offset, 0]: if y_pred[category][offset, 0]:
@ -159,15 +159,15 @@ class PrimalSolutionComponent(Component):
solution = sample["Solution"] solution = sample["Solution"]
for (var_name, var_dict) in features.variables.items(): for (var_name, var_dict) in features.variables.items():
for (idx, var_features) in var_dict.items(): for (idx, var_features) in var_dict.items():
category = var_features["Category"] category = var_features.category
if category is None: if category is None:
continue continue
if category not in x.keys(): if category not in x.keys():
x[category] = [] x[category] = []
y[category] = [] y[category] = []
f: List[float] = [] f: List[float] = []
assert var_features["User features"] is not None assert var_features.user_features is not None
f += var_features["User features"] f += var_features.user_features
if "LP solution" in sample and sample["LP solution"] is not None: if "LP solution" in sample and sample["LP solution"] is not None:
lp_value = sample["LP solution"][var_name][idx] lp_value = sample["LP solution"][var_name][idx]
if lp_value is not None: if lp_value is not None:

@ -4,9 +4,15 @@
import numbers import numbers
import collections import collections
from typing import TYPE_CHECKING, Dict from typing import TYPE_CHECKING, Dict, Hashable
from miplearn.types import Features, ConstraintFeatures, InstanceFeatures from miplearn.types import (
Features,
ConstraintFeatures,
InstanceFeatures,
VariableFeatures,
VarIndex,
)
if TYPE_CHECKING: if TYPE_CHECKING:
from miplearn import InternalSolver, Instance from miplearn import InternalSolver, Instance
@ -24,9 +30,14 @@ class FeaturesExtractor:
instance.features.constraints = self._extract_constraints(instance) instance.features.constraints = self._extract_constraints(instance)
instance.features.instance = self._extract_instance(instance, instance.features) instance.features.instance = self._extract_instance(instance, instance.features)
def _extract_variables(self, instance: "Instance") -> Dict: def _extract_variables(
variables = self.solver.get_empty_solution() self,
for (var_name, var_dict) in variables.items(): instance: "Instance",
) -> Dict[str, Dict[VarIndex, VariableFeatures]]:
result: Dict[str, Dict[VarIndex, VariableFeatures]] = {}
empty_solution = self.solver.get_empty_solution()
for (var_name, var_dict) in empty_solution.items():
result[var_name] = {}
for idx in var_dict.keys(): for idx in var_dict.keys():
user_features = None user_features = None
category = instance.get_variable_category(var_name, idx) category = instance.get_variable_category(var_name, idx)
@ -47,11 +58,11 @@ class FeaturesExtractor:
f"Found {type(v).__name__} instead " f"Found {type(v).__name__} instead "
f"for var={var_name}[{idx}]." f"for var={var_name}[{idx}]."
) )
var_dict[idx] = { result[var_name][idx] = VariableFeatures(
"Category": category, category=category,
"User features": user_features, user_features=user_features,
} )
return variables return result
def _extract_constraints( def _extract_constraints(
self, self,

@ -274,7 +274,7 @@ class InternalSolver(ABC):
pass pass
@abstractmethod @abstractmethod
def get_empty_solution(self) -> Dict: def get_empty_solution(self) -> Dict[str, Dict[VarIndex, Optional[float]]]:
""" """
Returns a dictionary with the same shape as the one produced by Returns a dictionary with the same shape as the one produced by
`get_solution`, but with all values set to None. This method is `get_solution`, but with all values set to None. This method is

@ -87,14 +87,12 @@ InstanceFeatures = TypedDict(
total=False, total=False,
) )
VariableFeatures = TypedDict(
"VariableFeatures", @dataclass
{ class VariableFeatures:
"Category": Optional[Hashable], category: Optional[Hashable] = None
"User features": Optional[List[float]], user_features: Optional[List[float]] = None
},
total=False,
)
ConstraintFeatures = TypedDict( ConstraintFeatures = TypedDict(
"ConstraintFeatures", "ConstraintFeatures",

@ -13,28 +13,28 @@ from miplearn.classifiers.threshold import Threshold
from miplearn.components import classifier_evaluation_dict from miplearn.components import classifier_evaluation_dict
from miplearn.components.primal import PrimalSolutionComponent from miplearn.components.primal import PrimalSolutionComponent
from miplearn.problems.tsp import TravelingSalesmanGenerator from miplearn.problems.tsp import TravelingSalesmanGenerator
from miplearn.types import TrainingSample, Features from miplearn.types import TrainingSample, Features, VariableFeatures
def test_xy() -> None: def test_xy() -> None:
features = Features( features = Features(
variables={ variables={
"x": { "x": {
0: { 0: VariableFeatures(
"Category": "default", category="default",
"User features": [0.0, 0.0], user_features=[0.0, 0.0],
}, ),
1: { 1: VariableFeatures(
"Category": None, category=None,
}, ),
2: { 2: VariableFeatures(
"Category": "default", category="default",
"User features": [1.0, 0.0], user_features=[1.0, 0.0],
}, ),
3: { 3: VariableFeatures(
"Category": "default", category="default",
"User features": [1.0, 1.0], user_features=[1.0, 1.0],
}, ),
} }
} }
) )
@ -81,21 +81,21 @@ def test_xy_without_lp_solution() -> None:
features = Features( features = Features(
variables={ variables={
"x": { "x": {
0: { 0: VariableFeatures(
"Category": "default", category="default",
"User features": [0.0, 0.0], user_features=[0.0, 0.0],
}, ),
1: { 1: VariableFeatures(
"Category": None, category=None,
}, ),
2: { 2: VariableFeatures(
"Category": "default", category="default",
"User features": [1.0, 0.0], user_features=[1.0, 0.0],
}, ),
3: { 3: VariableFeatures(
"Category": "default", category="default",
"User features": [1.0, 1.0], user_features=[1.0, 1.0],
}, ),
} }
} }
) )
@ -146,18 +146,18 @@ def test_predict() -> None:
features = Features( features = Features(
variables={ variables={
"x": { "x": {
0: { 0: VariableFeatures(
"Category": "default", category="default",
"User features": [0.0, 0.0], user_features=[0.0, 0.0],
}, ),
1: { 1: VariableFeatures(
"Category": "default", category="default",
"User features": [0.0, 2.0], user_features=[0.0, 2.0],
}, ),
2: { 2: VariableFeatures(
"Category": "default", category="default",
"User features": [2.0, 0.0], user_features=[2.0, 0.0],
}, ),
} }
} }
) )
@ -246,11 +246,11 @@ def test_evaluate() -> None:
features = Features( features = Features(
variables={ variables={
"x": { "x": {
0: {}, 0: VariableFeatures(),
1: {}, 1: VariableFeatures(),
2: {}, 2: VariableFeatures(),
3: {}, 3: VariableFeatures(),
4: {}, 4: VariableFeatures(),
} }
} }
) )

@ -4,6 +4,7 @@
from miplearn import GurobiSolver from miplearn import GurobiSolver
from miplearn.features import FeaturesExtractor from miplearn.features import FeaturesExtractor
from miplearn.types import VariableFeatures
from tests.fixtures.knapsack import get_knapsack_instance from tests.fixtures.knapsack import get_knapsack_instance
@ -16,22 +17,22 @@ def test_knapsack() -> None:
FeaturesExtractor(solver).extract(instance) FeaturesExtractor(solver).extract(instance)
assert instance.features.variables == { assert instance.features.variables == {
"x": { "x": {
0: { 0: VariableFeatures(
"Category": "default", category="default",
"User features": [23.0, 505.0], user_features=[23.0, 505.0],
}, ),
1: { 1: VariableFeatures(
"Category": "default", category="default",
"User features": [26.0, 352.0], user_features=[26.0, 352.0],
}, ),
2: { 2: VariableFeatures(
"Category": "default", category="default",
"User features": [20.0, 458.0], user_features=[20.0, 458.0],
}, ),
3: { 3: VariableFeatures(
"Category": "default", category="default",
"User features": [18.0, 220.0], user_features=[18.0, 220.0],
}, ),
} }
} }
assert instance.features.constraints == { assert instance.features.constraints == {

Loading…
Cancel
Save